Comparison of Satellite Rainfall Estimates and Rain Gauge Measurements in Italy, and Impact on Landslide Modeling
Abstract
:1. Introduction
2. Materials and Methods and Results
2.1. Climatic and Morphological Framework
2.1.1. Climate Variability
2.1.2. Morphological Subdivision
2.2. Rainfall Data
2.2.1. Rain Gauge Measurements (VRF)
2.2.2. Satellite Rainfall Estimates
2.3. Analysis of Cumulated Rainfall
2.3.1. Correlation Analysis
2.3.2. Statistical Distribution Estimation
2.4. Analysis of Rainfall Events
2.4.1. Identification of Rainfall Events
2.4.2. Comparison of Rainfall Events
3. Discussion
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
References
- Salvati, P.; Bianchi, C.; Rossi, M.; Guzzetti, F. Societal landslide and flood risk in Italy. Nat. Hazards Earth Syst. Sci. 2010, 10, 465–483. [Google Scholar] [CrossRef]
- Polaris. Available online: http://polaris.irpi.cnr.it/ (accessed on 14 October 2017).
- Wieczorek, G.F. Landslide triggering mechanisms. Landslides Investig. Mitig. 1996, 247, 76–90. [Google Scholar]
- Caine, N. The Rainfall Intensity: Duration Control of Shallow Landslides and Debris Flows. Geogr. Ann. Ser. Phys. Geogr. 1980, 62, 23–27. [Google Scholar] [CrossRef]
- Innes, J.L. Debris flows. Prog. Phys. Geogr. 1983, 7, 469–501. [Google Scholar] [CrossRef]
- Guzzetti, F.; Peruccacci, S.; Rossi, M.; Stark, C.P. Rainfall thresholds for the initiation of landslides in central and southern Europe. Meteorol. Atmospheric Phys. 2007, 98, 239–267. [Google Scholar] [CrossRef]
- Guzzetti, F.; Peruccacci, S.; Rossi, M.; Stark, C.P. The rainfall intensity–duration control of shallow landslides and debris flows: an update. Landslides 2008, 5, 3–17. [Google Scholar] [CrossRef]
- Wu, W.; Sidle, R.C. A Distributed Slope Stability Model for Steep Forested Basins. Water Resour. Res. 1995, 31, 2097–2110. [Google Scholar] [CrossRef]
- Montgomery, D.R.; Dietrich, W.E. A physically based model for the topographic control on shallow landsliding. Water Resour. Res. 1994, 30, 1153–1171. [Google Scholar] [CrossRef]
- Iverson, R.M. Landslide triggering by rain infiltration. Water Resour. Res. 2000, 36, 1897–1910. [Google Scholar] [CrossRef]
- Crosta, G. Regionalization of rainfall thresholds: an aid to landslide hazard evaluation. Environ. Geol. 1998, 35, 131–145. [Google Scholar] [CrossRef]
- Rossi, M.; Peruccacci, S.; Brunetti, M.; Marchesini, I.; Luciani, S.; Ardizzone, F.; Balducci, V.; Bianchi, C.; Cardinali, M.; Fiorucci, F.; et al. SANF: National warning system for rainfall-induced landslides in Italy. Landslides Eng. Slopes Prot. Soc. Improv. Underst. 2012, 2, 1895–1899. [Google Scholar]
- Hong, Y.; Adler, R.; Huffman, G. Evaluation of the potential of NASA multi-satellite precipitation analysis in global landslide hazard assessment. Geophys. Res. Lett. 2006, 33, L22402. [Google Scholar] [CrossRef]
- Liao, Z.; Hong, Y.; Kirschbaum, D.; Liu, C. Assessment of shallow landslides from Hurricane Mitch in central America using a physically based model. Environ. Earth Sci. 2012, 66, 1697–1705. [Google Scholar] [CrossRef]
- Kirschbaum, D.; Adler, R.; Hong, Y.; Lerner-Lam, A. Evaluation of a preliminary satellite-based landslide hazard algorithm using global landslide inventories. Nat. Hazards Earth Syst. Sci. 2009, 9, 673–686. [Google Scholar] [CrossRef]
