Investigation of the Spatio-Temporal Variations in Atmosphere Thickness Pattern of Iran and the Middle East with Special Focus on Precipitation in Iran
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area Data Analyzed
2.2. Statistical Methods
3. Results
3.1. Analysis of the Seasonal Variability of Atmospheric Thickness
3.2. Analysis of the Interannual Variability of Atmospheric Thickness
3.3. Analysis of the Link between Atmospheric Thickness and Precipitation in Iran
4. Discussion
4.1. Seasonal Variability of Atmospheric Thickness
4.2. Interannual Variability of Atmospheric Thickness
4.3. The Relationship between the Atmospheric Thickness and Precipitation in Iran
4.3.1. Atmospheric Conditions Not Linked with Precipitation
4.3.2. Atmospheric Conditions Linked with Precipitation
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Alijani, B. Synoptic Climatology, 1st ed.; SAMT Press: Tehran, Iran, 2006; Volume 1, p. 153. (In Persian) [Google Scholar]
- Zhang, T.; Stamnes, K.; Bowling, S.A. Impact of the atmospheric thickness on the atmospheric downwelling longwave radiation and snowmelt under clear-sky conditions in the arctic and subarctic. J. Clim. 2001, 14, 920–939. [Google Scholar] [CrossRef]
- Sutcliffe, R.C.; Forsdyke, A.G. The theory and use of upper air thickness patterns in forecasting. Q. J. R. Meteorol. Soc. 1950, 76, 189–217. [Google Scholar] [CrossRef]
- Masoodian, S.A.; Karsaz, S. Synoptic analysis of thickness patterns at the time of heavy and extensive precipitations of south zagros area. Geogr. Dev. Iran. J. 2015, 12, 15–28. (In Persian) [Google Scholar]
- Omidvar, K. Synoptic Climatology, 1st ed.; Yazd University Press: Yazd, Iran, 2010; Volume 1, p. 356. (In Persian) [Google Scholar]
- Alijani, B.; O’Brien, J.; Yarnal, B. Spatial analysis of precipitation intensity and concentration in iran. Theor. Appl. Climatol. 2008, 94, 107–124. [Google Scholar] [CrossRef]
- Ghaemi, H. Generol Meteorology; SAMT Press: Tehran, Iran, 2006; Volume 1, p. 591. (In Persian) [Google Scholar]
- Mohammadi, B.; Masoudian, S.A. Synoptic analysis of heavy precipitation in iran case study november 1994. Geogr. Dev. 2010, 19, 47–70. (In Persian) [Google Scholar]
- Sotodeh, F.; Alijani, B. The relationship between spatial distribution of heavy precipitation and pressure patterns in guilan province. J. Spat. Anal. Environ. Hazards 2015, 2, 63–73. (In Persian) [Google Scholar] [CrossRef]
- Tabari, H.; Abghari, H.; Hosseinzadeh Talaee, P. Temporal trends and spatial characteristics of drought and rainfall in arid and semiarid regions of Iran. Hydrol. Process. 2012, 26, 3351–3361. [Google Scholar] [CrossRef]
- Rousta, I.; Soltani, M.; Zhou, W.; Cheung, H.H. Analysis of extreme precipitation events over central plateau of iran. Am. J. Clim. Chang. 2016, 5, 297. [Google Scholar] [CrossRef]
- Rousta, I.; Akhlagh, F.K.; Soltani, M.; Shabnam, S.M.T. Assessment of blocking effects on rainfall in northwestern iran. In Proceedings of the 12th International Conference on Meteorology, Climatology and Atmospheric COMECAP 2014, Athina, Grecce, 28–31 May 2014; Kanakidou, M., Mihalopoulos, N., Nastos, P., Eds.; Crete University Press: Athina, Grecce, 2014; p. 291. [Google Scholar]
