Blended Drought Index: Integrated Drought Hazard Assessment in the Cuvelai-Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Study Design and Indicator Selection
2.3. Standardized Precipitation Index (SPI)
2.4. Standardized Precipitation Evapotranspiration Index (SPEI)
2.5. Standardized Soil Moisture Index (SSI)
2.6. Standardized Vegetation Index (SVI)
2.7. Copula
2.8. Drought Dimensions
2.9. Validation
3. Results
3.1. Temporal Drought Signal
3.2. Threshold Variation
3.3. Spatial Drought Hot-Spots
3.4. Blended Drought Index
4. Discussion
4.1. Reflection on Results
4.2. Reflection on Methodology
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- United Nations Secretariat of the International Strategy for Disaster Reduction (UNISDR). Drought Risk Reduction Framework and Practices. Contributing to the Implementation of the Hyogo Framework for Action; United Nations International Strategy for Disaster Reduction (UNISDR): Geneva, Switzerland, 2009. [Google Scholar]
- Collier, P.; Dercon, S. African agriculture in 50 years: Smallholders in a rapidly changing world? World Dev. 2014, 63, 92–101. [Google Scholar] [CrossRef]
- Cooper, P.J.M.; Dimes, J.; Rao, K.P.C.; Shapiro, B.; Shiferaw, B.; Twomlow, S. Coping better with current climatic variability in the rain-fed farming systems of sub-Saharan Africa: An essential first step in adapting to future climate change? Agric. Ecosyst. Environ. 2008, 126, 24–35. [Google Scholar] [CrossRef]
- Diao, X.; Hazell, P.; Thurlow, J. The role of agriculture in African development. World Dev. 2010, 38, 1375–1383. [Google Scholar] [CrossRef]
- Shiferaw, B.; Tesfaye, K.; Kassie, M.; Abate, T.; Prasanna, B.M.; Menkir, A. Managing vulnerability to drought and enhancing livelihood resilience in sub-Saharan Africa: Technological, institutional and policy options. Weather Clim. Extremes 2014, 3, 67–79. [Google Scholar] [CrossRef]
- Thornton, P.K.; Herrero, M. Adapting to climate change in the mixed crop and livestock farming systems in sub-Saharan Africa. Nat. Clim. Chang. 2015, 5, 830–836. [Google Scholar] [CrossRef]
- International Assessment of Agricultural Knowledge, Science and Technology for Development (IAASTD). Sub-Saharan Africa (SSA) Report; McIntyre, B.D., Herren, H.R., Wakhungu, J., Watson, R.T., Eds.; Agriculture at a crossroads; Island Press: Washington, DC, USA, 2009. [Google Scholar]
- Luetkemeier, R.; Liehr, S. Impact of drought on the inhabitants of the Cuvelai watershed: A qualitative exploration. In Drought: Research and Science-Policy Interfacing; Alvarez, J., Solera, A., Paredes-Arquiola, J., Haro-Monteagudo, D., van Lanen, H., Eds.; CRC Press/Balkema: Leiden, Netherlands, 2015; pp. 41–48. [Google Scholar]
- United Nations (UN). The Millennium Development Goals Report 2015; United Nations (UN): New York, NY, USA, 2015. [Google Scholar]
- UNECA; AU; ADB; UNDP. MDG Report 2015. Lessons Learned in Implementing the MDGs. Assessing Progress in Africa toward the Millennium Development Goals; United Nations Economic Commission for Africa (UNECA); African Union; African Development Bank; United Nations Development Programme (UNDP): Addis Ababa, Ethiopia, 2015. [Google Scholar]
- Handmer, J.; Honda, Y.; Kundzewicz, Z.W.; Arnell, N.; Benito, G.; Hatfield, J.; Mohamed, I.F.; Peduzzi, P.; Wu, S.; Sherstyukow, B.; et al. Changes in mpacts of climate extremes: Human systems and ecosystems. In Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation; Field, C.B., Barros, V., Stocker, T.F., Qin, D., Dokken, D.J., Ebi, K.L., Mastrandrea, M.D., Mach, K.J., Plattner, G.-K., Allen, S.K., et al., Eds.; A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC); Cambridge University Press: Cambridge, UK; New York, NY, USA, 2012; pp. 231–290. [Google Scholar]
