Spatial Pattern of the Seasonal Drought/Burned Area Relationship across Brazilian Biomes: Sensitivity to Drought Metrics and Global Remote-Sensing Fire Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Land Cover Dataset
2.3. Climate Data
2.4. Meteorological Fire Danger Indices (FDI)
2.5. Burned Area Datasets
2.6. Data Analysis
3. Results
3.1. Performance of Fire Danger Indices to the Seasonal Variation of BA from Global Remote Sensing Datasets
3.2. Biome Specific FDI/BA Relationship
4. Discussion
4.1. Sensitivity of the Seasonal FDI/BA Relationship to BA Datasets
4.2. Biome Specific FDIs for the Seasonal Fire Pattern
5. Conclusions Remarks
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
Daily Meteorological Variables | Formula |
---|---|
Mean Incoming Short Wave Radiation (Rg, MJ·m−2·day−1) | - |
Average annually (P, mm·day−1) and total daily (prec, mm) precipitation | |
Relative humidity (RH, %) | ea = actual air vapour pressure (kPa); es = saturation air vapor pressure (kPa); qair = daily air specific humidity (g·g−1); temp = air temperature (K); press = air pressure (Pa) |
Maximum (Tmax), minimum (Tmin), mean (Tmean) and dew point (Tdew) temperatures (°C) | Max, min, mean (temp), |
Wind speed (w, m·s−1) | uwind and wind are horizontal and vertical wind components (m·s-1), respectively |
Evapotranspiration from Penman Monteith model (ET0PM, mm·day−1) | Rn = net radiation at the crop surface (MJ·m−2·day−1), G = soil heat flux density (MJ·m−2·day−1), a = mean air density at constant pressure (kg·m−3); cp = specific heat of the air (MJ·kg−1·°C−1); es − ea = vapour pressure deficit of the air (kPa); = slope of the saturation vapour pressure temperature relationship (kPa·°C−1); = psychrometric constant (kPa·°C−1); rs and ra = the bulk surface and aerodynamic resistances (s·m−1), respectively |
FDI | Formula1 | References |
---|---|---|
McArthur Forest Fire Danger Index (FFDI) | DF = drought factor between 0 and 10 where, I = KBDI index [20]; N = Number of days since last rain (considered here the days with the prec values upper to 2 mm [87]); RH = relative humidity (%); P = annually average precipitation (mm·day−1) | [23] |
Fine Fuel Moisture Code (FFMC) | m = daily fuel moisture [19] | [19] |
Duff Moisture Code (DMC) | m = daily fuel moisture [19] for minimal prec values to 1.5 mm | |
Drought Code (DC) | Q = m equivalent [19] | |
Angstrom Index (I) | RH = relative humidity (%); Tmean= mean temperature (°C) | [24] |
Keetch–Bryam Drought Index (KBDI) | (drought factor) Tmax = maximal temperature (°C); P = annually average precipitation (mm·day−1) | [20] |
Nesterov Index (NI) | N = Number of days since last rain; D = dew point factor for maximal prec values to 3mm·day−1; Tmean = mean temperature (°C); Tdew = dew point temperature (°C) | [25] |
Modified Nesterov Index (MNI) | k is a coefficient that gradually decreases between 1 (when no rainfall occurs) and 0 (when daily rainfall is 20 mm or more) | [26] |
Zhdanko Index (ZH) | D = dew point factor for maximal prec values to 3 mm·day−1; Tmean = mean temperature (°C); Tdew = dew point temperature (°C) | [27] |
