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Abstract: Despite the interest in detecting the extremes of climate in the West African Sahel, few
studies have been specifically conducted on the Republic of Niger. This research focuses on past,
present, and future precipitation trends for the city of Niamey through the combined assessment of
WMO precipitation indices using RClimDex and the Standardized Precipitation Index. Past daily
precipitation data were derived from a 60-year reconstructed meteorological dataset for the Niamey
airport station for the period of 1950–2009 and validated through comparison with an observed
time series at Niamey airport (1980–2012). Precipitation analysis confirms the literature’s findings,
in particular, a decreasing trend in total precipitation over the period of 1950–2009, and a positive
trend for data that spans over the period of 1980–2009, suggesting a precipitation recovery after
the dry epoch (1968–1985), even if the deficit with the wettest years in the period of 1950–1968 has
not been made up. Furthermore, WATCH-Forcing-Data-ERA-Interim projections, elaborated under
RCP 4.5 and RCP 8.5 socio-economic conditions, show that precipitation will increase in the future.
Therefore, the Nigerien population will benefit from increased rainfall, but will also have to cope
with the exacerbation of both flood and drought risks due to a great interannual variability that can
positively or negatively influence water availability.
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1. Introduction

Since 1950, the West African Sahel has experienced three cycles: a wet epoch, a dry epoch and,
finally, a moderate recovery [1–3]. The dry epoch (1968–1985), coincides with a period of severe
drought, remembered locally as the Great Drought. In this period, the rainfall average annual was
200 mm lower than in the previous 20 years [4]. After the drought, the rainfall trend reversed again.
In fact, since 1990, the rainfall increase can be considered as a basis for wetter conditions in the
West Sahel [5], even if it was not possible to make up the deficit with the wettest years in the period
of 1950–1969 [4,6]. Indeed, a decrease in mean annual rainfall was observed [7–9]. However, the
1990s witnessed a change in rainfall pattern compared to the period prior to the drought with an
increase of inter-annual variability [10]. The irregular inter-annual pattern creates conditions for
multi-annual anomalies and changes in rainfall magnitude; together, these are a great influence and
major contribution to the two single months of the wet season (July and August) [11]. The rainfall’s
anomaly, in particular, is observed as variability in the frequency of extremely heavy rainfall events
and recognised as the factor that relates to the occurrence of dry or wet seasons [7]. Thus, the higher the
number of extreme events in a year, the greater the total precipitation [2–13]. Reasonable expectations
suggest a return to wetter conditions as result of more frequent high-intensity rainfalls [14–16] and a
higher precipitation intensity. Changes in the occurrence and intensity of extreme precipitation events
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are likely to worsen other climate change impacts on local societies. In this context, despite the interest
in detection of climate extremes in the West African Sahel, few studies have been conducted in the
Republic of Niger. Ozer et al. [17] by analysing rainfall trends across four stations in the East Niger
(Zinder, Magaria, Maine-Soroa and Goure) found a decreasing trend in total precipitation over the
period 1940–2007, as well as a decreasing trend in extreme precipitations (here referred to as annual
total precipitation when precipitation exceeds the 99th percentile; see climate index R99p). However,
the existence of an east-west gradient is probable, as reported by studies which found that a higher
proportion of wet days are observed for the East Niger region and a higher proportion of dry days
in the West Niger region, while computing the SPI index for the Republic of Niger over the period
1993–2006 [18]. A decrease in total precipitation over Niger was also found by Barry et al. [19], but in
the recent period, the trend is increasing. In fact, there is general evidence over the West Sahel of an
increased number of heavy and very heavy events (climate indices R10 and R20, respectively, count the
number of days with precipitation above 10 and 20 mm), confirming the slight recovery of wetness [20].