- Seneviratne, S.I.; Nicholls, N.; Easterling, D.; Goodess, C.M.; Kanae, S.; Kossin, J.; Luo, Y.; Marengo, J.; McInnes, K.; Rahimi, M.; et al. Changes in climate extremes and their impacts on the natural physical environment. In Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation; Field, C.B., Barros, V., Stocker, T.F., Qin, D., Dokken, D.J., Ebi, K.L., Mastrandrea, M.D., Mach, K.J., Plattner, G.-K., Allen, S.K., et al., Eds.; A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC); Cambridge University Press: Cambridge, UK; New York, NY, USA, 2012; pp. 109–230. [Google Scholar]
- Gautam, M. Managing Drought in Sub-Saharan Africa: Policy Perspectives; The World Bank: Washington, DC, USA, 2006. [Google Scholar]
- Von Uexkull, N. Sustained drought, vulnerability and civil conflict in Sub-Saharan Africa. Political Geogr. 2014, 43, 16–26. [Google Scholar] [CrossRef]
- Mishra, A.K.; Singh, V.P. A review of drought concepts. J. Hydrol. 2010, 391, 202–216. [Google Scholar] [CrossRef]
- Wilhite, D.; Svoboda, M.; Hayes, M. Understanding the complex impacts of drought: A key to enhancing drought mitigation and preparedness. Water Resour. Manag. 2007, 21, 763–774. [Google Scholar] [CrossRef]
- Wilhite, D.A.; Glantz, M.H. Understanding: The drought phenomenon: The role of definitions. Water Int. 1985, 10, 111–120. [Google Scholar] [CrossRef]
- Kallis, G. Droughts. Annu. Rev. Environ. Resour. 2008, 33, 85–118. [Google Scholar] [CrossRef]
- Nalbantis, I.; Tsakiris, G. Assessment of hydrological drought revisited. Water Resour. Manag. 2008, 23, 881–897. [Google Scholar] [CrossRef]
- Tallaksen, L.M.; van Lanen, H.A.J. Hydrological Drought: Processes and Estimation Methods for Streamflow and Groundwater; Elsevier: Amsterdam, The Netherlands; Boston, MA, USA, 2004. [Google Scholar]
- Zelenhasić, E.; Salvai, A. A method of streamflow drought analysis. Water Resour. Res. 1987, 23, 156–168. [Google Scholar] [CrossRef]
- Mendelsohn, J.; Jarvis, A.; Robertson, T. A Profile and Atlas of the Cuvelai-Etosha Basin; Research and Information Services of Namibia (RAISON) & Gondwana Collection: Windhoek, Namibia, 2013. [Google Scholar]
- Hao, Z.; AghaKouchak, A. Multivariate standardized drought index: A parametric multi-index model. Adv. Water Resour. 2013, 57, 12–18. [Google Scholar] [CrossRef]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef] [PubMed]
- Harris, I.; Jones, P.D.; Osborn, T.J.; Lister, D.H. Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 Dataset. Int. J. Climatol. 2014, 34, 623–642. [Google Scholar] [CrossRef]
- Ek, M.B. Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res. 2003, 108. [Google Scholar] [CrossRef]
- Pinzon, J.E.; Tucker, C.J. A non-stationary 1981–2012 AVHRR NDVI3g time series. Remote Sens. 2014, 6, 6929–6960. [Google Scholar] [CrossRef]
- Mendelsohn, J.; Weber, B. Cuvelai. The Cuvelai Basin Its Water and people in Angola and Namibia; Development Workshop: Luanda, Angola, 2011. [Google Scholar]
- Namibia Meteorological Service (NMS). Precipitation Data for Central-Northern Namibia (Unpublished); NMS: Windhoek, Namibia, 2013.
- EM-DAT International Disaster Database (EM-DAT), Centre for Research on the Epidemiology of Disasters (CRED). Available online: http://www.emdat.be/advanced_search/index.html (accessed on 26 July 2016).
- Namibia Statistics Agency (NSA). Namibia 2011. Population & Housing Census Main Report; Namibia Statistics Agency (NSA): Windhoek, Namibia, 2013; p. 214.