Sharples Index (FMI_KBDI) | w = average wind speed measured at height of 10 m (m·s−1); Tmean = mean temperature (°C); RH = relative humidity (%) | [28] |
Standardized Precipitation-Evapotranspiration Index (SPEI) | P = monthly precipitation (mm); i = time in months; k = time window of the aggregation for 1, 3, 6, 9, 12, 24 and 48 months in this study; PET= actual evapotranspiration rate, which was estimated in thisusing Penman-Monteith model (ET0PM) [88,89] | [29] |
Linacre Index (LINACRE) | FC = soil field capacity (mm) of 100, 250, 500 and 750 mm for this study; S = is total saturated soil to initial time in first day of year; AET = actual evapotranspiration (mm·day−1) | [30] |
References
- Pausas, J.G.; Keeley, J.E. Evolutionary ecology of resprouting and seeding in fire-prone ecosystems. New Phytol. 2014, 204, 55–65. [Google Scholar] [CrossRef] [PubMed]
- Bowman, D.M.J.S.; Balch, J.K.; Artaxo, P.; Bond, W.J.; Carlson, J.M.; Cochrane, M.A.; D’Antonio, C.M.; Defries, R.S.; Doyle, J.C.; Harrison, S.P.; et al. Fire in the earth system. Science 2009, 324, 481–484. [Google Scholar] [CrossRef] [PubMed]
- Bowman, D.M.J.S.; Balch, J.; Artaxo, P.; Bond, W.J.; Cochrane, M.A.; D’Antonio, C.M.; Defries, R.; Johnston, F.H.; Keeley, J.E.; Krawchuk, M.A.; et al. The human dimension of fire regimes on earth. J. Biogeogr. 2011, 38, 2223–2236. [Google Scholar] [CrossRef] [PubMed]
- IPCC-Intergovernamental Panel on Climate Change. Climate Change 2014: Impacts, Adaptation and Vulnerability; v2, cap.27; Cambridge University Press: Cambridge, UK, 2014; Available online: https://www.ipcc.ch/report/ar5/wg2/ (accessed on 6 January 2016).
- Pettinari, M.L.; Ottmar, R.D.; Prochard, S.J.; Andreu, A.G.; Chuvieco, E. Development and mapping of fuel characteristics and associated fire potentials for South America. Int. J. Wildland Fire 2014, 23, 643–654. [Google Scholar] [CrossRef]
- Parisien, M.A.; Moritz, M.A. Environmental controls on the distribution of wildfire at multiple spatial scales. Ecol. Monogr. 2009, 79, 127–154. [Google Scholar] [CrossRef]
- Hoffmann, W.A.; Jaconis, S.Y.; Mckinley, K.L.; Geiger, E.L.; Gotsch, S.G.; Franco, A.C. Fuels or microclimate? Understanding the drivers of fire feedbacks at savanna–forest boundaries. Austral Ecol. 2012, 37, 634–643. [Google Scholar] [CrossRef]
- Ray, D.; Nepstad, D.; Moutinho, P. Micrometeorological and canopy controls of fire susceptibility in a forested Amazon landscape. Ecol. Appl. 2005, 15, 1664–1678. [Google Scholar] [CrossRef]
- Stott, P. Combustion in tropical biomass fires: A critical review. Prog. Phys. Geogr. 2000, 24, 355–377. [Google Scholar] [CrossRef]
- Nepstad, D.C.; Lefebvre, P.A.; Silva, U.L.; Junior, T.J.; Schlesinger, P.; Solorzano, L.; Moutinho, P.R.S.; Ray, D.G. Amazon drought and its implications for forest flammability and tree growth: A basin-wide analysis. Glob. Chang. Biol. 2004, 10, 704–717. [Google Scholar] [CrossRef]
- Chen, Y.; Morton, D.C.; Jin, Y.; Collatz, G.J.; Kasibhatla, P.S.; van der Werf, G.R.; DeFries, R.S.; Randerson, J.T. Long-term trends and interannual variability of forest, savanna and agricultural fires in South America. Carbon Manag. 2013, 4, 617–638. [Google Scholar] [CrossRef]
