The Impact of Climate Change on Biodiversity in Nepal: Current Knowledge, Lacunae, and Opportunities
Abstract
:1. Introduction
2. Nepal: Physical and Ecological Overview
2.1. Current Climate
2.2. Future Climatic Trends
2.3. Agriculture and Agro-Biodiversity
2.4. Patterns of Species Richness
2.5. Threats to Biodiversity
3. Methods
4. Impacts of Climate Change in Nepal
4.1. Results
4.2. Discussion and Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Moore, M.V.; Pace, M.L.; Mather, J.R.; Murdoch, P.S.; Howarth, R.W.; Folt, C.L.; Chen, C.Y.; Hemond, H.F.; Flebbe, P.A.; Driscoll, C.T. Potential effects of climate change on freshwater ecosystems of the New England/Mid-Atlantic Region. Hydrol. Process. 1999, 11, 925–947. [Google Scholar] [CrossRef]
- Forrest, J.L.; Wikramanayake, E.; Shrestha, R.; Areendran, G.; Gyeltshen, K.; Maheshwari, A.; Mazumdar, S.; Naidoo, R.; Thapa, G.J.; Thapa, K. Conservation and climate change: Assessing the vulnerability of snow leopard habitat to tree line shift in the Himalaya. Biol. Conserv. 2012, 150, 129–135. [Google Scholar] [CrossRef]
- Dillon, M.E.; Wang, G.; Huey, R.B. Global metabolic impacts of recent climate warming. Nature 2010, 467, 704–706. [Google Scholar] [CrossRef] [PubMed]
- Parmesan, C.; Ryrholm, N.; Stefanescu, C.; Hill, J.K.; Thomas, C.D.; Descimon, H.; Huntley, B.; Kaila, L.; Kullberg, J.; Tammaru, T.; et al. Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature 1999, 399, 579–583. [Google Scholar] [CrossRef]
- Chen, I.C.; Shiu, H.J.; Benedick, S.; Holloway, J.D.; Chey, V.K.; Barlow, H.S.; Hill, J.K.; Thomas, C.D. Elevation increases in moth assemblages over 42 years on a tropical mountain. Proc. Natl. Acad. Sci. USA 2009, 106, 1479–1483. [Google Scholar] [CrossRef] [PubMed]
- Leadley, P. Biodiversity Scenarios: Projections of 21st Century Change in Biodiversity, and Associated Ecosystem Services: A Technical Report for the Global Biodiversity Outlook 3, Illustrated; UNEP/Earthprint: Hertfordshire, UK, 2010; ISBN 9292252186. [Google Scholar]
- Sala, O.E.; Chapin, F.S.; Armesto, J.J.; Berlow, E.; Bloomfield, J.; Dirzo, R.; Huber-Sanwald, E.; Huenneke, L.F.; Jackson, R.B.; Kinzig, A.; et al. Global biodiversity scenarios for the year 2100. Science 2000, 287, 1770–1774. [Google Scholar] [CrossRef] [PubMed]
- Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; Da Fonseca, G.A.B.; Kent, J. Biodiversity hotspots for conservation priorities. Nature 2000, 403, 853–858. [Google Scholar] [CrossRef] [PubMed]
- Sodhi, N.S.; Lian, P.K.; Brook, B.W.; Ng, P.K.L. Southeast Asian biodiversity: An impending disaster. Trends Ecol. Evol. 2004, 19, 654–660. [Google Scholar] [CrossRef] [PubMed]
- Olson, D.M.; Dinerstein, E. The Global 200: Priority ecoregions for global conservation. Ann. Mo. Bot. Gard. 2002, 89, 199–224. [Google Scholar] [CrossRef]
- Barry, R.G. Changes in mountain climate and glacio-hydrological responses. Mt. Res. Dev. 1990, 10, 161–170. [Google Scholar] [CrossRef]
- Harte, J.; Torn, M.S.; Chang, F.R.; Feifarek, B.; Kinzig, A.P.; Shaw, R.; Shen, K. Global warming and soil microclimate: Results from a meadow-warming experiment. Ecol. Appl. 1995, 5, 132–150. [Google Scholar] [CrossRef]
- Shrestha, A.B.; Wake, C.P.; Mayewski, P.A.; Dibb, J.E. Maximum temperature trends in the Himalaya and its vicinity: An analysis based on temperature records from Nepal for the period 1971–1994. J. Clim. 1999, 12, 2775–2786. [Google Scholar] [CrossRef]
- Diaz, H.F.; Grosjean, M.; Graumlich, L. Climate variability and change in high elevation regions: Past, present and future. Clim. Chang. 2003, 59, 1–4. [Google Scholar] [CrossRef]
- Song, M.; Zhou, C.; Ouyang, H. Distributions of dominant tree species on the Tibetan Plateau under current and future climate scenarios. Mt. Res. Dev. 2004, 24, 166–173. [Google Scholar] [CrossRef]