- Kirschbaum, D.B.; Adler, R.; Hong, Y.; Kumar, S.; Peters-Lidard, C.; Lerner-Lam, A. Advances in landslide nowcasting: evaluation of a global and regional modeling approach. Environ. Earth Sci. 2012, 66, 1683–1696. [Google Scholar] [CrossRef]
- Rossi, M.; Luciani, S.; Valigi, D.; Kirschbaum, D.; Brunetti, M.T.; Peruccacci, S.; Guzzetti, F. Statistical approaches for the definition of landslide rainfall thresholds and their uncertainty using rain gauge and satellite data. Geomorphology 2017, 285, 16–27. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Wolff, D.B.; Adler, R.F.; Gu, G.; Hong, Y.; Bowman, K.P.; Stocker, E.F. The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Ud din, S.; Al-Dousari, A.; Ramdan, A.; Al Ghadban, A. Site-specific precipitation estimate from TRMM data using bilinear weighted interpolation technique: An example from Kuwait. J. Arid Environ. 2008, 72, 1320–1328. [Google Scholar] [CrossRef]
- Jia, S.; Zhu, W.; Lű, A.; Yan, T. A statistical spatial downscaling algorithm of TRMM precipitation based on NDVI and DEM in the Qaidam Basin of China. Remote Sens. Environ. 2011, 115, 3069–3079. [Google Scholar] [CrossRef]
- Duncan, J.M.A.; Biggs, E.M. Assessing the accuracy and applied use of satellite-derived precipitation estimates over Nepal. Appl. Geogr. 2012, 34, 626–638. [Google Scholar] [CrossRef]
- Ji, X.; Chen, Y. Characterizing spatial patterns of precipitation based on corrected TRMM 3B43 data over the mid Tianshan Mountains of China. J. Mt. Sci. 2012, 9, 628–645. [Google Scholar] [CrossRef]
- Karaseva, M.O.; Prakash, S.; Gairola, R.M. Validation of high-resolution TRMM-3B43 precipitation product using rain gauge measurements over Kyrgyzstan. Theor. Appl. Climatol. 2012, 108, 147–157. [Google Scholar] [CrossRef]
- Semire, F.A.; Mohd-Mokhtar, R.; Ismail, W.; Mohamad, N.; Mandeep, J.S. Ground validation of space-borne satellite rainfall products in Malaysia. Adv. Space Res. 2012, 50, 1241–1249. [Google Scholar] [CrossRef]
- Islam, M.N.; Uyeda, H. Use of TRMM in determining the climatic characteristics of rainfall over Bangladesh. Remote Sens. Environ. 2007, 108, 264–276. [Google Scholar] [CrossRef]
- Brown, J.E.M. An analysis of the performance of hybrid infrared and microwave satellite precipitation algorithms over India and adjacent regions. Remote Sens. Environ. 2006, 101, 63–81. [Google Scholar] [CrossRef]
- Dinku, T.; Connor, S.J.; Ceccato, P. Comparison of CMORPH and TRMM-3B42 over Mountainous Regions of Africa and South America. In Satellite Rainfall Applications for Surface Hydrology; Springer: Dordrecht, The Netherlands, 2010; pp. 193–204. ISBN 978-90-481-2914-0. [Google Scholar]
- Villarini, G.; Krajewski, W.F. Evaluation of the research version TMPA three-hourly 0.25° × 0.25° rainfall estimates over Oklahoma. Geophys. Res. Lett. 2007, 34, L05402. [Google Scholar] [CrossRef]
- Habib, E.; Henschke, A.; Adler, R.F. Evaluation of TMPA satellite-based research and real-time rainfall estimates during six tropical-related heavy rainfall events over Louisiana, USA. Atmospheric Res. 2009, 94, 373–388. [Google Scholar] [CrossRef]