Focusing on the Niamey region, the deepest climatic analyses were developed by Lebel et al. [21],
Le Barbé and Lebel [7], Shinoda et al. [22]. In [21], rainfall and climatic conditions of Niamey were
studied during the years of the Hydrologic-Atmospheric Pilot Experiment in the Sahel, called HAPEX
(1990–1993), whereas in [7] a deeper analysis of Niamey rainfall patterns was developed comparing
the 40-years series (1950–1990 for the HAPEX-Sahel experiment) with a longer period from 1905 to
1989. In [22], a comparative study of the diurnal variations of three-hourly rainfall was conducted
for Niamey in the West African Sahel among four periods of extreme precipitation: the wet periods
of the 1950s and late 1980s to early 1990s, versus the drought periods of the early 1970s and 1980s.
Finally, it is important to remember that investigating climate variability and climate change would
firstly support the decision process in choice of adaptive strategies, in particular flood and drought risk
prevention [23,24], since both hazards will affect the Sahel region, as well as assist long-term planning
in the agricultural sector with important impacts on local food security and food sovereignty.

Compared to previous studies (Table 1), this study focuses on total precipitation trends and
precipitation extremes over the period of 1950–2009. Throughout, the combined assessment of WMO
(World Meteorological Organization) precipitation indices [25,26], using RClimdex Version 1.1 (a software
for indices calculation running on R), and the Standardized Precipitation Index (SPI) [27–29] on the specific
case of Niamey, updating analyses previously made in the 90s. Moreover, it examines future projections
in order to recognize future precipitation trends, a novelty in the climatic study of Niger and Niamey.

Table 1. Major findings attributable to the study area.

Year of
Publication Author Major Findings Study Area Study Period

1997 [21] Lebel et al. Study of rainfall and climatic conditions Niamey 1990–1993

1997 [7] Le Barbè and Lebel Rainfall pattern analysis Niamey 1950–1990

1999 [22] Shinoda et al. Comparative study of the diurnal variations
of 3-hourly rainfall Niamey 1950s–1990s

2003 [8] L’Hote et al. Decrease in mean annual rainfall Sahel 1970s–1990s

2005 [5] Nicholson Rainfall increase, wetter condition in
West Sahel West Sahel 1998–2003

2009 [17] Ozer et al. Decreasing trend in total precipitation and
extreme precipitations Republic of Niger 1940–2007

2009 [18] Ali and Lebel
Probable existence of an east-west gradient

(higher proportion of wet days in East Niger
over the period)

Republic of Niger 1993–2006

2018 [19] Barry et al. Decrease in total precipitation West Africa 1960–2010

2018 [20] Oguntunde et al. Increased number of heavy and very heavy
events and future projections until 2100 Niger River Basin 1986–2005

Daily precipitation was derived from a 60-year reconstructed meteorological dataset for Niamey
airport station for the period of 1950–2009 [30,31] and validated through comparison with an observed
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time series at Niamey airport (1980–2012). The reconstructed dataset for Niamey has previously been
used by Barbier et al. [32]; the study of which compared BEST (Berkeley Earth Surface Temperature)
and three re-analyses to two surface synoptic observation station series. In this case, the comparison’s
purpose relies only on the validation of BEST, whereas this study aims to use the simulated dataset in
order to analyse it and compare it to WATCH-Forcing-Data-ERA-Interim data (WFDEI). Furthermore,
the WFDEI was also used to analyse future precipitation projection, adding a novelty in the climatic
researches in Niamey urban area and Sahel region.

Due to scarcity of data and analysis in the Region of Niamey, the study takes advantage of three
precipitation datasets in order to calculate both indices on past data—climate indices and SPI—and
future projections. Thus, existing methodology was applied in a region not commonly referenced in
West African studies.

The work is structured as follows: Section 2 presents the materials, in particular the study area
and the climatological datasets used in the research, as well as the methods, namely the analysis
through the use of WMO indices and the Standardized Precipitation Index. Section 3 sets out results
and the discussion of the results in addition to the analysis of future precipitation projections. Section 4
contains the conclusions.