- Nogués-Bravo, D.; Araújo, M.B.; Errea, M.P.; Martinez-Rica, J.P. Exposure of global mountain systems to climate warming during the 21st Century. Glob. Environ. Chang. 2007, 17, 420–428. [Google Scholar] [CrossRef]
- La Sorte, F.A.; Jetz, W. Projected range contractions of montane biodiversity under global warming. Proc. R. Soc. Lond. B Biol. Sci. 2010. [Google Scholar] [CrossRef] [PubMed]
- Telwala, Y.; Brook, B.W.; Manish, K.; Pandit, M.K. Climate-induced elevational range shifts and increase in plant species richness in a Himalayan biodiversity epicentre. PLoS ONE 2013, 8. [Google Scholar] [CrossRef] [PubMed]
- Shah, R.D.T.; Sharma, S.; Haase, P.; Jähnig, S.C.; Pauls, S.U. The climate sensitive zone along an altitudinal gradient in central Himalayan Rivers: A useful concept to monitor climate change impacts in mountain regions. Clim. Chang. 2015, 132, 265. [Google Scholar] [CrossRef]
- Zomer, R.J.; Trabucco, A.; Metzger, M.J.; Wang, M.; Oli, K.P.; Xu, J. Projected climate change impacts on spatial distribution of bioclimatic zones and ecoregions within the Kailash Sacred Landscape of China, India, Nepal. Clim. Chang. 2014, 125, 445. [Google Scholar] [CrossRef]
- Salick, J.; Ghimire, S.K.; Fang, Z.; Dema, S.; Konchar, K.M. Himalayan alpine vegetation, climate change and mitigation. J. Ethnobiol. 2014, 34, 276–293. [Google Scholar] [CrossRef]
- Sanders, N.J.; Rahbek, C. The patterns and causes of elevational diversity gradients. Ecography 2012, 35, 1–3. [Google Scholar] [CrossRef]
- Scheffers, B.R.; De Meester, L.; Bridge, T.C.; Hoffmann, A.A.; Pandolfi, J.M.; Corlett, R.T.; Butchart, S.H.; Pearce-Kelly, P.; Kovacs, K.M.; Dudgeon, D.; et al. The broad footprint of climate change from genes to biomes to people. Science 2016, 354. [Google Scholar] [CrossRef] [PubMed]
- Bhattarai, N.K. Biodiversity: People interface in Nepal. In Medicinal Plants for Forest Conservation and Health Care; FAO: Rome, Italy, 1997; Volume 11. [Google Scholar]
- Vetaas, O.R.; Grytnes, J.A. Distribution of vascular plant species richness and endemic richness along the Himalayan elevation gradient in Nepal. Glob. Ecol. Biogeogr. 2002, 11, 291–301. [Google Scholar] [CrossRef]
- Bhattarai, K.R.; Vetaas, O.R. Variation in plant species richness of different life forms along a subtropical elevation gradient in the Himalayas, east Nepal. Glob. Ecol. Biogeogr. 2003, 12, 327–340. [Google Scholar] [CrossRef]
- Baral, N.; Stern, M.J.; Bhattarai, R. Contingent valuation of ecotourism in Annapurna conservation area, Nepal: Implications for sustainable park finance and local development. Ecol. Econ. 2008, 66, 218–227. [Google Scholar] [CrossRef]
- Shrestha, U.B.; Shrestha, B.B.; Shrestha, S. Biodiversity conservation in community forests of Nepal: Rhetoric and reality. Int. J. Biodivers. Conserv. 2010, 2, 98–104. [Google Scholar]
- Uprety, Y.; Asselin, H.; Boon, E.K.; Yadav, S.; Shrestha, K.K. Indigenous use and bio-efficacy of medicinal plants in the Rasuwa District, Central Nepal. J. Ethnobiol. Ethnomed. 2010, 6, 3. [Google Scholar] [CrossRef] [PubMed]
- Acharya, B.K.; Sanders, N.J.; Vijayan, L.; Chettri, B. Elevational gradients in bird diversity in the Eastern Himalaya: An evaluation of distribution patterns and their underlying mechanisms. PLoS ONE 2011, 6. [Google Scholar] [CrossRef] [PubMed]
- Irl, S.D.; Harter, D.E.; Steinbauer, M.J.; Gallego Puyol, D.; Fernández-Palacios, J.M.; Jentsch, A.; Beierkuhnlein, C. Climate vs. topography–spatial patterns of plant species diversity and endemism on a high-elevation island. J. Ecol. 2015, 103, 1621–1633. [Google Scholar] [CrossRef]
- IUCN 2015. The IUCN Nepal Annual Review 2015. Available online: https://www.iucn.org/sites/dev/files/content/documents/iucn_nepal_annual_review_2015 (accessed on 22 June 2017).
- Dobremez, J.F. Nepal: Ecology and Biogeography. Éditions du Centre National de la Recherche Scientifique; Centre National de la Recherche Scientifique: Paris, France, 1976.