- Meyn, A.; White, P.S.; Buhk, C.; Jentsch, A.; Carolina, N. Environmental drivers of large, infrequent wildfires: The emerging conceptual model. Prog. Phys. Geogr. 2007, 31, 287–312. [Google Scholar] [CrossRef]
- Krawchuk, M.A.; Moritz, M.A. Constraints on global fire activity vary across a resource gradient. Ecology 2011, 92, 121–132. [Google Scholar] [CrossRef] [PubMed]
- Bond, W.J. What limits trees in C4 grasslands and savannas? Annu. Rev. Ecol. Evol. Syst. 2008, 39, 641–659. [Google Scholar] [CrossRef]
- Oliveira, P.T.S.; Wendland, E.; Nearing, M.A.; Scott, R.L.; Rosolem, R.; da Rocha, H.R. The water balance components of undisturbed tropical woodlands in the Brazilian cerrado. Hydrol. Earth Syst. Sci. 2015, 19, 2899–2910. [Google Scholar] [CrossRef]
- Sano, E.E; Rosa, R.; Brito, J.L.; Ferreira, L.G. Land cover mapping of the tropical savanna region in Brazil. Environ. Monit. Assess. 2010, 166, 113–124. [Google Scholar] [CrossRef] [PubMed]
- Chuvieco, E.; Aguado, I.; Jurdao, S.; Pettinari, M.L.; Yebra, M.; Salas, J.; Hantson, S.; de la Riva, J.; Ibarra, P.; Rodrigues, M.; et al. Integrating geospatial information into fire risk assessment. Int. J. Wildland Fire 2014, 23, 606–619. [Google Scholar] [CrossRef]
- White, L.A.S.; White, B.L.A.; Ribeiro, G.T. Evaluation of Forest Fire Danger Indexes for Eucalypt Plantations in Bahia, Brazil. Int. J. For. Res. 2015, 2015, 1–6. [Google Scholar] [CrossRef]
- Van Wagner, C.E.; Forest, P. Development and Structure of the Canadian Forest Fire Weather Index System; Forestry Technical Report; Canadian Forestry Service: Ottawa, ON, Canada, 1987; Available online: https://cfs.nrcan.gc.ca/publications/download-pdf/19927 (accessed on 20 May 2016).
- Keetch, J.J.; Byram, G. A Drought Index for Forest Fire Control. Available online: https://www.treesearch.fs.fed.us/pubs/40 (accessed on 13 July 2016).
- German Weather Service (GWG). Available online: http://www.dwd.de (accessed on 12 January 2017).
- San-Miguel-Ayanz, J.; Schulte, E.; Schmuck, G.; Camia, A.; Strobl, P.; Liberta, G.; Giovando, C.; Boca, R.; Sedano, F.; Kempeneers, P.; et al. Comprehensive Monitoring of Wildfires in Europe: The European Forest Fire Information System (EFFIS). Available online: https://www.intechopen.com/books/approaches-to-managing-disaster-assessing-hazards-emergencies-and-disaster-impacts/comprehensive-monitoring-of-wildfires-in-europe-the-european-forest-fire-information-system-effis- (accessed on 12 March 2017).
- McArthur, A.G. Fire Behavior in Eucalypt Forests. Department of National Development, Forestry and Timber Bureau Leaflet: Canberra, Australia, 1967. [Google Scholar]
- Willis, C.; Van Wilgen, B.; Tolhurst, K.; Everson, C.; D’Abreton, P.; Pero, L.; Fleming, G. Development of a National Fire Danger Rating System for South Africa; Department of Water Affairs and Forestry: Pretoria, South Africa, 2001. Available online: http://www.daff.gov.za/doaDev/sideMenu/ForestryWeb/dwaf/cmsdocs/Elsa/Docs/Fire/Dev%20of%20Nat%20Fire%20Danger%20Rating%20System%202001.pdf (accessed on 8 June 2016).