2. Materials and Method

2.1. Study Area

For this study, climate trend analysis was conducted in the West African Sahel, in particular in the
Republic of Niger, on which few previous studies have focused due to scarcity and unreliability of data.
More specifically, this study is valid for the Niamey airport climatological station (LAT 13.4833, LONG
2.1667, ELEV 222—Figure 1). The Republic of Niger is located in the tropical zone: in the north, the
climate type is Saharan—a warm desert climate according to Köppen’s classification [33]—as the desert
spans about two-thirds of the country’s area, while in the south, a warm semi-arid climate creates a
prevalence for Sahelian savannah. The latter zone is situated between isohyets 200 and 600 mm in
the Inter Tropical Convergence Zone (ITCZ), resulting in the division of the climatic year into two
seasons—wet and dry—where the dry season prevails for almost eight months.
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2.2. Climatological Dataset

The analysis conducted in this study is based on three different precipitation time series. The first
is an observed precipitation dataset (1980–2012) measured at the Niamey airport station, made available
by the Direction de la Météorologie Nationale (DMN) of the Republic of Niger. The second dataset
is a simulated precipitation series (1950–2009) for Niamey Airport (NAD). Simulated precipitation
data are obtained from a 60-year reconstructed high-resolution meteorological dataset, which includes
meteorological variables (NAD-M), including precipitation, as well as process-modelled surface fluxes
(NAD-S). The dataset is available through the African Monsoon Multidisciplinary Analysis—Coupling
the Tropical Atmosphere and the Hydrological Cycle (AMMA-CATCH) website [30,31], which from
now on, will be denoted as the NAD dataset (Niamey Airport-derived dataset).

The third dataset used for this study is the WFDEI, produced in the context of the Integrated
Project Water and Global Change (WATCH) using WATCH Forcing Data (WFD) methodology applied
to ERA-Interim data, which is a meteorological forcing dataset of eight meteorological variables at
3-hourly time steps covering the period of 1979–2012 [34], including rainfall measurements.

2.3. Methods

In order to establish the presence of trend patterns in precipitation series belonging to the Niamey
airport station, the authors decided to conduct the assessment with the use of the World Meteorological
Organization’s indices, calculated using the RClimdex software, and the Standardized Precipitation
Index (SPI).

2.3.1. RClimdex

The RClimDex [35] provides a friendly graphical user interface to compute 27 core indices
(11 for precipitation and 16 for temperature) recommended by the Commission for Climatology (CCl),
World Climate Research Programme (WCRP) of the Climate Variability and Predictability Component
(CLIVAR) project and Expert Team for Climate Change Detection and Indices (ETCCDI). This research
refers only to precipitation indices (Table 2).

Table 2. RClimdex precipitation indices.

ID Indicator Name Unit

RX1day Max. 1-day precipitation amount. Monthly maximum 1-day precipitation. mm

Rx5day Max. 5-day precipitation amount. Monthly maximum consecutive 5-day precipitation. mm

SDII Simple daily intensity index. Annual total precipitation divided by the number of wet
days (defined as PRCP ≥ 1.0 mm) in the year. mm/day

R10 Number of heavy precipitation days. Annual count of days when PRCP ≥ 10 mm. Days

R20 Number of very heavy precipitation day. Annual count of days when PRCP ≥ 20 mm. Days

Rnn Number of days above nn (50, 100, 150) mm. Annual count of days when PRCP ≥ nn
mm, nn is user defined threshold. Days

CDD Consecutive dry days. Maximum number of consecutive days with RR < 1 mm. Days

CWD Consecutive wet days. Maximum number of consecutive days with RR ≥ 1 mm. Days

R95p Very wet days. Annual total PRCP when RR > 95th percentile. mm

R99p Extremely wet days. Annual total PRCP when RR > 99th percentile. mm

PRCPTOT Annual total wet-day precipitation. Annual total PRCP in wet days (RR ≥ 1 mm). mm

2.3.2. Standardized Precipitation Index

The SPI [27–29] is widely used to detect precipitation deficit—drought—or precipitation
excess—wetter periods. The SPI values (Table 3) can be interpreted as the number of standard
deviations by which the observed anomaly deviates from the long-term mean. In this sense, the SPI
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can be computed for different periods from 1 to 36 months, using monthly input data. This study
used 6-month and 12-month SPI indexes, since the area of interest focuses on seasonal and long-term
changes in precipitation patterns. In fact, a 6-month SPI can be very helpful in showing precipitation
over distinct seasons. On the contrary, with regard to long-term precipitation patterns, a 12-month
SPI is a comparison of the precipitation for 12 consecutive months with that recorded in the same 12
consecutive month period. Because this timescale is the cumulative result of a shorter period that may
be above or below normal, the longer SPI tends to gravitate toward zero, unless a distinctive wet or
dry trend is taking place [27]. For the 12-month SPI, the month of January was used as the reference
month in order to consider the trend that occurred in the previous calendar year.