- Fleming, K.; Awange, J.; Kuhn, M.; Featherstone, W. Evaluating the TRMM 3B43 monthly precipitation product using gridded rain-gauge data over Australia. Aust. Meteorol. Oceanogr. J. 2011, 61, 171–184. [Google Scholar] [CrossRef]
- Chokngamwong, R.; Chiu, L.S. Thailand daily rainfall and comparison with TRMM products. J. Hydrometeorol. 2008, 9, 256–266. [Google Scholar] [CrossRef]
- Islam, M.N.; Das, S.; Uyeda, H. Calibration of TRMM derived rainfall over Nepal during 1998–2007. Open Atmos. Sci. J. 2010, 4, 12–23. [Google Scholar] [CrossRef]
- Almazroui, M. Calibration of TRMM rainfall climatology over Saudi Arabia during 1998–2009. Atmospheric Res. 2011, 99, 400–414. [Google Scholar] [CrossRef]
- Chen, G.; Sha, W.; Iwasaki, T.; Ueno, K. Diurnal variation of rainfall in the Yangtze River Valley during the spring-summer transition from TRMM measurements. J. Geophys. Res. Atmospheres 2012, 117, D06106. [Google Scholar] [CrossRef]
- Haile, A.T.; Habib, E.; Elsaadani, M.; Rientjes, T. Inter-comparison of satellite rainfall products for representing rainfall diurnal cycle over the Nile basin. Int. J. Appl. Earth Obs. Geoinformation 2013, 21, 230–240. [Google Scholar] [CrossRef]
- Katsanos, D.; Lagouvardos, K.; Kotroni, V.; Huffmann, G.J. Statistical evaluation of MPA-RT high-resolution precipitation estimates from satellite platforms over the central and eastern Mediterranean. Geophys. Res. Lett. 2004, 31, L06116. [Google Scholar] [CrossRef]
- Feidas, H. Validation of satellite rainfall products over Greece. Theor. Appl. Climatol. 2010, 99, 193–216. [Google Scholar] [CrossRef]
- Villarini, G. Evaluation of the Research-Version TMPA Rainfall Estimate at Its Finest Spatial and Temporal Scales over the Rome Metropolitan Area. J. Appl. Meteorol. Climatol. 2010, 49, 2591–2602. [Google Scholar] [CrossRef]
- Zulkafli, Z.; Buytaert, W.; Onof, C.; Manz, B.; Tarnavsky, E.; Lavado, W.; Guyot, J.-L. A Comparative Performance Analysis of TRMM 3B42 (TMPA) Versions 6 and 7 for Hydrological Applications over Andean–Amazon River Basins. J. Hydrometeorol. 2013, 15, 581–592. [Google Scholar] [CrossRef]
- Yong, B.; Chen, B.; Gourley, J.J.; Ren, L.; Hong, Y.; Chen, X.; Wang, W.; Chen, S.; Gong, L. Intercomparison of the Version-6 and Version-7 TMPA precipitation products over high and low latitudes basins with independent gauge networks: Is the newer version better in both real-time and post-real-time analysis for water resources and hydrologic extremes? J. Hydrol. 2014, 508, 77–87. [Google Scholar] [CrossRef]
- Huffman, G.J.; Adler, R.F.; Bolvin, D.T.; Nelkin, E.J. The TRMM Multi-Satellite Precipitation Analysis (TMPA). In Satellite Rainfall Applications for Surface Hydrology; Springer: Dordrecht, The Netherlands, 2010; pp. 3–22. ISBN 978-90-481-2914-0. [Google Scholar]
- Jenner, L. GPM - Global Precipitation Measurement. Available online: http://www.nasa.gov/mission_pages/GPM/main/index.html (accessed on 30 November 2017).
- Huffman, G.J.; Bolvin, D.T.; Braithwaite, D.; Hsu, K.; Joyce, R.; Xie, P.; Yoo, S.-H. Algorithm Theoretical Basis Document (ATBD) Version 5.1, NASA Global Precipitation Measurement (GPM) Integrated Multi-Satellite Retrievals for GPM (IMERG); NASA: Greenbelt, MD, USA, 2014.