- Nesterov, V.G. Combustibility of the Forest and Methods for Its Determination; USSR State Industry Press: Moscow, Russia, 1949; p. 76. (In Russian) [Google Scholar]
- Venevsky, S.; Thonicke, K.; Sitch, S.; Cramer, W. Simulating fire regimes in human-dominated ecosystems: Iberian Peninsula case study. Glob. Chang. Biol. 2002, 8, 984–998. [Google Scholar] [CrossRef]
- Zhdanko, V.A. Scientific basis of development of regional scales and their importance for forest fire management. In Contemporary Problems of Forest Protection from Fire and Firefighting; Melekhov, I.S., Ed.; Lesnaya Promyshlennost’ Publ.: Moscow, Russia, 1965; pp. 53–89. (In Russian) [Google Scholar]
- Sharples, J.J.; Mcrae, R.H.D.; Weber, R.O.; Gill, A.M. A simple index for assessing fire danger rating. Environ. Model. Softw. 2009, 24, 764–774. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguerai, S.; Lopez-Moreno, J.I.; Angulo-Martinez, M.; El Kenaway, A.M.A. New Global 0.5° Gridded Dataset (1901–2006) of a Multiscalar Drought Index: Comparison with Current Drought Index Datasets Based on the Palmer Drought Severity Index. J. Hydrometeorol. 2010, 11, 1033–1041. [Google Scholar] [CrossRef]
- Linacre, E.T. A simpler empirical expression for actual evapotranspiration rates—A discussion. Agric. Meteorol. 1973, 11, 451–452. [Google Scholar] [CrossRef]
- Mbow, C.; Kalifa, G.; Goze, B. Spectral indices and fire behavior simulation for fire risk assessment in savanna ecosystems. Remote Sens. Environ. 2004, 91. [Google Scholar] [CrossRef]
- Mouillot, F.; Schultz, M.G.; Yue, C.; Cadule, P.; Tansey, K.; Ciais, P.; Chuvieco, E. Ten years of global burned area products from spaceborne remote sensing—A review: Analysis of user needs and recommendations for future developments. Int. J. Appl. Earth Obs. Geoinf. 2014, 26, 64–79. [Google Scholar] [CrossRef]
- MMA-Ministério do Meio Ambiente. Available online: http://mma.gov.br/ (accessed on 5 June 2016).
- Silvestrini, R.A.; Soares-Filho, B.S.; Nepstad, D.; Coe, M.; Rodrigues, H.; Assunção, R. Simulating Fire Regimes in the Amazon in Response to Climate Change and Deforestation. Ecol. Appl. 2011, 21, 1573–1590. [Google Scholar] [CrossRef] [PubMed]
- Villar, J.C.E.; Ronchail, J.; Guyot, J.L.; Cochonneau, G.; Naziano, F.; Lavado, W.; De Oliveira, E.; Pombosa, R.; Vauchel, P. Spatio-temporal rainfall variability in the Amazon basin countries (Brazil, Peru, Bolivia, Colombia, and Ecuador). Int. J. Climatol. 2009, 29, 1574–1594. [Google Scholar] [CrossRef]
- Joly, C.A.; Metzger, J.P.; Tabarelli, M. Experiences from the Brazilian Atlantic Forest: Ecological findings and conservation initiatives. New Phytol. 2014, 204, 459–473. [Google Scholar] [CrossRef] [PubMed]
- Mixtry, J. Fire in the cerrado (savannas) of Brazil: An ecological review. Prog. Phys. Geogr. 1998, 22. [Google Scholar] [CrossRef]
- Goldammer, J.G. Fire in the Tropical Biota: Ecosystem Processes and Global Challenges; Ecological Studies 84; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1990; p. 497. [Google Scholar]
- Ottmar, R.D.; Sandberg, D.V.; Riccardi, C.L.; Prichard, S.J. An overview of the Fuel Characteristic Classification System—Quantifying, classifying, and creating fuelbeds for resource planning. Can. J. For. Res. 2007, 37, 2383–2393. [Google Scholar] [CrossRef]
- Bicheron, P.; Defourny, P.; Brockmann, C.; Schouten, L.; Vancutsem, C.; Huc, M.; Bontemps, S.; Leroy, M.; Achard, F.; Herold, M.; et al. GLOBCOVER: Products Description and Validation Report; MEDIAS-France/POSTEL: Toulouse, France, 2008; p. 47. [Google Scholar]
- Olson, D.M.; Dinerstein, E.; Wikramanayake, E.D.; Burgess, N.D.; Powell, G.V.N.; Underwood, E.C.; D’Amico, J.A.; Itoua, I.; Strand, H.E.; Morrison, J.C.; et al. Terrestrial Ecoregions of the World: A New Map of Life on Earth. Bioscience 2001, 51, 933–938. [Google Scholar] [CrossRef]
- CRU-NCEP—Climatic Research Unit (CRU)—National Centers for Environmental Prediction (NCEP). Available online: http://dods.extra.cea.fr/data/p529viov/cruncep/ (accessed on 3 May 2016).