Table 3. The SPI value is the number of standard deviations by which the observed anomaly deviates
from the long-term mean. SPI values from −2.0 and less to −1.0 identify dry periods, from −0.99 to
0.99 identify near normal periods and from 1.0 to 2.0+ identify wet periods.

SPI Values
2.0+ Extremely wet

1.5 to 1.99 Very wet
1.0 to 1.49 Moderately wet

−0.99 to 0.99 Near normal
−1.0 to −1.49 Moderately dry
−1.5 to −1.99 Very dry
−2.0 and less Extremely dry

3. Results and Discussion

3.1. Choice of the NAD-M Ensemble

The DMN dataset is used for assessing the validity of the NAD dataset. In this regard, since the
standard requirement for detecting changes of climate is a homogeneous period of at least 30 years
of records [36], the climatological station located at Niamey Airport has been selected as suitable for
the purposes of this research, as well as for the correspondence of the station’s location. The choice of
using the NAD dataset is based on its temporal extent (1950–2009), which is longer than the observed
period (1980–2012). The temporal mismatch problem at the end of the time series is addressed by
cutting the DMN dataset to the year 2009. Thus, assuming that the NAD dataset is a continuous and
consistent dataset [30], the first issue to be addressed is the choice of one of the 10 ensemble NAD-M
series based on precipitation characteristics. The assessment is based on the use of forecast verification
measures, which in this application can be better termed as diagnostic verification [37]. The diagnostic
verification’s method of joint distribution for continuous atmospheric variables, as precipitation data,
suggests that association and accuracy measures be detected such as, respectively, the correlation
coefficient (CORRELATION) and the Mean Square Error (MSE) plus the Root Mean Squared Error
(RMSE) in order to determine the quality of simulated data, as reported by Wilks [38]. In addition to
those diagnostic measures, the study takes into account a correspondence measure that is the identity
measure (IDENTITY), which counts how many times an identical (TRUE) or non-identical (FALSE)
correspondence of values between the DMN dataset and the NAD dataset occur. These operations are
repeated for each of the 10 NAD ensemble.

The diagnostic verification method has been applied to the period of 1980–2009 that is common to
both datasets.

Based on those diagnostic verification measures (Table 4), each of the 10 ensemble series has
a correlation coefficient greater than 60% and an identity measure of about 85%. In absolute terms,
the CORRELATION and the IDENTITY plus the accuracy measures (MSE and RMSE) lead to the
conclusion that the NAD-M_9 ensemble contains the precipitation data series that fits better with the
DMN dataset.
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Table 4. Diagnostic verification for precipitation data for each NAD-M ensemble: correlation, MSE,
RMSE and identity. The best ranked ensemble is highlighted in grey.

Correlation MSE RMSE Identity

Rank Rank Rank True False Rank

NAD-M_1 0.6631 7 25.1712 7 5.0171 7 9339 1619 3
NAD-M_2 0.6771 4 23.9598 4 4.8949 4 9340 1618 2
NAD-M_3 0.6411 9 26.8923 9 5.1858 9 9315 1643 7
NAD-M_4 0.6299 10 28.7196 10 5.3591 10 9313 1645 9
NAD-M_5 0.6828 2 23.4805 3 4.8457 3 9309 1649 10
NAD-M_6 0.6717 6 24.7032 6 4.9702 6 9324 1634 5
NAD-M_7 0.6540 8 25.9240 8 5.0916 8 9314 1644 8
NAD-M_8 0.6823 3 23.3331 2 4.8304 2 9320 1638 6
NAD-M_9 0.6844 1 23.3269 1 4.8298 1 9335 1623 4

NAD-M_10 0.6768 5 24.2649 5 4.9259 5 9348 1610 1

Comparison of the three datasets (Figure 2) for the common period 1980–2009, in particular their
8-period Moving Average (MA)—which corresponds to eight years—shows that they are consistent
with each other, especially the DMN and NAD-M_9 datasets. This is corroborated by the descriptive
statistics contained in Table 5, except for the correlation coefficient. In fact, the correlation coefficients
are influenced by the different deviation values in 2004. Despite that, the other statistics are in favor of
the NAD-M_9 dataset.