- Trapp, H. Application of GIS for Planning Agricultural Development in Gorkha District, Western Region of Nepal; ICIMOD: Kathmandu, Nepal, 1995. [Google Scholar]
- Turner, A.G.; Annamalai, H. Climate change and the South Asian summer monsoon. Nat. Clim. Chang. 2012, 2, 587–595. [Google Scholar] [CrossRef]
- De Souza, K.; Kituyi, E.; Harvey, B.; Leone, M.; Murali, K.S.; Ford, J.D. Vulnerability to climate change in three hot spots in Africa and Asia: Key issues for policy-relevant adaptation and resilience-building research. Reg. Environ. Chang. 2015, 15, 747. [Google Scholar] [CrossRef]
- Chalise, S.R.; Shrestha, M.L.; Shrestha, B.R. Climatic and Hydrological Atlas of Nepal; ICIMOD: Kathmandu, Nepal, 1996. [Google Scholar]
- Kripalani, R.H.; Oh, J.H.; Kulkarni, A.; Sabade, S.S.; Chaudhari, H.S. South Asian summer monsoon precipitation variability: Coupled climate model simulations and projections under IPCC AR4. Theor. Appl. Climatol. 2007, 90, 133–159. [Google Scholar] [CrossRef]
- Bhat, G.S. The Indian drought of 2002—A sub-seasonal phenomenon? Q. J. R. Meteorol. Soc. 2006, 132, 2583–2602. [Google Scholar] [CrossRef]
- Barnett, T.P.; Adam, J.C.; Lettenmaier, D.P. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 2005, 438, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Leduc, B.; Shrestha, A.; Bhattarai, B. Case Study: Gender and Climate Change in the Hindu Kush Himalayas of Nepal; Gender and Climate Change Worskhop; ICIMOD: Dakar, Senegal, 2008. [Google Scholar]
- Ménégoz, M.; Gallée, H.; Jacobi, H.W. Precipitation and snow cover in the Himalaya: From reanalysis to regional climate simulations. Hydrol. Earth Syst. Sci. 2013, 17, 3921–3936. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, A.B.; Aryal, R. Climate change in Nepal and its impact on Himalayan glaciers. Reg. Environ. Chang. 2011, 11, 65–77. [Google Scholar] [CrossRef]
- Karki, R.; Hasson, S.; Schickhoff, U.; Scholten, T.; Böhner, J. Rising Precipitation Extremes across Nepal. Climate 2017, 5, 4. [Google Scholar] [CrossRef]
- Andermann, C.; Bonnet, S.; Gloaguen, R. Evaluation of precipitation data sets along the Himalayan front. Geochem. Geophys. Geosyst. 2011, 12. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, M.K.; Nakamura, K. Comparison of satellite precipitation products with rain gauge data for the Khumb region, Nepal Himalayas. J. Meteorol. Soc. Jpn. Ser. II 2011, 89, 597–610. [Google Scholar] [CrossRef]
- Krakauer, N.Y.; Pradhanang, S.M.; Lakhankar, T.; Jha, A.K. Evaluating satellite products for precipitation estimation in mountain regions: A case study for Nepal. Remote Sens. 2013, 5, 4107–4123. [Google Scholar] [CrossRef]
- Krakauer, N.Y.; Pradhanang, S.M.; Panthi, J.; Lakhankar, T.; Jha, A.K. Probabilistic precipitation estimation with a satellite product. Climate 2015, 3, 329–348. [Google Scholar] [CrossRef]
- Christensen, J.H.; Hewitson, B.; Busuioc, A.; Chen, A.; Gao, X.; Held, R.; Jones, R.; Kolli, R.K.; Kwon, W.K.; Laprise, R.; et al. Regional climate projections. In Climate Change, 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2007; Chapter 11; pp. 847–940. [Google Scholar]
- Intergovernmental Panel on Climate Change (IPCC). Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Kirtman, B.; Power, S.B.; Adedoyin, J.A.; Boer, G.J.; Bojariu, R.; Camilloni, I.; Doblas-Reyes, F.J.; Fiore, A.M.; Kimoto, M.; Meehl, G.A.; et al. 2013: Near-term climate change: Projections and predictability. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Gaire, N.P.; Koirala, M.; Bhuju, D.R.; Borgaonkar, H.P. Tree line dynamics with climate change at the central Nepal Himalaya. Clim. Past 2014, 10, 1277–1290. [Google Scholar] [CrossRef]
- Duncan, J.M.; Biggs, E.M.; Dash, J.; Atkinson, P.M. Spatio-temporal trends in precipitation and their implications for water resources management in climate-sensitive Nepal. Appl. Geogr. 2013, 43, 138–146. [Google Scholar] [CrossRef]
- Dahal, V.; Shakya, N.M.; Bhattarai, R. Estimating the impact of climate change on water availability in Bagmati Basin, Nepal. Environ. Process. 2016, 3, 1–17. [Google Scholar] [CrossRef]
- Jeeban, P.; Dahal, P.; Shrestha, M.L.; Aryal, S.; Krakauer, N.Y.; Pradhanang, S.M.; Lakhankar, T.; Jha, A.K.; Sharma, M.; Karki, R. Spatial and temporal variability of rainfall in the Gandaki River Basin of Nepal Himalaya. Climate 2015, 3, 210–226. [Google Scholar]