- Harris, I.; Jones, P.D. CRU TS3.22: Climatic Research Unit (CRU) Time-Series (TS) Version 3.22 of High Resolution Gridded Data of Month-by-Month Variation in Climate (January 1901–December 2013). Available online: http://catalogue.ceda.ac.uk/uuid/4a6d071383976a5fb24b5b42e28cf28f (accessed on 17 September 2016).
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 1996, 77, 437–470. [Google Scholar] [CrossRef]
- Awange, J.L.; Mpelasoka, F.; Goncalves, R.M. When every drop counts: Analysis of droughts in Brazil for the 1901–2013 period. Sci. Total Environ. 2016, 566, 1472–1488. [Google Scholar] [CrossRef] [PubMed]
- Dolling, K.; Chu, P.S.; Fujioka, F. A climatological study of the Keetch/Byram drought index and fire activity in the Hawaïan islands. Agric. For. Meteorol. 2005, 133, 17–27. [Google Scholar] [CrossRef]
- Dowdy, A.J.; Mills, G.A.; Finkele, K.; Groot, W. Australian Fire Weather as Represented by the McArthur Forest Fire Danger Index and the Canadian Forest Fire Weather Index. CAWCR Technical Report 10. Available online: http://www.bushfirecrc.com/sites/default/files/managed/resource/ctr_010_0.pdf (accessed on 17 September 2016).
- Casanueva, A.; Frías, M.D.; Herrera, S.; San-Martín, D.; Zaninovic, K.; Gutiérrez, J.M. Statistical downscaling of climate impact indices: Testing the direct approach. Clim. Chang. 2014, 127, 547–560. [Google Scholar] [CrossRef]
- Viney, N.R. A review of fine fuel moisture modelling. Int. J. Wildland Fire 1991, 1, 215–234. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Gouveia, C.; Camarero, J.J.; Begueria, S.; Trigo, R.; Lopez-Moreno, J.I.; Azorin-Molina, C.; Pasho, E.; Lorenzo-Lacruz, J.; Revuelto, J.; et al. Response of vegetation to drought time scales across global biomes. Proc. Natl. Acad. Sci. USA 2013, 110, 52–57. [Google Scholar] [CrossRef] [PubMed]
- Global Standard Precipitation Evapotranspiration Index Database (SPEIbase) Version 2.4. Available online: http://sac.csic.es/spei/database.html (accessed on 22 September 2016).
- Giambelluca, T.W.; Scholz, F.G.; Bucci, S.J.; Meinzer, F.C.; Goldstein, G.; Hoffmann, W.A.; Franco, A.C.; Buchert, M.P. Evapotranspiration and energy balance of Brazilian savannas with constrasting tree density. Agric. For. Meteorol. 2009, 149, 1365–1376. [Google Scholar] [CrossRef]
- Da Rocha, H.R.; Manzi, A.O.; Cabral, O.M.; Miller, S.D.; Goulden, M.L.; Saleska, S.R.; Coupe, N.R.; Wofsy, S.C.; Borma, L.S.; Artaxo, P.; et al. Patterns of water and heat flux across a biome gradient from tropical forest to savanna in Brazil. J. Geophys. Res. Biogeosci. 2009, 114. [Google Scholar] [CrossRef]
- Wang, X.; Cantin, A.; Parisien, M.A.; Wotton, M.; Anderson, K.; Moore, B.; Flannigan, M. cffdrs: Canadian Forest Fire Danger Rating System, R Package Version 1.7.3; Available online: https://CRAN.R-project.org/package=cffdrs (accessed on 10 July 2016).