According to these results, computations and analyses of past precipitation patterns will be
conducted on NAD-M_9 dataset considering the entire dataset from 1950 to 2009. However, WFDEI
will be used for considerations on future projections, which will be evaluated using the annual
estimate of precipitation simulated over Niamey from an ensemble of 20 CMIP5 (Coupled Model
Intercomparison Project Phase 5) models’ projections under historical conditions, with moderate
(RCP4.5) and rising pathways (RCP8.5) processed by The Climate Data Factory [39].Climate 2018, 6, x FOR PEER REVIEW  7 of 16 

 

 
Figure 2. Cumulative annual time plot for DMN and NAD-M_9 datasets and WATCH-Forcing-Data-
ERA-Interim (solid line) and 8-period (8 year) Moving Average (dashed line). 

Table 5. Descriptive statistics of DMN, NAD-M_9 datasets and WATCH-Forcing-Data-ERA-Interim. 
 DMN NAD-M_9 WFDEI 

MEAN VALUE [mm] 513.8433 515.8333 458.2303 
MAX VALUE [mm] 816.6 855.9 720.4756 
MIN VALUE [mm] 293.8 292 287.6057 

25th PERCENTILE [mm] 425.775 401.55 386.1046 
75th PERCENTILE [mm] 606.125 611.85 516.0072 
50th PERCENTILE [mm] 502.8 504.8 448.3169 

STANDARD DEVIATION [mm] 116.391 126.0978 94.37051 
CORRELATION (with DMN dataset)  0.905741 0.914621 

3.2. RClimdex 

In order to assess the presence of precipitation trends, two cases were analysed: case A from 
1950 to 2009, and case B from 1980 to 2009. It is well established that after the Great Drought in the 
1980s, the Sahel region witnessed a partial recovery in precipitation, but not enough to fill the gap 
with the period prior to the drought. It is self-evident that the precipitation trend from 1950 will be 
negative. Splitting into two cases, it is possible to have another point of view on the last three decades, 
getting the chance to glimpse future trends based on case B tendency. Actually, Table 6 shows a 
contrasting trend between case A and B. While for case A indices, trends are all negative, for case B, 
all trends are positive; whereas CDD and CWD are the only indices with the same sign between case 
A and case B. Moreover, CDD and CWD have opposite signs, which is coherent since they measure 
opposite phenomena. Therefore, it is reasonable to affirm that the dry season is becoming longer, 
while the wet season is shortening (case A: CDD and CWD statistically significant at 5%). The first 
thing to remark is the annual total precipitation (PTOT) in wet days, which is pronouncedly 
increasing for case B (slope estimate 4.316), but, at the same time, pronouncedly decreasing for case 
A (slope estimate −2.29. Once again, this is coherent with literature’s finding. Since the 1950s, total 
precipitation has decreased, while from the 1980s it is increasing at a higher rate than the rate at which 
it decreased, which means that the gap will probably be closed shortly. In terms of precipitation 
intensity, represented by the SDII index, there is almost constancy in the 1950–2009s trend, while it is 
increasing for the period 1980–2009. In this context, it is important to look at RX1day and RX5days, 
which represent the 1-day and 5-day precipitation quantity, rather than at R10, R20, R30, R40, R50. 
In fact, the former has a greater magnitude than the latter and they are proportionally responsible for 
precipitation intensity. For the same reasons, it is better to look at R95p and R99p indices to identify 
changes in precipitation patterns; in particular, for the period 1980–2009 there seems to be a net 
increase of very wet and extremely wet precipitation days. Besides that, looking at the number of 

200
300
400
500
600
700
800
900

19
80

19
81

19
82

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

Pr
ec

ip
ita

tio
n 

(m
m

)

DMN - NAD-M_9 - WFDEI Time plot 

DMN NAD-M_9

WFDEI OBS - MA line (8-period)

NAD-M_9 - MA line (8-period) WFDEI - MA line (8-period)

Figure 2. Cumulative annual time plot for DMN and NAD-M_9 datasets and WATCH-Forcing-Data
-ERA-Interim (solid line) and 8-period (8 year) Moving Average (dashed line).