- Pinna, M. L’atmosfera e il Clima; Utet: Torino, Italy, 1978. [Google Scholar]
- Pinna, M.; Vittorini, S. Contributo alla determinazione dei regimi pluviometrici in Italia. Mem. Soc. Geogr. Ital. 1985, 34, 147–167. [Google Scholar]
- L’Abate, G.; Costantini, E. Il GIS pedoclimatico d’Italia. In Atti del convegno annuale SISS 2003 “Qualità del suolo, impatto antropico e qualità dei prodotti agricoli, l’agricoltura che produce paesaggio”; Boll. Soc. It. Sc. Suolo: Siena, Italy, 2004; pp. 439–444. [Google Scholar]
- Fratianni, S.; Acquaotta, F. The Climate of Italy. In Landscapes and Landforms of Italy; World Geomorphological Landscapes; Springer: Cham, Germany, 2017; pp. 29–38. ISBN 978-3-319-26192-8. [Google Scholar]
- SCIA. Available online: http://www.scia.isprambiente.it/documentazione.asp# (accessed on 20 November 2017).
- Guzzetti, F.; Reichenbach, P. Towards a definition of topographic divisions for Italy. Geomorphology 1994, 11, 57–74. [Google Scholar] [CrossRef]
- Köppen, W. The climates of the earth. Geogr. Rev. 1933, 23, 433–440. [Google Scholar]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Geiger, R. Köppen-Geiger, Klima der Erde; Klett-Perthes Verlag: Gotha, Germany, 1961. [Google Scholar]
- Brunetti, M.; Maugeri, M.; Nanni, T. Changes in total precipitation, rainy days and extreme events in northeastern Italy. Int. J. Climatol. 2001, 21, 861–871. [Google Scholar] [CrossRef]
- What is... | Civil Protection Department. Available online: http://www.protezionecivile.gov.it/jcms/en/che_cose.wp?request_locale=en&contentId=APP34611 (accessed on 17 October 2017).
- GHCN Monthly | National Centers for Environmental Information (NCEI). Available online: https://www.ncdc.noaa.gov/ghcnm/ (accessed on 14 October 2017).
- Peterson, T.C.; Vose, R.S. An Overview of the Global Historical Climatology Network Temperature Database. Bull. Am. Meteorol. Soc. 1997, 78, 2837–2849. [Google Scholar] [CrossRef]
- Leadbetter, M.R. On a basis for ‘Peaks over Threshold’ modeling. Stat. Probab. Lett. 1991, 12, 357–362. [Google Scholar] [CrossRef]
- Venables, W.N.; Ripley, B.D. Tree-based Methods. In Modern Applied Statistics with S-PLUS; Statistics and Computing; Springer: New York, NY, USA, 1999; pp. 303–327. ISBN 978-1-4757-3123-1. [Google Scholar]
- Parzen, E. On Estimation of a Probability Density Function and Mode. Ann. Math. Stat. 1962, 33, 1065–1076. [Google Scholar] [CrossRef]
- Sekhon, J.S. Multivariate and Propensity Score Matching Software with Automated Balance Optimization: The Matching Package for R; Social Science Research Network: Rochester, NY, USA, 2008. [Google Scholar]
- Smirnov, N.V. Estimate of deviation between empirical distribution functions in two independent samples. Bull. Mosc. Univ. 1939, 2, 3–16. [Google Scholar]
- Kolmogorov, A. Grundbegriffe der Wahrscheinlichkeitsrechnung; Julius Springer: Berlin, Germany, 1956. [Google Scholar]
- Conover, W. One-Sample “Kolmogorov” Test/Two-Sample “Smirnov” Test; John Wiley & Sons: New York, NY, USA, 1971; pp. 295–301. [Google Scholar]
- Wilk, M.B.; Gnanadesikan, R. Probability plotting methods for the analysis for the analysis of data. Biometrika 1968, 55, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Fisher, R.A. On the Mathematical Foundations of Theoretical Statistics. Philos. Trans. R. Soc. Lond. Ser. Contain. Pap. Math. Phys. Character 1922, 222, 309–368. [Google Scholar] [CrossRef]
- Fisher, R.A. The Goodness of Fit of Regression Formulae, and the Distribution of Regression Coefficients. J. R. Stat. Soc. 1922, 85, 597–612. [Google Scholar] [CrossRef]
- White, E.P.; Enquist, B.J.; Green, J.L. On Estimating the Exponent of Power-Law Frequency Distributions. Ecology 2008, 89, 905–912. [Google Scholar] [CrossRef] [PubMed]
- Melillo, M.; Brunetti, M.T.; Peruccacci, S.; Gariano, S.L.; Guzzetti, F. An algorithm for the objective reconstruction of rainfall events responsible for landslides. Landslides 2015, 12, 311–320. [Google Scholar] [CrossRef]
- Rossi, M.; Kirschbaum, D.; Luciani, S.; Mondini, A.C.; Guzzetti, F. TRMM satellite rainfall estimates for landslide early warning in Italy: preliminary results. Proc. of SPIE 2012, 8523, 85230D–1. [Google Scholar]
- Becker, R.A.; Chambers, J.M.; Wilks, A.R. The New S Language; Wadsworth & Brooks: Pacific Grove, CA, USA, 1988. [Google Scholar]
- Geisser, S. Predictive Inference; Chapman and Hall: New York, NY, USA, 1993. [Google Scholar]
- PostgreSQL: The World’s Most Advanced Open Source Database. Available online: https://www.postgresql.org/ (accessed on 14 October 2017).