- Shrestha, A.B.; Wake, C.P.; Dibb, J.E.; Mayewski, P.E. Precipitation fluctuations in the Nepal Himalaya and its vicinity and relationship with some large scale climatological parameters. Int. J. Climatol. 2000, 20, 317–327. [Google Scholar] [CrossRef]
- Wang, S.; Gillies, R.R. Influence of the Pacific quasi-decadal oscillation on the monsoon precipitation in Nepal. Clim. Dyn. 2013, 40, 1–13. [Google Scholar]
- Chen, W.; Lan, X.Q.; Wang, L.; Ma, Y. The combined effects of the ENSO and the Arctic Oscillation on the winter climate anomalies in East Asia. Chin. Sci. Bull. 2013, 58, 1355–1362. [Google Scholar] [CrossRef]
- Easterling, D.R.; Meehl, G.A.; Parmesan, C.; Changnon, S.A.; Karl, T.R.; Mearns, L.O. Climate extremes: Observations, modeling, and impacts. Science 2000, 289, 2068–2074. [Google Scholar] [CrossRef] [PubMed]
- Meehl, G.A.; Zwiers, F.; Evans, J.; Knutson, T.; Mearns, L.; Whetton, P. Trends in extreme weather and climate events: Issues related to modeling extremes in projections of future climate change. Bull. Am. Meteorol. Soc. 2000, 81, 427–436. [Google Scholar] [CrossRef]
- Meehl, G.A.; Tebaldi, C. More intense, more frequent, and longer lasting heat waves in the 21st century. Science 2004, 305, 994–997. [Google Scholar] [CrossRef] [PubMed]
- Luterbacher, J.; Dietrich, D.; Xoplaki, E.; Grosjean, M.; Wanner, H. European seasonal and annual temperature variability, trends, and extremes since 1500. Science 2004, 303, 1499–1503. [Google Scholar] [CrossRef] [PubMed]
- Schär, C.; Vidale, P.L.; Lüthi, D.; Frei, C.; Häberli, C.; Liniger, M.A.; Appenzeller, C. The role of increasing temperature variability in European summer heatwaves. Nature 2004, 427, 332–336. [Google Scholar] [CrossRef] [PubMed]
- Intergovernmental Panel on Climate Change (IPCC). The Fourth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2007. [Google Scholar]
- Founda, D.; Giannakopoulos, C. The exceptionally hot summer of 2007 in Athens, Greece—A typical summer in the future climate? Glob. Planet. Chang. 2009, 67, 227–236. [Google Scholar] [CrossRef]
- De Lima, M.; Santo, I.P.F.; Ramos, A.M.; De Lima, J.L. Recent changes in daily precipitation and surface air temperature extremes in mainland Portugal, in the period 1941–2007. Atmos. Res. 2013, 127, 195–209. [Google Scholar] [CrossRef]
- Fischer, E.M.; Knutti, R. Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes. Nat. Clim. Chang. 2015, 5, 560–564. [Google Scholar] [CrossRef]
- Wuebbles, D.; Meehl, G.; Hayhoe, K.; Karl, T.R.; Kunkel, K.; Santer, B.; Wehner, M.; Colle, B.; Fischer, E.M.; Fu, R.; et al. CMIP5 climate model analyses: Climate extremes in the United States. Bull. Am. Meteorol. Soc. 2014, 95, 571–583. [Google Scholar] [CrossRef]
- Horton, D.E.; Johnson, N.C.; Singh, D.; Swain, D.L.; Rajaratnam, B.; Diffenbaugh, N.S. Contribution of changes in atmospheric circulation patterns to extreme temperature trends. Nature 2015, 522, 465–469. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, A.B.; Sagar, R.B.; Aseem, R.S.; Chu, D.; Kulkarni, A. Observed trends and changes in daily temperature and precipitation extremes over the Koshi river basin 1975–2010. Int. J. Climatol. 2017, 37, 1066–1083. [Google Scholar] [CrossRef]
- Lal, M.; Nozawa, T.; Emori, S.; Harasawa, T.; Takahashi, K.; Kimoto, M.; Abe-Ouchi, A.; Nakajima, T.; Takemura, T.U.; Numaguti, A. Future climate change: Implications for Indian summer monsoon and its variability. Curr. Sci. 2001, 81, 1196–1207. [Google Scholar]
- Lau, K.M.; Kim, M.K.; Kim, K.M. Asian summer monsoon anomalies induced by aerosol direct forcing: The role of the Tibetan Plateau. Clim. Dyn. 2006, 26, 855–864. [Google Scholar] [CrossRef]
- Sajjad, S.; Müller, W.A.; Hagemann, S.; Jacob, D. Circumglobal wave train and the summer monsoon over northwestern India and Pakistan: The explicit role of the surface heat low. Clim. Dyn. 2011, 37, 1045–1060. [Google Scholar]
- Saeed, S.; Müller, W.A.; Hagemann, S.; Jacob, D.; Mujumdar, M.; Krishnan, R. Precipitation variability over the South Asian monsoon heat low and associated teleconnections. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef]
- Karki, Y.K.; Ministry of Agricultural Development (MoA). Nepal Portfolio Performance Review; Government of Nepal: Kathmandu, Nepal, 2015.