Climate 2018, 6, 73 7 of 16

Table 5. Descriptive statistics of DMN, NAD-M_9 datasets and WATCH-Forcing-Data-ERA-Interim.

DMN NAD-M_9 WFDEI

MEAN VALUE [mm] 513.8433 515.8333 458.2303
MAX VALUE [mm] 816.6 855.9 720.4756
MIN VALUE [mm] 293.8 292 287.6057

25th PERCENTILE [mm] 425.775 401.55 386.1046
75th PERCENTILE [mm] 606.125 611.85 516.0072
50th PERCENTILE [mm] 502.8 504.8 448.3169

STANDARD DEVIATION [mm] 116.391 126.0978 94.37051
CORRELATION (with DMN dataset) 0.905741 0.914621

3.2. RClimdex

In order to assess the presence of precipitation trends, two cases were analysed: case A from 1950
to 2009, and case B from 1980 to 2009. It is well established that after the Great Drought in the 1980s,
the Sahel region witnessed a partial recovery in precipitation, but not enough to fill the gap with the
period prior to the drought. It is self-evident that the precipitation trend from 1950 will be negative.
Splitting into two cases, it is possible to have another point of view on the last three decades, getting
the chance to glimpse future trends based on case B tendency. Actually, Table 6 shows a contrasting
trend between case A and B. While for case A indices, trends are all negative, for case B, all trends
are positive; whereas CDD and CWD are the only indices with the same sign between case A and
case B. Moreover, CDD and CWD have opposite signs, which is coherent since they measure opposite
phenomena. Therefore, it is reasonable to affirm that the dry season is becoming longer, while the wet
season is shortening (case A: CDD and CWD statistically significant at 5%). The first thing to remark
is the annual total precipitation (PTOT) in wet days, which is pronouncedly increasing for case B
(slope estimate 4.316), but, at the same time, pronouncedly decreasing for case A (slope estimate −2.29.
Once again, this is coherent with literature’s finding. Since the 1950s, total precipitation has decreased,
while from the 1980s it is increasing at a higher rate than the rate at which it decreased, which means
that the gap will probably be closed shortly. In terms of precipitation intensity, represented by the
SDII index, there is almost constancy in the 1950–2009s trend, while it is increasing for the period
1980–2009. In this context, it is important to look at RX1day and RX5days, which represent the 1-day
and 5-day precipitation quantity, rather than at R10, R20, R30, R40, R50. In fact, the former has a
greater magnitude than the latter and they are proportionally responsible for precipitation intensity.
For the same reasons, it is better to look at R95p and R99p indices to identify changes in precipitation
patterns; in particular, for the period 1980–2009 there seems to be a net increase of very wet and
extremely wet precipitation days. Besides that, looking at the number of heavy precipitation days,
when precipitation is above different thresholds (10–20–30–40–50 mm), only heavy precipitation above
20 mm (slope estimate 0.127) generates an effect on the increase of annual total precipitation.

3.3. SPI

The SPI has been computed for two different periods—6 and 12 months—based on the NAD
dataset from 1950 to 2009. Shorter periods would not make sense, since Nigerien climate is seasonal
and precipitation is concentrated in a period of 3–4 months. Thus, as said, a 6- and 12-month SPI
has a better fit to the analysed time series as they reveal precipitation over distinct seasons. For this
purpose, the average monthly rainfall has been analysed, both for observed and simulated data, in
order to assess the precipitation seasonality (Figure 3). Based on Figure 3, two distinct periods were
considered from May to October (corresponds more or less to the wet season) and from November to
April (corresponds more or less to the dry season), and with respect to that, the last months considered
for the 6-month SPI are October and April.
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Figure 3. Precipitation standard year. DMN dataset: observed precipitation dataset (1980–2012)
measured at Niamey airport station made available by the Direction de la Météorologie Nationale
(DMN). NAD dataset (Niamey Airport-derived dataset): simulated precipitation series (1950–2009) for
Niamey Airport.