- Instituto Nacional de Estatistica (INE). Resultados Definitivos do Recenseamento Geral da Populacao e da Habitacao de Angola 2014; Instituto Nacional de Estatistica (INE): Luanda, Angola, 2016; p. 213.
- Freire-González, J.; Decker, C.; Hall, J.W. The economic impacts of droughts: A framework for analysis. Ecol. Econ. 2017, 132, 196–204. [Google Scholar] [CrossRef]
- Rockström, J. On-farm green water estimates as a tool for increased food production in water scarce regions. Phys. Chem. Earth Part. B Hydrol. Oceans Atmos. 1999, 24, 375–383. [Google Scholar] [CrossRef]
- Lavell, A.; Oppenheimer, M.; Diop, C.; Hess, J.; Lempert, R.; Li, J.; Muir_Wood, R.; Myeong, S. Climate Change: New Dimensions in Disaster Risk, Exposure, Vulnerability, and Resilience. In Managing the risks of extreme events and disasters to advance climate change adaptation; Field, C.B., Barros, V., Stocker, T.F., Qin, D., Dokken, D.J., Ebi, K.L., Mastrandrea, M.D., Mach, K.J., Plattner, G.-K., Allen, S.K., et al., Eds.; A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC); Cambridge University Press: Cambridge, UK; New York, NY, USA, 2012; pp. 25–64. [Google Scholar]
- Lloyd-Hughes, B. The impracticality of a universal drought definition. ResearchGate 2013, 117. [Google Scholar] [CrossRef]
- Pedro-Monzonís, M.; Solera, A.; Ferrer, J.; Estrela, T.; Paredes-Arquiola, J. A review of water scarcity and drought indexes in water resources planning and management. J. Hydrol. 2015, 527, 482–493. [Google Scholar] [CrossRef]
- Brown, M.E.; Brickley, E.B. Evaluating the use of remote sensing data in the U.S. Agency for International Development Famine Early Warning Systems Network. J. Appl. Remote Sens. 2012, 6, 063511-1. [Google Scholar] [CrossRef]
- Pulwarty, R.S.; Sivakumar, M.V.K. Information systems in a changing climate: Early warnings and drought risk management. Weather Clim. Extremes 2014, 3, 14–21. [Google Scholar] [CrossRef]
- Princeton Univeristy African Flood and Drought Monitor. Available online: http://stream.princeton.edu/AWCM/WEBPAGE/interface.php?locale=en (accessed on 16 December 2016).
- Naumann, G.; Dutra, E.; Barbosa, P.; Pappenberger, F.; Wetterhall, F.; Vogt, J.V. Comparison of drought indicators derived from multiple data sets over Africa. Hydrol. Earth Syst. Sci. 2014, 18, 1625–1640. [Google Scholar] [CrossRef]
- Mishra, A.K.; Singh, V.P. Drought modeling—A review. J. Hydrol. 2011, 403, 157–175. [Google Scholar] [CrossRef]
- AghaKouchak, A. A multivariate approach for persistence-based drought prediction: Application to the 2010–2011 East Africa drought. J. Hydrol. 2015, 526, 127–135. [Google Scholar] [CrossRef]
- Chang, J.; Li, Y.; Wang, Y.; Yuan, M. Copula-based drought risk assessment combined with an integrated index in the Wei River Basin, China. J. Hydrol. 2016, 540, 824–834. [Google Scholar] [CrossRef]
- Karamouz, M.; Rasouli, K.; Nazif, S. Development of a hybrid index for drought prediction: Case study. J. Hydrol. Eng. 2009, 14, 617–627. [Google Scholar] [CrossRef]
- McKee, T.B.; Doesken, J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; p. 1. [Google Scholar]
- World Meteorological Organization (WMO). Guidelines on Ensemble Prediction Systems and Forecasting; World Meteorological Organization: Geneva, Switzerland, 2012. [Google Scholar]
- Guttman, N.B. Accepting the Standardized Precipitation Index: A calculation algorithm1. JAWRA J. Am. Water Resour. Assoc. 1999, 35, 311–322. [Google Scholar] [CrossRef]
- Edwards, D.C.; McKee, T.B.; Doesken, N.J.; Kleist, J. Historical analysis of drought in the United States. In Proceedings of the Seventh Conference on Climate Variations, Long Beach, CA, USA, 2–7 February 1997; pp. 129–139. [Google Scholar]
- Stagge, J.H.; Tallaksen, L.M.; Gudmundsson, L.; Van Loon, A.F.; Stahl, K. Candidate distributions for climatological drought indices (SPI and SPEI). Int. J. Climatol. 2015, 35, 4027–4040. [Google Scholar] [CrossRef]