- Food and Agriculture Organization (FAO). United Nations. Integrating Agriculture in National Adaptation Plans (NAP-Ag); FAO: Rome, Italy, 2015. [Google Scholar]
- The World Bank. World Development Indicators; The World Bank: Washington, DC, USA, 2015. [Google Scholar]
- Government of Nepal. Central Bureau of Statistics; Government of Nepal: Kathmandu, Nepal, 2012.
- Government of Nepal (GoN). Post Disaster Needs Assessment, Volume A: Key Findings. In National Planning Commission; GoN: Kathmandu, Nepal, 2015. [Google Scholar]
- Sthapit, B.R.; Upadhyay, M.P.; Baniya, B.K.; Subedi, A.; Joshi, B.K. On-farm management of agricultural biodiversity in Nepal. In Proceedings of the National Workshop, Lumle, Nepal, 24–26 April 2001; pp. 24–26. [Google Scholar]
- Malla, G. Climate change and its impact on Nepalese agriculture. J. Agric. Environ. 2009, 9, 62–71. [Google Scholar] [CrossRef]
- Paudel, P.K.; Bhattarai, B.P.; Kindlmann, P. An overview of the biodiversity in Nepal. In Himalayan Biodiversity in the Changing World; Springer: Dordrecht, The Netherlands, 2012; pp. 1–40. [Google Scholar]
- Ministry of Forest and Soil Conservation (MFSC). National Biodiversity Strategy and Action Plan 2014–2020; Government of Nepal: Kathmandu, Nepal, 2014.
- Maskey, T.M. State of Biodiversity in Nepal. In Proceedings of the Regional Consultation on Biodiversity Assessment in the Hindu Kush Himalayas, Kathmandu, Nepal, 19–20 December 1995. [Google Scholar]
- Bhattarai, B.R.; Wright, W.; Poudel, B.S.; Aryal, A.; Yadav, B.P.; Wagle, R. Shifting paradigms for Nepal’s protected areas: History, challenges and relationships. J. Mt. Sci. 2017, 14, 964–979. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, J.; Li, S.H.; Duchen, P.; Wegmann, D.; Schweizer, M. Sino-Himalayan mountains act as cradles of diversity and immigration centres in the diversification of parrotbills (Paradoxornithidae). J. Biogeogr. 2016, 43, 1488–1501. [Google Scholar] [CrossRef]
- Acharya, K.P.; Vetaas, O.R.; Birks, H.J.B. Orchid Species Richness along Himalayan Elevational Gradients. J. Biogeogr. 2011, 38, 1821–1833. [Google Scholar] [CrossRef]
- Mendez, J.M. Nepal Biodiversity Resource Book; ICIMOD: Kathmandu, Nepal, 2007. [Google Scholar]
- Bhatt, J.P.; Manish, K.; Pandit, M.K. Elevational Gradients in Fish Diversity in the Himalaya: Water Discharge Is the Key Driver of Distribution Patterns. PLoS ONE 2012, 7. [Google Scholar] [CrossRef] [PubMed]
- Ghosh-Harihar, M. Distribution and Abundance of Foliage-Arthropods across Elevational Gradients in the East and West Himalayas. Ecol. Res. 2013, 28, 125–130. [Google Scholar] [CrossRef]
- Johansson, U.S.; Alström, P.; Olsson, U.; Ericson, P.G.P.; Sundberg, P.; Price, T.D. Build-up of the Himalayan avifauna through immigration: A biogeographical analysis of the Phylloscopus and Seicercus Warblers. Evolution 2007, 61, 324–333. [Google Scholar] [CrossRef] [PubMed]
- Bajracharya, D. Deforestation in the food/fuel context: Historical and political perspectives from Nepal. Mt. Res. Dev. 1983, 3, 227–240. [Google Scholar] [CrossRef]
- Department of Forest Research and Survey (DFRS). Forest Resources of Nepal 1987–1998. Ministry of Forest and Soil Conservation; DFRS: Kathmandu, Nepal, 1999.
- Department of Forest Research and Survey (DFRS). State of Nepal’s Forests. Forest Resource Assessment (FRA) Nepa; Ministry of Forest and Soil Conservation: Kathmandu, Nepal, 2015.