In order to help the understanding of precipitation patterns, the Least Squares regression and the
Moving Average were used. The Least Squares regression identifies a downward trend, but this type
of regression doesn’t represent the best fit for the data (R-squared = 0.0193). In fact, looking at Figure 4,
representing SPI 6-month for the time series from 1950–2009, there is a cyclical component due to the
passing of the seasons. The addition of the Moving Average lines (each period corresponds to one
year) helps determine a trend which fits the data; four types of Moving Average were added in order
to visualise that by increasing the period taken into consideration, the trend smoothens and becomes
more defined. In particular, because of the 8-period Moving Average, it is possible to observe three
cycles that occur over about 25 years and then another single cycle from 1986 to 2009. The central cycle
is the main interesting one as it corresponds to the Great Drought; in effect, SPI’s values are lower
than in the rest of the series, especially at the end of the cycle—early 1980s—when the drought was
at its maximum. Besides the evidence, concerns may be shown related to the scarcity of number of
SPI values suggesting dry periods. In fact, there is an effect due to the base period choice (containing
a wet period 1950–1968) and the boundaries choice discussed also by Agnew [40]. Despite this, the
drought period is still identifiable. Then, a slight upward trend is observed. Compared to Figure 5,
which clearly explain the belonging of SPI values to wet, normal and dry periods, it was more common
to have wetter years in the past than in the last 30 years where, at the contrary, especially in the first
part, extremely negative SPI’s values were more frequent for the effect of the drought. What has been
argued so far is true but less pronounced for SPI 12-month (Figure 6). In effect, two smoothed cycles
are observed, the first of which ends in the early 1980s with a dry period. Cycles alternation is more
visible looking at the 8-period Moving Average line. In particular, the first peak is higher than the
second, confirming that the gap with the first cycle hasn’t been closed yet. Nevertheless, the trend
is upward, suggesting a future increase of total precipitation. Looking at Figure 7, it is possible to
identify the years when SPI deviate from the normal range.
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Table 6. Trends in annual precipitation indices at Niamey based on NAD-M_9 dataset (in italic values without statistical significance; in black underlined values with
statistical significance at 10%, in bold values with statistical significance at 5%). Positive values report an increasing trend while negative values report a decreasing
trend (see Table 2 for the definition of the acronyms).

RX1day Rx5day SDII R10 R20 R30 R40 R50 CDD CWD R95p R99p PTOT

1950–2009 (A) −0.249 −0.365 −0.002 −0.05 −0.039 −0.039 −0.012 −0.004 0.414 −0.02 −0.664 −0.346 −2.29
1980–2009 (B) 0.565 1.215 0.111 0.073 0.127 0.079 0.052 0.027 0.259 −0.036 2285 0.345 4.316

Coherent trend between
case A and case B + -
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3.4. Future Projections