- Rousta, I.; Doostkamian, M.; Haghighi, E.; Ghafarian Malamiri, H.R.; Yarahmadi, P. Analysis of spatial autocorrelation patterns of heavy and super-heavy rainfall in iran. Adv. Atmos. Sci. 2017, 34, 1069–1081. [Google Scholar] [CrossRef]
- Haghighi, E.; Jahanbakhsh, S.; Rezaee Banafshe, M.; Rousta, I. The study relationship between large- scale circulation patterns of sea level and snow phenomenon in the north west of iran. Territory 2016, 12, 19–35. (In Persian) [Google Scholar]
- Rousta, I.; Nasserzadeh, M.; Jalali, M.; Haghighi, E.; Ólafsson, H.; Ashrafi, S.; Doostkamian, M.; Ghasemi, A. Decadal spatial-temporal variations in the spatial pattern of anomalies of extreme precipitation thresholds (case study: Northwest iran). Atmosphere 2017, 8, 135. [Google Scholar] [CrossRef]
- Taimor, A.; Qhasem, A.; Rousta, I. Analyzing of 500 hpa atmospheric patterns in the incidence of prevassive and sectional rainfall in iran. Plan. Arrange. Space Hum. Sci. 2012, 16, 1–24. (In Persian) [Google Scholar]
- Soltani, M.; Laux, P.; Kunstmann, H.; Stan, K.; Sohrabi, M.; Molanejad, M.; Sabziparvar, A.; SaadatAbadi, A.R.; Ranjbar, F.; Rousta, I. Assessment of climate variations in temperature and precipitation extreme events over iran. Theor. Appl. Climatol. 2016, 126, 775–795. [Google Scholar] [CrossRef]
- Zhang, Y.; Sperber, K.; Boyle, J. Climatology and interannual variation of the east asian winter monsoon: Results from the 1979–95 ncep/ncar reanalysis. Mon. Weather Rev. 1997, 125, 2605–2619. [Google Scholar] [CrossRef]
- Houssos, E.; Lolis, C.; Bartzokas, A. Atmospheric circulation patterns associated with extreme precipitation amounts in greece. Adv. Geosci. 2008, 17, 5–11. [Google Scholar] [CrossRef]
- Azizi, G.; Akbari, T.; Davodi, M.; Akbari, M. Synoptic analysis of iran’s 2008 sever cold. Phys. Geogr. Res. 2010, 41, 28–50. (In Persian) [Google Scholar]
- Soltani, M.; Rousta, I.; Akhlagh, F.K.; Sh, S.M.T. Statistical synoptic analysis of summertime extreme precipitation events over kerman province, iran. In Proceedings of the 12th International Conference on Meteorology, Climatology and Atmospheric COMECAP 2014, Athina, Grecce, 28–31 May 2014; Kanakidou, M., Mihalopoulos, N., Nastos, P., Eds.; Crete University Press: Athina, Grecce, 2014; p. 291. [Google Scholar]
- Asakereh, H. Frequency distribution change of extreme precipitation in zanjan city. Geogr. Environ. Plan. 2012, 23, 51–66. (In Persian) [Google Scholar]
- Soltani, M.; Rousta, I.; Taheri, S.S.M. Using mann-kendall and time series techniques for statistical analysis of long-term precipitation in gorgan weather station. World Appl. Sci. J. 2013, 28, 902–908. [Google Scholar]
- Sanders, F.; Davis, C.A. Patterns of thickness anomaly for explosive cyclogenesis over the west-central north atlantic ocean. Mon. Weather Rev. 1988, 116, 2725–2730. [Google Scholar] [CrossRef]
- Struthwolf, M.E. Forecasting maximum temperatures through use of an adjusted 850- to 700-mb thickness technique. Weather Forecast. 1995, 10, 160–171. [Google Scholar] [CrossRef]
- Rousta, I.; Doostkamian, M.; Haghighi, E.; Mirzakhani, B. Statistical-synoptic analysis of the atmosphere thickness pattern of iran’s pervasive frosts. Climate 2016, 4, 41. [Google Scholar] [CrossRef]