- World Wildlife Fund (WWF) Nepal. Chitwan-Annapurna Landscape: Drivers of Deforestation and Forest Degradation; WWF Nepal Hariyo Ban Program: Kathmandu, Nepal, 2013. [Google Scholar]
- Uddin, K.; Chaudhary, S.; Chettri, N.; Kotru, R.; Murthy, M.; Chaudhary, R.P.; Ning, W.; Shrestha, S.M.; Gautam, S.K. The changing land cover and fragmenting forest on the roof of the world: A case study in Nepal’s Kailash sacred landscape. Landsc. Urban Plan. 2015, 141, 1–10. [Google Scholar] [CrossRef]
- Chettri, N.; Uddin, K.; Chaudhary, S.; Sharma, E. Linking spatio-temporal land cover change to biodiversity conservation in the Koshi Tappu Wildlife Reserve, Nepal. Diversity 2015, 5, 335–351. [Google Scholar] [CrossRef]
- Chaudhary, R.P. Forest Conservation and environmental management in Nepal: A Review. Biodivers. Conserv. 2000, 9, 1235–1260. [Google Scholar] [CrossRef]
- Shrestha, U.B.; Bawa, K.S. Impact of climate change on potential distribution of Chinese caterpillar fungus (Ophiocordyceps sinensis) in Nepal Himalaya. PLoS ONE 2014, 9. [Google Scholar] [CrossRef] [PubMed]
- Thapa, G.J.; Wikramanayake, E.; Jnawali, S.R.; Oglethorpe, J.; Adhikari, R. Assessing climate change impacts on forest ecosystems for landscape-scale spatial planning in Nepal. Curr. Sci. 2016, 110, 345. [Google Scholar] [CrossRef]
- Phillips, S. A brief tutorial on Maxent. AT&T Res. 2006, 3, 108–135. [Google Scholar]
- Gaire, N.P.; Dhakal, Y.R.; Lekhak, H.C.; Bhuju, D.R.; Shah, S.K. Dynamics of Abies spectabilis in relation to climate change at the tree line ecotone in Langtang National Park. Nepal J. Sci. Technol. 2011, 12, 220–229. [Google Scholar]
- Ferrarini, A.; Rossi, G.; Mondoni, A.; Orsenigo, S. Prediction of climate warming impacts on plant species could be more complex than expected. Evidence from a case study in the Himalaya. Ecol. Complex. 2014, 20, 307–314. [Google Scholar]
- McCain, C.M.; Colwell, R.K. Assessing the threat to montane biodiversity from discordant shifts in temperature and precipitation in a changing climate. Ecol. Lett. 2011, 14, 1236–1245. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, U.B.; Gautam, S.; Bawa, K.S. Widespread climate change in the Himalayas and associated changes in local ecosystems. PLoS ONE 2012, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jankowski, J.E.; Robinson, S.K.; Levey, D.J. Squeezed at the top: Interspecific aggression may constrain elevational ranges in tropical birds. Ecology 2010, 91, 1877–1884. [Google Scholar] [CrossRef] [PubMed]
- Jankowski, J.E.; Londoño, G.A.; Robinson, S.K.; Chappell, M.A. Exploring the role of physiology and biotic interactions in determining elevational ranges of tropical animals. Ecography 2013, 36, 1–12. [Google Scholar] [CrossRef]
- Chitale, V.S.; Behera, M.D. Analysing land and vegetation cover dynamics during last three decades in Katerniaghat wildlife sanctuary, India. J. Earth Syst. Sci. 2014, 123, 1467. [Google Scholar] [CrossRef]
- Tylianakis, J.M.; Didham, R.K.; Bascompte, J.; Wardle, D.A. Global change and species interactions in terrestrial ecosystems. Ecol. Lett. 2008, 11, 1351–1363. [Google Scholar] [CrossRef] [PubMed]
- Hingane, L.S.; Kumar, K.R.; Ramana, M.B.V. Long-term trends of surface air temperature in India. Int. J. Climatol. 1985, 5, 521–528. [Google Scholar] [CrossRef]
- Pant, G.B.; Hingane, L.S. Climatic changes in and around the Rajasthan desert during the 20th century. Int. J. Climatol. 1988, 8, 391–401. [Google Scholar] [CrossRef]
- Wu, G.; Zhang, Y. Tibetan Plateau forcing and the timing of the monsoon onset over South Asia and the South China Sea. Mon. Weather Rev. 1998, 126, 913–927. [Google Scholar] [CrossRef]
- Thompson, L.G.; Yao, T.; Mosley-Thompson, E.; Davis, M.E.; Henderson, K.A.; Lin, P.N. A high-resolution millennial record of the South Asian monsoon from Himalayan ice cores. Science 2000, 289, 1916–1919. [Google Scholar] [CrossRef] [PubMed]
- Klein Tank, A.M.G.; Peterson, T.C.; Quadir, D.A.; Dorji, S.; Zou, X.; Tang, H.; Santhosh, K.; Joshi, U.R.; Jaswal, A.K.; Kolli, R.K.; et al. Changes in daily temperature and precipitation extremes in central and south Asia. J. Geophys. Res. Atmos. 2006, 111. [Google Scholar] [CrossRef]
- Sheikh, M.M.; Manzoor, N.; Ashraf, J.; Adnan, M.; Collins, D.; Hameed, S.; Manton, M.J.; Ahmed, A.U.; Baidya, S.K.; Borgaonkar, H.P.; et al. Trends in extreme daily rainfall and temperature indices over South Asia. Int. J. Climatol. 2015, 35, 1625–1637. [Google Scholar] [CrossRef]
- Maussion, F.; Scherer, D.; Mölg, T.; Collier, E.; Curio, J.; Finkelnburg, R. Precipitation seasonality and variability over the Tibetan Plateau as resolved by the High Asia Reanalysis. J. Clim. 2014, 27, 1910–1927. [Google Scholar] [CrossRef]