Climate projections data are adjusted with the CDFt method (Cumulative Distribution Function
transformation) [41] and WATCH Forcing Data ERA Interim gridded observations between 1979 and
2005, as reference period, at a 0.5 degrees (~50 km) spatial resolution from 2006 to 2100 (projections
are cut at 2070 in order to have 50 years of forecast). Among the four Representative Concentration
Pathways (RCPs), this study refers to the most used scenario of future climate RCP 4.5 and RCP 8.5,
which are, respectively, an intermediate scenario and a scenario with very high GHG emissions [42].
In the first scenario (RCP 4.5), the future precipitation trend (Figure 8—see MEAN rcp 4.5) is increasing;
in fact, the linear regression highlights a continuous growing trend (slope coefficient = 0.4783) from
2010 to 2070. In the second scenario (RCP 8.5), the future precipitation trend (Figure 9—see MEAN
rcp 8.5) increases as well (slope coefficient = 0.6474). Nevertheless, variability in simulated data, set
out as x ± σ lines (where σ is the standard deviation) and as maximum and minimum values, is high,
adding uncertainty in data interpretation. In this regard, x ± σ lines contain within their threshold
68.72% of events’ variability, while maximum and minimum values represent the range of variability
simulated by climate models within which every possible event is represented. However, under both
RCP 4.5 and RCP 8.5 conditions, future projections show an average increase of about 5–6% in the
decade 2060–2070, compared with the average of the 1980s (choosing a period longer than a decade in
order to identify the percentage increase would not be satisfying from the statistical significance point
of view).
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Figure 8. Past and future precipitation 1980–2070—rcp 4.5.
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Future projections’ results are in accordance with results valid for west Africa and the Sahel
assessed in the Fifth Assessment Report (AR5) [43] of the Intergovernmental Panel on Climate Change
(IPCC). In fact, despite inter-model variation, CMIP5 models indicate a wetter core rainfall season with
a small delay to rainy season by the end of the 21st century. Moreover, other regional model studies
project an increase in the number of extreme rainfall days over West Africa and the Sahel during May
and July [44].

4. Conclusions

This study aimed at finding long-term patterns in past precipitation time series in order to
recognise future trends in precipitation projections, with particular reference to climate pathways RCP
4.5 and RCP 8.5. There is a clear pattern in past data, whether observed (DMN dataset) or simulated
data (NAD-M_9 and WFDEI dataset). In fact, as reported in West Sahel’s climate trend literature, from
1950 to 2009, there was a decrease in total precipitation, mainly due to a severe drought, remembered
as the Great Drought, in 1968–1985. Analysing data from 1980 to 2009, the trend is reversed and
becomes an increasing one, suggesting a return to wetter condition in the West Sahel. The WMO
indices and SPI index enable an in-depth trend analysis to detect climate variability and precipitation
deficit/excess, respectively. RClimdex results confirm contrasting trend between 1950–2009 and
1980–2009. The former shows a decreasing trend, while in the latter, it is increasing. In particular,
among WMO indices, there is a single coherence between the two periods relying on the CDD and
CWD indices, confirming a shortening of the wet season in favour of the dry one. The increase in the
number of consecutive dry days is greater in magnitude in the period of 1950–2009 than in the period
of 1980–2009. This information may be relevant for future planning by decision makers on local food
security, as not all crops are suitable to adapt to those changes. The other indices, in particular those
calculated for 1980–2009, help in assessing an increase in precipitation intensity; very wet and extremely
wet precipitation (R95p and R99p indices) may be identified as possible responsibles. The SPI index
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computed for the two different periods—6 months and 12 months—are shown in Figures 4 and 6,
studying in particular the Moving Average line, highlight the presence of the three cycles (wet epoch,
dry epoch, moderate recovery). Furthermore, looking at precipitation projections simulated by climate
models, the trend keeps growing, under the socio-economic conditions of both RCP 4.5 and RCP 8.5.
Nevertheless, variability in future projections is evident (Figures 8 and 9), making it difficult to identify
a definitive path for future precipitation.

However, expectations in future precipitation trends foresee an average increase of about 5–6%
in 2060–2070, compared with the average of the 1980s—which corresponds to an average increase of
20 mm in 50 years—both under RCP 4.5 and RCP 8.5 conditions.

Consequently, along with an increase in total precipitation and precipitation intensity, it is
reasonable to expect an increase in discharge and therefore an increase in flood events. As a matter
of fact, an increase in discharge of Sahelian rivers has already been observed [6,45].This observation
coupled with the decrease in total precipitation after the 1950s is referred to as the Sahel Paradox [46],
a phenomenon whose climatic changes and Land Use/Land Change (LULC) are deemed as drivers
for increase in floods [47]. Even more so, due to the increase in total precipitation, a further increment
in discharge is expected.

Thus, results of this study should raise decision makers’ awareness towards a new precipitation
pattern, in particular, a greater interannual precipitation variability that can positively or negatively
influence water availability, which in the future will change their approach to flood and drought risk
prevention in the Niamey region.
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