- Mohammadi, B. Evaluation of synoptic sea level pressure regions in warm half of the year. Geogr. Thought 2008, 2, 132–150. (In Persian) [Google Scholar]
- Hossaini, S.M. Assessments of Synoptic Conditions in Caspian Sea Coasts. Master's Thesis, Esfahan University, Esfahan, Iran, 2009; p. 189. (In persian). [Google Scholar]
- Soltani, M.; Zawar-Reza, P.; Khoshakhlagh, F.; Rousta, I. Mid-latitude cyclones climatology over caspian sea southern coasts–north of iran. In Proceedings of the 21st Conference on Applied Climatology, American Meteorological Society (AMS), American Meteorological Society, Westminster, CO, USA, 8–13 June 2014; Volume 1, pp. 1–3. [Google Scholar]
- Halabian, A.; Hosseinali Pourjazi, F. Recognition the synoptic conditions of extreme and widespread precipitations in caspian western coasts by emphasis on atmosphere thickness patterns. Sci. J. Manag. Syst. 2012, 2, 101–122. [Google Scholar]
- Nasrabadi, E.; Masoodian, S.A.; Asakereh, H. Comparison of gridded precipitation time series data in aphrodite and asfazari databases within iran’s territory. Atmos. Clim. Sci. 2013, 3, 235. [Google Scholar] [CrossRef]
- Masoodian, A.; Kiany, K.; Sadeqh, M. Introduction and a comparison among gridded precipitation database of asfazari with gpcc, gpcp and cmap. Geogr. Res. 2014, 29, 36–53. (In Persian) [Google Scholar]
- Masoodian, S.; Darand, M. Synoptic analysis of extensive and persistent frosts in iran. Geogr. Environ. Plan. J. 2013, 50, 29–32. (In Persian) [Google Scholar]
- Nazaripour, H. Calibration of rainfall-stream flow relationship for assessing and forecasting hydrological drought in kavir-e lut basin, Iran. Sci. J. Manag. Syst. 2017, 9, 73–90. [Google Scholar]
- Asakereh, H.; Ashrafi, S.; Tarkarani, F. The relationship between precipitation status and daily temperature status in Iran. Geogr. Dev. 2014, 12, 81–93. [Google Scholar]
- Balling, R.C.; Keikhosravi Kiany, M.S.; Sen Roy, S.; Khoshhal, J. Trends in extreme precipitation indices in Iran: 1951–2007. Adv. Meteorol. 2016, 2016. [Google Scholar] [CrossRef]
- Ahmadi, M.; Dadashi, A. Assessment of the tracks of spatio-temporal precipitation, Iran. Phys. Geogr. Res. 2016, 48, 465–484. (In Persian) [Google Scholar]
- Alijani, B. Spatial analysis of critical temperatures and daily precipitation in iran. J. Geogr. Sci. Appl. Res. 2011, 20, 9–30. (In Persian) [Google Scholar]
- Ghavidel Rahimi, Y. Synoptic Analysis with Grads Software; SAHA Danesh Press: Tehran, Iran, 2016; Volume 2. [Google Scholar]
- Lichtfouse, E.; Hamelin, M.; Navarrete, M.; Debaeke, P. Sustainable Agriculture; Springer: Berlin, Germany, 2009. [Google Scholar]
- Priestley, M.B. Spectral Analysis and Time Series; Academic Press: London, UK, 1981; p. 353. [Google Scholar]
- Vautard, R.; Yiou, P.; Ghil, M. Singular-spectrum analysis: A toolkit for short, noisy chaotic signals. Phys. D Nonlinear Phenom. 1992, 58, 95–126. [Google Scholar] [CrossRef]
- Weedon, G.P. Time-Series Analysis and Cyclostratigraphy: Examining Stratigraphic Records of Environmental Cycles; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Pestiaux, P.; Van der Mersch, I.; Berger, A.; Duplessy, J.C. Paleoclimatic variability at frequencies ranging from 1 cycle per 10 000 years to 1 cycle per 1000 years: Evidence for nonlinear behaviour of the climate system. Clim. Chang. 1988, 12, 9–37. [Google Scholar] [CrossRef]