- Wu, H.; Svoboda, M.D.; Hayes, M.J.; Wilhite, D.A.; Wen, F. Appropriate application of the standardized precipitation index in arid locations and dry seasons. Int. J. Climatol. 2007, 27, 65–79. [Google Scholar] [CrossRef]
- Wu, H.; Hayes, M.J.; Wilhite, D.A.; Svoboda, M.D. The effect of the length of record on the standardized precipitation index calculation. Int. J. Climatol. 2005, 25, 505–520. [Google Scholar] [CrossRef]
- Wilks, D.S. Statistical Methods in the Atmospheric Sciences; Academic Press: Oxford, UK, 2011. [Google Scholar]
- Vicente-Serrano, S.M. Differences in spatial patterns of drought on different time scales: An analysis of the Iberian Peninsula. Water Resour. Manag. 2006, 20, 37–60. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. ResearchGate 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- Funk, C.C.; Peterson, P.J.; Landsfeld, M.F.; Pedreros, D.H.; Verdin, J.P.; Rowland, J.D.; Romero, B.E.; Husak, G.J.; Michaelsen, J.C.; Verdin, A.P. A Quasi-Global Precipitation Time Series for Drought Monitoring; Data Series; U.S. Geological Survey: Reston, VA, USA, 2014; p. 12. [CrossRef]
- Hessels, T.M. Comparison and Validation of Several Open Access Remotely Sensed Rainfall Products for the Nile Basin. Doctoral Dissertation, TU Delft, Delft University of Technology, Delft, The Netherlands, 2015. [Google Scholar]
- Tote, C.; Patricio, D.; Boogaard, H.; van der Wijngaart, R.; Tarnavsky, E.; Funk, C.C. Evaluation of satellite rainfall estimates for drought and flood monitoring in Mozambique. Remote Sens. 2015, 7, 1758–1776. [Google Scholar] [CrossRef]
- Ceccherini, G.; Ameztoy, I.; Hernández, C.P.R.; Moreno, C.C. High-resolution precipitation datasets in South America and West Africa based on satellite-derived rainfall, enhanced vegetation index and digital elevation model. Remote Sens. 2015, 7, 6454–6488. [Google Scholar] [CrossRef]
- Beguería, S.; Vicente-Serrano, S.M. Package “SPEI” 2015. Available online: https://cran.r-project.org/web/packages/SPEI/SPEI.pdf (accessed on 12 July 2017).
- McCarthy, T.S. Groundwater in the wetlands of the Okavango Delta, Botswana, and its contribution to the structure and function of the ecosystem. J. Hydrol. 2006, 320, 264–282. [Google Scholar] [CrossRef]
- Ekström, M.; Jones, P.D.; Fowler, H.J.; Lenderink, G.; Buishand, T.A.; Conway, D. Regional climate model data used within the SWURVE project—1: Projected changes in seasonal patterns and estimation of PET. Hydrol. Earth Syst. Sci. 2007, 11, 1069–1083. [Google Scholar] [CrossRef]
- Hassanein, M.K.; Kahlil, A.A.; Essa, Y.H. Assessment of drought impact in Africa using Standard Precipitation Evapotranspiration Index. Nat. Sci. 2013, 11, 75–81. [Google Scholar] [CrossRef]
- McEvoy, D.J.; Huntington, J.L.; Abatzoglou, J.T.; Edwards, L.M. An evaluation of multiscalar drought indices in Nevada and eastern California. Earth Interact. 2012, 16, 1–18. [Google Scholar] [CrossRef]
- Yu, M.; Li, Q.; Hayes, M.J.; Svoboda, M.D.; Heim, R.R. Are droughts becoming more frequent or severe in China based on the Standardized Precipitation Evapotranspiration Index: 1951–2010? Int. J. Climatol. 2014, 34, 545–558. [Google Scholar] [CrossRef]
- Chen, F.; Mitchell, K.; Schaake, J.; Xue, Y.; Pan, H.-L.; Koren, V.; Duan, Q.Y.; Ek, M.; Betts, A. Modeling of land surface evaporation by four schemes and comparison with FIFE observations. J. Geophys. Res. Atmos. 1996, 101, 7251–7268. [Google Scholar] [CrossRef]
- Sheffield, J.; Goteti, G.; Wen, F.; Wood, E.F. A simulated soil moisture based drought analysis for the United States. J. Geophys. Res. Atmos. 2004, 109, D24108. [Google Scholar] [CrossRef]
- Delignette-Muller, M.L.; Dutang, C.; Pouillot, R.; Denis, J.-B. Package “fitdistrplus” 2016. Available online: https://cran.r-project.org/web/packages/fitdistrplus/fitdistrplus.pdf (accessed on 12 July 2017).