- PostGIS—Spatial and Geographic Objects for PostgreSQL. Available online: http://postgis.net/ (accessed on 14 October 2017).
- Open Source GIS; Neteler, M.; Mitasova, H. (Eds.) Springer: Boston, MA, USA, 2008; ISBN 978-0-387-35767-6. [Google Scholar]
- GRASS GIS - Home. Available online: https://grass.osgeo.org/ (accessed on 14 October 2017).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2014. [Google Scholar]
Köppen-Geiger Class | Class Description | Italian Regions |
---|---|---|
CS | Temperate subtropical | Western coastal Liguria, and in the Tyrrhenian and the Ionian parts |
Csa | Warm temperate | Along the Tyrrhenian coast from Liguria to Calabria, along the southern end of the Adriatic coast, and along the Ionian zone |
Csb-Cfb | Temperate sub-littoral | Hilly areas of Tuscany, foothills of the Umbria-Marche Apennines, and southern Apennines |
Cfsa | Temperate sub-continental | Parts of the Veneto and Friuli plain, northern Adriatic coastline and internal peninsular part |
Cfa | Temperate continental | Po valley and Veneto region |
Cfc | Cool temperate | Alpine foothills and mostly of the Apennines axial part, sometimes also with sub-continental characteristics |
Dw | Temperate cold | Parts of the higher elevation areas in the Alps and the Apennines |
H | The cold altitude | Alpine areas above 2000 m |
EF | Snow levels | Area of the Alps above 3500 m with perpetual snow |
Subdivision | Parameter | Min Value | Max Value | Lowland (%) | Upland (%) | Highland (%) |
---|---|---|---|---|---|---|
Tyrr Central Tyrrhenian coast | Elevation (m a.s.l.) | s.l. | 1738 | 55.4 | 40.0 | 4.6 |
Slope (°) | 0 | 41 | ||||
Elevation relief ratio | 0 | 0.98 | ||||
Slope reversal (1/km2) | 0.14 | 12.07 | ||||
Curvature (1/m) | −1.82 | 0.86 | ||||
Sici Southern/Western Sicily | Elevation (m a.s.l.) | s.l. | 3340 | 49.3 | 45.6 | 5.1 |
Slope (°) | 0 | 43 | ||||
Elevation relief ratio | 0.01 | 0.91 | ||||
Slope reversal (1/km2) | 0.14 | 10.07 | ||||
Curvature (1/m) | −2.57 | 1.65 | ||||
Sard Sardinia | Elevation (m a.s.l.) | s.l. | 1786 | 37.7 | 46.1 | 16.2 |
Slope (°) | 0 | 48 | ||||
Elevation relief ratio | 0.01 | 0.93 | ||||
Slope reversal (1/km2) | 0.14 | 9.43 | ||||
Curvature (1/m) | −5.25 | 2.71 | ||||
Popl Po plain and Alpine foothills | Elevation (m a.s.l.) | s.l. | 842 | 92.9 | 7.1 | 0.0 |
Slope (°) | 0 | 38 | ||||
Elevation relief ratio | 0 | 0.99 | ||||
Slope reversal (1/km2) | 0.14 | 9.14 | ||||
Curvature (1/m) | −1.39 | 4.02 | ||||