- Singh, D.; Tsiang, M.; Rajaratnam, B.; Diffenbaugh, N.S. Observed changes in extreme wet and dry spells during the South Asian summer monsoon season. Nat. Clim. Chang. 2014, 4, 456. [Google Scholar] [CrossRef]
- Loo, Y.Y.; Billa, L.; Singh, A. Effect of climate change on seasonal monsoon in Asia and its impact on the variability of monsoon rainfall in Southeast Asia. Geosci. Front. 2015, 6, 817–823. [Google Scholar] [CrossRef]
- Corlett, R.T. Trouble with the gray literature. Biotropica 2011, 43, 3–5. [Google Scholar] [CrossRef]
- Walther, G.R.; Post, E.; Convey, P.; Menzel, A.; Parmesan, C.; Beebee, T.J.; Fromentin, J.M.; Hoegh-Guldberg, O.; Bairlein, F. Ecological responses to recent climate change. Nature 2002, 416, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Phillips, B.L. The evolution of growth rates on an expanding range edge. Biol. Lett. 2009, 5, 802–804. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, S. An Inventory and Assessment of Invasive Alien Plant Species of Nepal; IUCN: Kathmandu, Nepal, 2005. [Google Scholar]
- Eriksson, M.; Xu, J.C.; Shrestha, A.B.; Vaidya, R.A.; Santosh, N.; Sandström, K. The Changing Himalayas: Impact of Climate Change on Water Resources and Livelihoods in the Greater Himalayas; ICIMOD: Kathmandu, Nepal, 2009. [Google Scholar]
Group | Number of Observed Species | % Relative to Known Species Worldwide |
---|---|---|
Angiosperms | 6973 | 3.2 |
Gymnosperms | 26 | 5.1 |
Pteridophytes | 534 | 5.1 |
Bryophytes | 1150 | 8.2 |
Lichens | 465 | 2.3 |
Fungi | 1822 | 2.6 |
Algae | 1001 | 2.5 |
Flora total | 11,971 | - |
Mammals | 208 | 5.2 |
Birds | 8673 | 9.5 |
Reptiles | 123 | 1.9 |
Amphibians | 117 | 2.5 |
Fish | 230 | 1.9 |
Butterflies | 651 | 3.7 |
Moths | 3958 | 3.6 |
Spiders | 175 | 0.4 |
Biological Organization | No. Articles | Studies | Methods |
---|---|---|---|
Organism | 0 | - | - |
Species | 8 | Song et al. (2004), Gaire et al. (2011), Forrest et al. (2012), Telwala et al. (2013), Ferrarini et al. (2014), Gaire et al. (2014), Shrestha & Bawa (2014), Thapa et al. (2016) | Field surveys, sample collections, statistical analysis, seed dispersal models, species distribution models (current and projected climate scenarios), general circulation models, digital elevation models |
Population | 4 | Gaire et al. (2011), McCain & Colwell (2011), Shrestha et al. (2012), Gaire et al. (2014) | Field surveys, sample collections, statistical analysis, meta-analysis (using published data), species distribution models (current and projected climate scenarios), remote sensing |
Community | 6 | Shrestha et al. (2012), Telwala et al. (2013), Chitale & Behera (2014), Salick et al. (2014), Shah et al. (2014), Thapa et al. (2016) | Field surveys, sample collections, social surveys, statistical analysis, species distribution models (current and projected climate scenarios), general circulation models, digital elevation models, remote sensing |
Biological Organization | Reference | Focal Taxa, Relevance Score (RS) | Key Findings |
---|---|---|---|
Species | Song et al. (2004) [15] | 6 Alpine tree species (Abies spectabilis, Picea likiangensis, Pinus densata, Larix griffithiana, Quercus aquifolioides, Betula utilis) RS: 2 | (1) Range of A. spectabilis, P. likiangensis, Pinus densata, L. Griffithiana, and Q. aquifolioides projected to extend northwards and westwards under the future climate scenarios; (2) B. utilis range projected to shift northwards and shrink in overall distribution under future climate scenarios; (3) Significant difference in 7 alpine species distributions under current climate conditions versus future scenarios |
Species, Population | Gaire et al. (2011) [102] | Himalayan fir (Abies spectabilis) RS: 1 | (1) High A. spectabilis recruitment rates in recent decades; (2) Lower average age along as altitude increases; (3) Growth rate exhibits a negative response to temperature (particularly March–May season); (4) Tree line is predicted to extend northwards due to future climate change |
Species | Forrest et al. (2012) [2] | Snow leopard (Panthera uncia) RS: 2 | (1) Predicted loss of 30% snow leopard habitat in the Himalayas mainly along southern distribution range due to projected shrinking of alpine zones |
Species, Community | Telwala et al. (2013) [18] | Endemic alpine plants RS: 2 | (1) 90% of endemic plants studied in Sikkim Himalayas have experienced temperature driven elevational range shifts; (2) Increased species richness in the upper alpine zone due to upper range extensions; (3) Species from the lower alpine zone exhibited the largest range shifts |