- Yiou, P.; Genthon, C.; Ghil, M.; Jouzel, J.; Le Treut, H.; Barnola, J.; Lorius, C.; Korotkevitch, Y. High-frequency paleovariability in climate and co2 levels from vostok ice core records. J. Geophys. Res. Solid Earth 1991, 96, 20365–20378. [Google Scholar] [CrossRef]
- Kendall, M.G.; Stuart, A. The advanced theory of statistics. In Kendall1 the Advanced Theory of Statistics 1946; Charles Griffin & Co.: London, UK, 1968. [Google Scholar]
- Kaufman, L.; Rousseeuw, P.J. Finding Groups in Data: An Introduction to Cluster Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2009; Volume 344. [Google Scholar]
- Sarle, W.S. Finding groups in data: An introduction to cluster analysis. J. Am. Stat. Assoc. 1991, 86, 830–833. [Google Scholar] [CrossRef]
- Zarrin, A.; Ghaemi, H.; Azadi, M.; Farajzadeh, M. The spatial pattern of summertime subtropical anticyclones over asia and africa: A climatological review. Int. J. Climatol. 2010, 30, 159–173. [Google Scholar] [CrossRef]
- Rezaee Banafshe, M.; Hossein Alipour Ghazi, H.; Jaffari Shendi, F.; Alimohammadi, M. Synoptic analysis of heavy rainfall in northwest of iran (with an emphasis on patterns of atmospheric thickness). Geogr. Plan. 2015, 19, 117–135. (In Persian) [Google Scholar]
- Amanollahi, J.; Kaboodvandpour, S.; Qhavami, S.; Mohammadi, B. Effect of the temperature variation between mediterranean sea and syrian deserts on the dust storm occurrence in the western half of iran. Atmos. Res. 2015, 154, 116–125. [Google Scholar] [CrossRef]
- Shamsipour, A.; AlaviPanah, S.; Mohammadi, H.; Azizi, A.; Khoshakhlagh, F. An analysis of drought events for central plains of iran through an employment of noaa-avhrr data. Desert 2008, 13, 105–115. [Google Scholar]
- Lashkari, H. Tracking sudanese low pressure systems to iran. Hum. Sci. Res. 2002, 6, 133–160. (In Persian) [Google Scholar]
- Lashkari, H. Synoptic Analysis of Heavy Precipitation in South Eastern Part of Iran; Tarbiat Modarres University: Tehran, Iran, 1996. [Google Scholar]
- Bagheri, J. The relationship between geopotential height 500 hPa circulation patterns with weather types of mountainous region of iran. Geogr. Res. 2010, 25, 153–176. (In Persian) [Google Scholar]
- Darand, M.; Masoodian, A. Analysis of the anomalies of the severe cold patterns of iran in the period of 1960 to 2004. Geogr. Res. 2015, 30, 1–4. [Google Scholar]
Winter | Spring | |||||
---|---|---|---|---|---|---|
January | February | March | April | May | June | |
Mean | 5522.5 | 5534.4 | 5579.8 | 5649.5 | 5715.6 | 5773.5 |
Median | 5518.9 | 5536.5 | 5586.6 | 5668.1 | 5744.4 | 5802.4 |
Mode | 5277.3 | 5281.0 | 5349.9 | 5436.4 | 5528.3 | 5598.8 |
Variance | 20,876.7 | 22,317.3 | 19,156.6 | 12,900.3 | 9287.3 | 6085.6 |
STDV | 144.5 | 149.4 | 138.4 | 113.6 | 96.4 | 78.0 |
CV (%) | 2.6 | 2.7 | 2.5 | 2.0 | 1.7 | 1.4 |
Variation Range | 480.7 | 489.2 | 442.9 | 378.1 | 304.8 | 279.7 |
Skewness | 0.0 | −0.1 | −0.2 | −0.3 | −0.4 | −0.6 |
Elongation | 1.6 | 1.6 | 1.6 | 1.7 | 1.7 | 2.2 |
Max | 5758.1 | 5770.2 | 5792.7 | 5814.5 | 5833.2 | 5878.5 |