Lang Liguria/Piedmont hills | Elevation (m a.s.l.) | s.l. | 1287 | 31.3 | 61.9 | 6.8 |
Slope (°) | 0 | 36 | ||||
Elevation relief ratio | 0.06 | 0.88 | ||||
Slope reversal (1/km2) | 0.14 | 10.79 | ||||
Curvature (1/m) | −0.79 | 0.71 | ||||
ApeU Northern Apennines | Elevation (m a.s.l.) | s.l. | 2121 | 3.4 | 60.0 | 36.6 |
Slope (°) | 0 | 49 | ||||
Elevation relief ratio | 0.01 | 0.86 | ||||
Slope reversal (1/km2) | 0.14 | 10.79 | ||||
Curvature (1/m) | −3.84 | 1.23 | ||||
ApeL Southern Apennines | Elevation (m a.s.l.) | s.l. | 2267 | 8.7 | 55.4 | 35.9 |
Slope (°) | 0 | 48 | ||||
Elevation relief ratio | 0.03 | 0.98 | ||||
Slope reversal (1/km2) | 0.14 | 9.64 | ||||
Curvature (1/m) | −1.94 | 1.33 | ||||
ApeC Central Apennines | Elevation (m a.s.l.) | 27 | 2914 | 1.5 | 63.0 | 35.5 |
Slope (°) | 0 | 57 | ||||
Elevation relief ratio | 0.02 | 0.86 | ||||
Slope reversal (1/km2) | 0.14 | 10.86 | ||||
Curvature (1/m) | −5.59 | 3.46 | ||||
Alps Northern alpine area | Elevation (m a.s.l.) | s.l. | 4810 | 13.8 | 32.0 | 54.1 |
Slope (°) | 0 | 72 | ||||
Elevation relief ratio | 0.02 | 0.96 | ||||
Slope reversal (1/km2) | 0.14 | 10.28 | ||||
Curvature (1/m) | −6.65 | 5.66 | ||||
Adri Central Southern Adriatic coast | Elevation (m a.s.l.) | s.l. | 1485 | 44.0 | 55.7 | 0.3 |
Slope (°) | 0 | 35 | ||||
Elevation relief ratio | 0 | 0.97 | ||||
Slope reversal (1/km2) | 0.14 | 11.43 | ||||
Curvature (1/m) | −0.64 | 0.68 |
Condition | Quality Index | Malfunctioning Problem | Rain Gauges # (%) |
---|---|---|---|
No rainfall values in the period | 1 | Rain gauge not acquired/used | 287 (15%) |
2 | Malfunctioning rain gauge | 2 (0%) | |
3 | Rain gauge with discontinuous values | 148 (8%) | |
4 | Rain gauge properly working | 1488 (76%) | |
5 | Rain gauge with excessive values | 25 (1%) |
Code | Product | Version | Source | Reference |
---|---|---|---|---|
TMPA-V6 | Re-analysis product TMPA 3B42 | 6 | http://trmm.gsfc.nasa.gov/3b42.html | [18] |
TMPA-RT-V6 | Real-time product TMPA 3B42RT | 6 | ftp://trmmopen.gsfc.nasa.gov/pub/merged/V6Documents/3B4XRT_doc.pdf | [18] |
TMPA-V7 | Re-analysis product TMPA 3B42 | 7 | http://disc.sci.gsfc.nasa.gov/gesNews/trmm_v7_multisat_precip | [41] |
TMPA-V7-RT | Real-time product TMPA 3B42RT | 7 | ftp://trmmopen.gsfc.nasa.gov/pub/merged/V6Documents/3B4XRT_doc.pdf | [41] |
Region | TMPA-V6 | TMPA-V6-RT | TMPA-V7 | TMPA-V7-RT | ||||
---|---|---|---|---|---|---|---|---|
D+ | p-Value | D+ | p-Value | D+ | p-Value | D+ | p-Value | |
Adri | 0.145 | 0 | 0.060 | 0 | 0.202 | 0 | 0.167 | 0 |