- R CRAN Program—Comprehensive R Archive Network. Available online: https://CRAN.R-project.org/ (accessed on 21 February 2016).
- Begueria, S.; Vicente-Serrano, S.M.; Angulo, M. A multi-scalar global drought data set: The SPEIbase: A new gridded product for the analysis of drought variability and impacts. Bull. Am. Meteorol. Soc. 2010, 91, 1351–1354. [Google Scholar] [CrossRef]
- Roy, D.P.; Boschetti, L.; Justice, C.O.; Ju, J. The collection 5 MODIS burned area product—Global evaluation by comparison with the MODIS active fire product. Remote Sens. Environ. 2008, 112, 3690–3707. [Google Scholar] [CrossRef]
- Giglio, L.; Randerson, J.T.; Van Der Werf, G.R. Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (gfed4). J. Geophys. Res. Biogeosci. 2013, 118, 3690–3707. [Google Scholar] [CrossRef]
- Randerson, J.T.; Chen, Y.; Van Der Werf, G.R.; Rogers, B.M.; Morton, D.C. Global burned area and biomass burning emissions from small fires. J. Geophys. Res. Biogeosci. 2012, 117. [Google Scholar] [CrossRef]
- Chuvieco, E.; Yue, C.; Heil, A.; Mouillot, F.; Alonso-Canas, I.; Padilla, M.; Pereira, J.M.; Oom, D.; Tansey, K. A new global burned area product for climate assessment of fire impacts. Glob. Ecol. Biogeogr. 2016, 25, 619–629. [Google Scholar] [CrossRef]
- ESA Fire Cci project—European Agence Spatial Climate Change Iniative. Available online: http://esa-fire-cci.org/ (accessed on 2 March 2017).
- Alonso-Canas, I.; Chuvieco, E. Global Burned Area Mapping from ENVISAT-MERIS data. Remote Sens. Environ. 2015, 163, 140–152. [Google Scholar] [CrossRef]
- Cardozo, F.D.; Pereira, G.; Shimabukuro, Y.E.; Moraes, E.C. Analysis and assessment of the spatial and temporal distribution of burned areas in the Amazon Forest. Remote Sens. 2014, 6, 8002–8025. [Google Scholar] [CrossRef]
- MCD45A1 Burned Area Dataset Download. Available online: https://lpdaac.usgs.gov/ (accessed on 14 August 2016).
- GFED4 and GFED 4s Burned Area Datasets Download. Available online: http://www.globalfiredata.org/ (accessed on 24 November 2016).
- Libonati, R.; DaCamara, C.C.; Setzer, A.W.; Morelli, F.; Melchiori, A.E. An algorithm for burned area detection in the Brazilian Cerrado using 4 mm MODIS imagery. Remote Sens. 2015, 7, 15782–15803. [Google Scholar] [CrossRef]
- Nogueira, J.M.P.; Ruffault, J.; Chuvieco, E.; Mouillot, F. Can we go beyond burned area in the assessment of global remote sensing products with fire patch metrics? Remote Sens. 2017, 9, 7. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Kolden, A.C. Relationships between climate and macroscale area burned in the western United States. Int. J. Wildland Fire 2013, 22, 1003–1020. [Google Scholar] [CrossRef]
- Addington, N.R.; Hudson, J.S.; Hiers, J.K.; Hurteau, D.M.; Hutchersonn, F.T.; Matusick, G.; Parker, M.J. Relationships among wildfire, prescribed fire, and drought in a fire-prone landscape in the south-eastern United States. Int. J. Wildland Fire 2015, 24, 778–783. [Google Scholar] [CrossRef]
- Padilla, M.; Vega-García, C. On the comparative importance of fire danger rating indices and their integration with spatial and temporal variables for predicting daily human-caused fire occurrences in Spain. Int. J. Wildland Fire 2011, 20, 46–58. [Google Scholar] [CrossRef]