Species, Population | Gaire et al. (2014) [52] | Himalayan fir and Himalayan birch (Abies spectabilis and Betula utilis) RS: 2 | (1) Increased current plant density in Central Himalayas; (2) Current upper range limit of B. utilis observed to be unchanged in recent decades; (3) Growth of B. utilis mainly limited by moisture stress during the pre-monsoon season; (4) High A. spectabilis recruitment rates in recent decades and lower average age, most affected by maximum and minimum temperatures; (5) A. spectabilis regeneration occurring above existing tree line |
Species | Ferrarini et al. (2014) [103] | 2 Alpine plants (Anaphalis xylorhiza and Leontopodium monocephalum) RS: 1 | (1) Predicted species distributions models found to be smaller than potential distributions of Himalayan plant species; (2) Use of potential distributions for predicting species range under future climate scenarios carries a high risk of overestimation |
Species | Shrestha & Bawa (2014) [99] | Chinese caterpillar fungus (Ophiocordyceps sinensis) RS: 1 | (1) Projected expansion of suitable habitat for Ophiocordyceps sinensis under future climate scenarios; (2) Complete habitat loss predicted for some future climate scenarios in Taplejung and Humla districts; (3) Possible range expansion into two new districts of Dolpa and Pachthar under future climate scenarios |
Species, Community | Thapa et al. (2016) [100] | Forest/Vegetation systems RS: 1 | (1) Projection of lower- and mid-montane forests show higher vulnerability than upper montane and subalpine forests (providing macrorefugia); (2) Subalpine scrub vegetation projected to shift range northwards; (3) Lower and mid-montane forests predicted to become smaller patches of microrefugia, and may provide important “climate corridors” for species forced to shift northwards |
Population | McCain & Colwell (2011) [104] | 16,848 vertebrate species * Global study incorporating 5 data sets from Himalayan region | (1) Population extirpation risk predicted to peak at minimum precipitation levels; (2) Salamanders and frog species are predicted to be most vulnerable to local population extirpation risk under global future precipitation scenarios |
Population, Community | Shrestha et al. (2012) [105] | Vegetation systems RS: 1 | (1) Early average onset of growing season and increased length of growing season observed for Himalayas; (2) Late end of growing season observed in Western Himalayas, with mixed patterns in central and eastern Himalayas (overall longer growing season in western region) |
Community | Chitale & Behera (2014) [108] | Forest/Vegetation systems RS: 3 | (1) Dominance of Shorea robusta observed in Katerniaghat wildlife sanctuary along the Himalayan foothills; (2) Increased range of grasslands observed over three decades in Katerniaghat Wildlife Sanctuary |
Community | Salick et al. (2014) [21] | Alpine plant species RS: 2 | (1) Higher number of overall plant taxa and endemic species found at the lowest subalpine-lower alpine ecotone in the eastern Himalayas |
Community | Shah et al. (2014) [19] | 78 Benthic invertebrate species RS: 2 | (1) Altitude is significant related to variation in benthic invertebrate community assemblage in Central Himalayas; (2) 79% of indicator taxa studied exhibited a negative response to increasing altitude; (3) 90% predicted decrease in suitable habitat for Epiophlebia laidlawi and northward elevation shift in range projected under future climate scenarios |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhattacharjee, A.; Anadón, J.D.; Lohman, D.J.; Doleck, T.; Lakhankar, T.; Shrestha, B.B.; Thapa, P.; Devkota, D.; Tiwari, S.; Jha, A.; et al. The Impact of Climate Change on Biodiversity in Nepal: Current Knowledge, Lacunae, and Opportunities. Climate 2017, 5, 80. https://doi.org/10.3390/cli5040080
Bhattacharjee A, Anadón JD, Lohman DJ, Doleck T, Lakhankar T, Shrestha BB, Thapa P, Devkota D, Tiwari S, Jha A, et al. The Impact of Climate Change on Biodiversity in Nepal: Current Knowledge, Lacunae, and Opportunities. Climate. 2017; 5(4):80. https://doi.org/10.3390/cli5040080
Chicago/Turabian StyleBhattacharjee, Aishwarya, José D. Anadón, David J. Lohman, Tenzing Doleck, Tarendra Lakhankar, Bharat Babu Shrestha, Praseed Thapa, Durga Devkota, Sundar Tiwari, Ajay Jha, and et al. 2017. "The Impact of Climate Change on Biodiversity in Nepal: Current Knowledge, Lacunae, and Opportunities" Climate 5, no. 4: 80. https://doi.org/10.3390/cli5040080
APA StyleBhattacharjee, A., Anadón, J. D., Lohman, D. J., Doleck, T., Lakhankar, T., Shrestha, B. B., Thapa, P., Devkota, D., Tiwari, S., Jha, A., Siwakoti, M., Devkota, N. R., Jha, P. K., & Krakauer, N. Y. (2017). The Impact of Climate Change on Biodiversity in Nepal: Current Knowledge, Lacunae, and Opportunities. Climate, 5(4), 80. https://doi.org/10.3390/cli5040080