Alps | 0.070 | 0 | 0.047 | 0 | 0.133 | 0 | 0.107 | 0 |
ApeC | 0.092 | 0 | 0.051 | 0 | 0.128 | 0 | 0.116 | 0 |
ApeL | 0.103 | 0 | 0.040 | 0 | 0.136 | 0 | 0.110 | 0 |
ApeU | 0.112 | 0 | 0.053 | 0 | 0.140 | 0 | 0.123 | 0 |
Lang | 0.117 | 0 | 0.054 | 0 | 0.183 | 0 | 0.162 | 0 |
Popl | 0.121 | 0 | 0.058 | 0 | 0.172 | 0 | 0.146 | 0 |
Sard | 0.150 | 0 | 0.077 | 0 | 0.208 | 0 | 0.172 | 0 |
Sici | 0.133 | 0 | 0.079 | 0 | 0.249 | 0 | 0.212 | 0 |
Tyrr | 0.136 | 0 | 0.068 | 0 | 0.170 | 0 | 0.153 | 0 |
All | 0.110 | 0 | 0.057 | 0 | 0.155 | 0 | 0.134 | 0 |
Region | VRF | TMPA-V6 | TMPA-V6-RT | TMPA-V7 | TMPA-V7-RT | |||||
---|---|---|---|---|---|---|---|---|---|---|
D | p-Value | D | p-Value | D | p-Value | D | p-Value | D | p-Value | |
Adri | 0.163 | 0 | 0.090 | 0 | 0.100 | 0 | 0.036 | 0 | 0.043 | 0 |
Alps | 0.196 | 0 | 0.066 | 0 | 0.077 | 0 | 0.045 | 0 | 0.037 | 0 |
ApeC | 0.08 | 0 | 0.081 | 0 | 0.063 | 0 | 0.049 | 0 | 0.039 | 0 |
ApeL | 0.183 | 0 | 0.103 | 0 | 0.182 | 0 | 0.042 | 0 | 0.037 | 0 |
ApeU | 0.171 | 0 | 0.079 | 0 | 0.087 | 0 | 0.041 | 0 | 0.036 | 0 |
Lang | 0.224 | 0 | 0.098 | 0 | 0.084 | 0 | 0.048 | 0 | 0.048 | 0 |
Popl | 0.187 | 0 | 0.059 | 0 | 0.087 | 0 | 0.042 | 0 | 0.035 | 0 |
Sard | 0.179 | 0 | 0.080 | 0 | 0.069 | 0 | 0.044 | 0 | 0.046 | 0 |
Sici | 0.255 | 0 | 0.187 | 0 | 0.253 | 0 | 0.043 | 0.01 | 0.035 | 0.1 |
Tyrr | 0.165 | 0 | 0.069 | 0 | 0.087 | 0 | 0.044 | 0 | 0.044 | 0 |
All | 0.175 | 0 | 0.064 | 0 | 0.091 | 0 | 0.039 | 0 | 0.037 | 0 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rossi, M.; Kirschbaum, D.; Valigi, D.; Mondini, A.C.; Guzzetti, F. Comparison of Satellite Rainfall Estimates and Rain Gauge Measurements in Italy, and Impact on Landslide Modeling. Climate 2017, 5, 90. https://doi.org/10.3390/cli5040090
Rossi M, Kirschbaum D, Valigi D, Mondini AC, Guzzetti F. Comparison of Satellite Rainfall Estimates and Rain Gauge Measurements in Italy, and Impact on Landslide Modeling. Climate. 2017; 5(4):90. https://doi.org/10.3390/cli5040090
Chicago/Turabian StyleRossi, Mauro, Dalia Kirschbaum, Daniela Valigi, Alessandro Cesare Mondini, and Fausto Guzzetti. 2017. "Comparison of Satellite Rainfall Estimates and Rain Gauge Measurements in Italy, and Impact on Landslide Modeling" Climate 5, no. 4: 90. https://doi.org/10.3390/cli5040090
APA StyleRossi, M., Kirschbaum, D., Valigi, D., Mondini, A. C., & Guzzetti, F. (2017). Comparison of Satellite Rainfall Estimates and Rain Gauge Measurements in Italy, and Impact on Landslide Modeling. Climate, 5(4), 90. https://doi.org/10.3390/cli5040090