- Holsten, A.; Dominic, A.R.; Costa, L.; Kropp, J.P. Evaluation of the performance of meteorological forest fire indices for German federal states. For. Ecol. Manag. 2013, 287, 123–131. [Google Scholar] [CrossRef]
- Arpaci, A.; Eastaugh, C.S.; Vacik, H. Selecting the best performing fire weather indices for Austrian ecoregions. Theor. Appl. Climatol. 2013, 114, 393–406. [Google Scholar] [CrossRef] [PubMed]
- De Angelis, A.; Ricotta, C.; Conedera, M.; Pezzatti, G.B. Modelling the Meteorological Forest Fire Niche in Heterogeneous Pyrologic Conditions. PLoS ONE 2015, 10, e0116875. [Google Scholar] [CrossRef] [PubMed]
- Williams, A.P.; Seager, R.; Macalady, A.K.; Berkelhammer, M.; Crimmins, M.A.; Swetnam, T.W.; Trugman, A.T.; Buenning, N.; Noone, D.; McDowell, N.G.; et al. Correlations between components of the water balance and burned area reveal new insights for predicting forest fire area in the southwest United States. Int. J. Wildland Fire 2015, 24, 14–26. [Google Scholar] [CrossRef]
- Silva, P.; Bastos, A.; DaCamara, C.C.; Libonati, R. Future Projections of Fire Occurrence in Brazil Using EC-Earth Climate Model. Revista Brasileira de Meteorologia 2016, 31, 288–297. [Google Scholar] [CrossRef]
- Sismanoglu, R.A.; Setzer, A.W. Avaliação Regional dos Prognósticos do Risco de fogo Semanal do CPTEC Aplicando o Modelo “ETA” e Dados Observacionais na América do Sul; XIII; Congresso Brasileiro de Meteorologia, SBMET: Fortaleza-CE, Brazil, 2004. [Google Scholar]
- Archibald, S.; Roy, D.P.; Van Wilgen, B.W.; Scholes, R.J. What limits fire? An examination of drivers of burnt area in Southern Africa. Glob. Chang. Biol. 2009, 15, 613–630. [Google Scholar] [CrossRef]
- Pivello, V.R. The Use of Fire in the Cerrado and Amazonian Rainforests of Brazil: Past and Present. Fire Ecol. 2011, 7, 24–39. [Google Scholar] [CrossRef]
- Hoffmann, W.A.; Moreira, A.G. The role of fire in population dynamics of woody plants. In The Cerrados of Brazil: Ecology and Natural History of a Neotropical Savanna; Oliveira, P.S., Marquis, R.J., Eds.; Columbia University Press: New York, NY, USA, 2002; pp. 159–177. [Google Scholar]
- Pellizzaro, G.; Duce, P.; Ventura, A.; Zara, P. Seasonal variations of live moisture content and ignitability in shrubs of the Mediterranean Basin. Int. J. Wildland Fire 2007, 16, 633–641. [Google Scholar] [CrossRef]
- Dimitrakopoulos, A.P.; Bemmerzouk, A.M.; Mitsopoulos, I.D. Evaluation of the Canadian fire weather index system in an eastern Mediterranean environment. Meteorol. Appl. 2011, 18, 83–93. [Google Scholar] [CrossRef]
- Pausas, J.G.; Fernández-Muñoz, S. Fire regime changes in the Western Mediterranean Basin: From fuel-limited to drought-driven fire regime. Clim. Chang. 2012, 110, 215–226. [Google Scholar] [CrossRef]
- Field, R.D.; Spessa, A.C.; Aziz, N.A.; Camia, A.; Cantin, A.; Carr, R.; de Groot, W.J.; Dowdy, A.J.; Flannigan, M.D.; Manomaiphiboon, K.; et al. Development of a global fire weather database. Nat. Hazards Earth Syst. Sci. 2015, 6, 1407–1423. [Google Scholar] [CrossRef]