- Kogan, F.N. Application of vegetation index and brightness temperature for drought detection. Adv. Space Res. 1995, 15, 91–100. [Google Scholar] [CrossRef]
- Dutta, D.; Kundu, A.; Patel, N.R.; Saha, S.K.; Siddiqui, A.R. Assessment of agricultural drought in Rajasthan (India) using remote sensing derived Vegetation Condition Index (VCI) and Standardized Precipitation Index (SPI). Egypt. J. Remote Sens. Space Sci. 2015, 18, 53–63. [Google Scholar] [CrossRef]
- Quiring, S.M.; Ganesh, S. Evaluating the utility of the Vegetation Condition Index (VCI) for monitoring meteorological drought in Texas. Agric. For. Meteorol. 2010, 150, 330–339. [Google Scholar] [CrossRef]
- Unganai, L.S.; Kogan, F.N. Drought monitoring and corn yield estimation in southern Africa from AVHRR Data. Remote Sens. Environ. 1998, 63, 219–232. [Google Scholar] [CrossRef]
- Gudmundsson, L.; Stagge, J.H. Package “SCI” 2016. Available online: https://cran.r-project.org/web/packages/SCI/SCI.pdf (accessed on 12 July 2017).
- Kao, S.-C.; Govindaraju, R.S. A copula-based joint deficit index for droughts. J. Hydrol. 2010, 380, 121–134. [Google Scholar] [CrossRef]
- Saghafian, B.; Mehdikhani, H. Drought characterization using a new copula-based trivariate approach. Nat. Hazards 2014, 72, 1391–1407. [Google Scholar] [CrossRef]
- Favre, A.-C.; El Adlouni, S.; Perreault, L.; Thiémonge, N.; Bobée, B. Multivariate hydrological frequency analysis using copulas: Multivariate frequency analysis using copulas. Water Resour. Res. 2004, 40. [Google Scholar] [CrossRef]
- Sklar, A. Fonctions de répartition à n dimension e leurs marges. Publ. Inst. Stat. Univ. Paris 1959, 8, 229–231. [Google Scholar]
- Yan, J. Enjoy the joy of copulas: With a package copula. J. Stat. Softw. 2007, 21, 1–21. [Google Scholar] [CrossRef]
- Nelson, R.B. An Introduction to Copulas; Springer Series in Statistics; Springer: New York, NY, USA, 2006. [Google Scholar]
- Mendelsohn, J.M.; El Obeid, S.; Roberts, C.; Namibia Ministry of Environment and Tourism. A Profile of North-Central Namibia; Gamsberg Macmillan Publishers: Windhoek, Namibia, 2000.
- Spinoni, J.; Naumann, G.; Carrao, H.; Barbosa, P.; Vogt, J. World drought frequency, duration, and severity for 1951–2010: World Drought Climatologies for 1951-2010. Int. J. Climatol. 2014, 34, 2792–2804. [Google Scholar] [CrossRef]
- Halwatura, D.; Lechner, A.M.; Arnold, S. Drought severity–duration–frequency curves: A foundation for risk assessment and planning tool for ecosystem establishment in post-mining landscapes. Hydrol. Earth Syst. Sci. 2015, 19, 1069–1091. [Google Scholar] [CrossRef]
- Ministry of Agriculture, Water and Forestry (MAWF). Agricultural Statistics Bulletin; Ministry of Agriculture, Water and Forestry (MAWF): Windhoek, Namibia, 2011.