Min | 5277.3 | 5281.0 | 5349.9 | 5436.4 | 5528.3 | 5598.8 |
Summer | Fall | |||||
July | August | September | October | November | December | |
Mean | 5804.4 | 5797.6 | 5746.6 | 5677.1 | 5607.5 | 5554.2 |
Median | 5816.9 | 5809.7 | 5773.7 | 5708.5 | 5624.9 | 5557.7 |
Mode | 5639.4 | 5642.7 | 5579.2 | 5483.6 | 5390.4 | 5323.2 |
Variance | 3832.5 | 3668.8 | 5625.2 | 8764.0 | 13,201.6 | 17,382.0 |
STDV | 61.9 | 60.6 | 75.0 | 93.6 | 114.9 | 131.8 |
CV (%) | 1.1 | 1.0 | 1.3 | 1.6 | 2.0 | 2.4 |
Variation Range | 263.2 | 249.1 | 260.9 | 309.8 | 388.3 | 439.6 |
Skewness | −0.7 | −0.7 | −0.8 | −0.6 | −0.3 | −0.1 |
Elongation | 2.8 | 2.7 | 2.3 | 1.9 | 1.7 | 1.6 |
Max | 5902.6 | 5891.8 | 5840.2 | 5793.4 | 5778.7 | 5762.7 |
Min | 5639.01 | 5642.7 | 5579.2 | 5483.6 | 5390.4 | 5323.2 |
Month | January | February | March | April | May | June |
---|---|---|---|---|---|---|
Trend | 0.126 | 0.075 | 0.287 | 0.301 | 0.319 | 0.345 |
Significance | 1 | 1 | 0 | 0 | 0 | 0 |
Month | July | August | September | October | November | December |
Trend | 0.284 | 0.346 | 0.295 | 0.320 | 0.308 | 0.247 |
Significance | 0 | 0 | 0 | 0 | 0 | 1 |
Month | Type of Trend | Coverage (%) | Month | Type of Trend | Coverage (%) |
---|---|---|---|---|---|
January | Decr | 0 | July | Decr | 0 |
Incr | 27.2 | Incr | 88.8 | ||
No Trend | 72.8 | No Trend | 11.2 | ||
Februsry | Decr | 0 | August | Decr | 0 |
Incr | 0 | Incr | 62.8 | ||
No Trend | 100 | No Trend | 37.2 | ||
March | Decr | 0 | September | Decr | 0 |
Incr | 27.9 | Incr | 61.1 | ||
No Trend | 72.1 | No Trend | 38.9 | ||
April | Decr | 0 | October | Decr | 4.9 |
Incr | 44.9 | Incr | 61.5 | ||
No Trend | 55.1 | No Trend | 38.5 | ||
May | Decr | 0 | November | Decr | 0 |
Incr | 60.7 | Incr | 47.8 | ||
No Trend | 39.3 | No Trend | 52.2 | ||
June | Decr | 0 | December | Decr | 0 |
Incr | 80.2 | Incr | 34.8 | ||
No Trend | 19.8 | No Trend | 65.2 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rousta, I.; Doostkamian, M.; Taherian, A.M.; Haghighi, E.; Ghafarian Malamiri, H.R.; Ólafsson, H. Investigation of the Spatio-Temporal Variations in Atmosphere Thickness Pattern of Iran and the Middle East with Special Focus on Precipitation in Iran. Climate 2017, 5, 82. https://doi.org/10.3390/cli5040082
Rousta I, Doostkamian M, Taherian AM, Haghighi E, Ghafarian Malamiri HR, Ólafsson H. Investigation of the Spatio-Temporal Variations in Atmosphere Thickness Pattern of Iran and the Middle East with Special Focus on Precipitation in Iran. Climate. 2017; 5(4):82. https://doi.org/10.3390/cli5040082
Chicago/Turabian StyleRousta, Iman, Mehdi Doostkamian, Allah Morad Taherian, Esmaeil Haghighi, Hamid Reza Ghafarian Malamiri, and Haraldur Ólafsson. 2017. "Investigation of the Spatio-Temporal Variations in Atmosphere Thickness Pattern of Iran and the Middle East with Special Focus on Precipitation in Iran" Climate 5, no. 4: 82. https://doi.org/10.3390/cli5040082
APA StyleRousta, I., Doostkamian, M., Taherian, A. M., Haghighi, E., Ghafarian Malamiri, H. R., & Ólafsson, H. (2017). Investigation of the Spatio-Temporal Variations in Atmosphere Thickness Pattern of Iran and the Middle East with Special Focus on Precipitation in Iran. Climate, 5(4), 82. https://doi.org/10.3390/cli5040082