- Turco, M.; von Hardenberg, J.; AghaKouchak, A.; Llasat, M.C.; Provenzale, A.; Trigo, R.M. On the key role of droughts in the dynamics of summer fires in Mediterraneean Europe. Sci. Rep. 2017, 7, 81. [Google Scholar]
- Carreiras, J.M.; Jones, J.; Lucas, R.M.; Shimabukuro, Y.E. Mapping major land cover types and retrieving the age of secondary forests in the Brazilian Amazon by combining single-date optical and radar remote sensing data. Remote Sens. Environ. 2017, 194, 16–32. [Google Scholar] [CrossRef]
- Magi, B.I.; Rabin, S.; Shevliakova, E.; Pacala, S. Separating agricultural and non-agricultural fire seasonality at regional scales. Biogeosciences 2012, 9, 3003–3012. [Google Scholar] [CrossRef]
- Finkele, K.; Mills, G.A; Beard, G.; Jones, D.A. National gridded drought factors and comparison of two soil moisture deficit formulations used in prediction of Forest Fire Danger Index in Australia. Aust. Meteorol. Mag. 2006, 55, 183–197. [Google Scholar]
- Monteith, J.L. Evaporation and environment. Symp. Soc. Exp. Biol. 1965, 19, 205–224. [Google Scholar] [PubMed]
- Penman, H.L. Natural evaporation from open water, bare soil and grass. Proc. R. Soc. Lond. A 1948, 194, 120–145. Available online: http://eprints.icrisat.ac.in/8740/1/RP-09537.pdf (accessed on 18 April 2016). [CrossRef]
BA Products | Satellite/Sensor | Temporal and Spatial Resolution | Server Download | References |
---|---|---|---|---|
MCD45A1 | MODIS/Terra and Aqua | daily, 0.5° | [64] | [57] |
GFED4 | TRMM, VIRS, ATSR | monthly, 0.25° | [65] | [58] |
GFED4s | TRMM, VIRS, ATSR, MODIS/Terra | [59] | ||
MERIS FIRE_CCI v4.1 | MERIS/Envisat and MODIS | monthly, 0.5° | [61] | [60,62] |
Burned Area Datasets | Fire Prone Vegetation across Brazil | |||
---|---|---|---|---|
Amazonia | Cerrado | Caatinga | Atlantic Forest | |
MCD45 | 0.10 *** | −0.41 *** | 0.12 *** | 0.15 *** |
GFED4 | 0.19 *** | −0.40 *** | 0.08 *** | 0.11 *** |
GFED4s | 0.06 *** | −0.22 *** | 0.00 NS | 0.11 *** |
MERIS FIRE_CCI | 0.20 *** | −0.44 *** | −0.02 NS | 0.16 *** |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nogueira, J.M.P.; Rambal, S.; Barbosa, J.P.R.A.D.; Mouillot, F. Spatial Pattern of the Seasonal Drought/Burned Area Relationship across Brazilian Biomes: Sensitivity to Drought Metrics and Global Remote-Sensing Fire Products. Climate 2017, 5, 42. https://doi.org/10.3390/cli5020042
Nogueira JMP, Rambal S, Barbosa JPRAD, Mouillot F. Spatial Pattern of the Seasonal Drought/Burned Area Relationship across Brazilian Biomes: Sensitivity to Drought Metrics and Global Remote-Sensing Fire Products. Climate. 2017; 5(2):42. https://doi.org/10.3390/cli5020042
Chicago/Turabian StyleNogueira, Joana M. P., Serge Rambal, João Paulo R. A. D. Barbosa, and Florent Mouillot. 2017. "Spatial Pattern of the Seasonal Drought/Burned Area Relationship across Brazilian Biomes: Sensitivity to Drought Metrics and Global Remote-Sensing Fire Products" Climate 5, no. 2: 42. https://doi.org/10.3390/cli5020042
APA StyleNogueira, J. M. P., Rambal, S., Barbosa, J. P. R. A. D., & Mouillot, F. (2017). Spatial Pattern of the Seasonal Drought/Burned Area Relationship across Brazilian Biomes: Sensitivity to Drought Metrics and Global Remote-Sensing Fire Products. Climate, 5(2), 42. https://doi.org/10.3390/cli5020042