- Ministry of Agriculture, Water and Forestry (MAWF). Agricultural Statistics Bulletin; Ministry of Agriculture, Water and Forestry (MAWF): Windhoek, Namibia, 2005.
- Ministry of Agriculture, Water and Forestry (MAWF). Agricultural Statistics Bulletin; Ministry of Agriculture, Water and Forestry (MAWF): Windhoek, Namibia, 2009.
- Namibia Water Corporation (NamWater). Tap Water Consumption Data of Central-Northern Namibia from 1995 to 2013 (Unpublished); Namibia Water Corporation (NamWater): Windhoek, Namibia, 2014. [Google Scholar]
- Republic of Namibia. National Drought Policy & Strategy; National Drought Task Force, Republic of Namibia: Windhoek, Namibia, 1997.
Parameter | Dataset | Spat. Cov. | Spat. Res. | Temp. Cov. | Temp. Res. | Provider | Reference |
---|---|---|---|---|---|---|---|
Precipitation | CHIRPS 2.0 | 50° N–50° S | 0.05° | 1981–2015 | monthly | UCSB, CHG | [24] |
Evapotranspiration | CRU TS3.23 | global | 0.5° | 1901–2013 | monthly | UEA, CRU | [25] |
Soil Moisture | GLDAS | global | 0.25° | 1980–2010 | monthly | NASA | [26] |
Vegetation | NDVI3g | global | 0.08° | 1981–2013 | 15 days | GIMMS | [27] |
SPI Values | Drought Severity |
---|---|
0 to –0.99 | Mild drought |
–1.00 to –1.49 | Moderate drought |
–1.50 to –1.99 | Severe drought |
<–2.00 | Extreme drought |
Copula | SPI | SPEI | SSI | SVI | ||||||
---|---|---|---|---|---|---|---|---|---|---|
P | S | P | S | P | S | P | S | P | S | |
Copula | ||||||||||
SPI | *** 0.86 | *** 0.87 | ||||||||
SPEI | *** 0.86 | *** 0.87 | *** 1.00 | *** 1.00 | ||||||
SSI | *** 0.77 | *** 0.70 | *** 0.63 | ** 0.54 | *** 0.62 | ** 0.55 | ||||
SVI | *** 0.81 | *** 0.78 | ** 0.50 | ** 0.56 | ** 0.51 | ** 0.56 | * 0.35 | * 0.36 | ||
Yield | * 0.51 | * 0.56 | * 0.43 | * 0.50 | * 0.46 | * 0.50 | * 0.46 | * 0.48 | 0.35 | 0.16 |
Water | –0.45 | * –0.52 | –0.45 | –0.42 | –0.45 | –0.42 | –0.31 | –0.38 | –0.30 | –0.17 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luetkemeier, R.; Stein, L.; Drees, L.; Liehr, S. Blended Drought Index: Integrated Drought Hazard Assessment in the Cuvelai-Basin. Climate 2017, 5, 51. https://doi.org/10.3390/cli5030051
Luetkemeier R, Stein L, Drees L, Liehr S. Blended Drought Index: Integrated Drought Hazard Assessment in the Cuvelai-Basin. Climate. 2017; 5(3):51. https://doi.org/10.3390/cli5030051
Chicago/Turabian StyleLuetkemeier, Robert, Lina Stein, Lukas Drees, and Stefan Liehr. 2017. "Blended Drought Index: Integrated Drought Hazard Assessment in the Cuvelai-Basin" Climate 5, no. 3: 51. https://doi.org/10.3390/cli5030051
APA StyleLuetkemeier, R., Stein, L., Drees, L., & Liehr, S. (2017). Blended Drought Index: Integrated Drought Hazard Assessment in the Cuvelai-Basin. Climate, 5(3), 51. https://doi.org/10.3390/cli5030051