Study of the Lower Stratospheric Temperature over the Arabian Peninsula
Abstract
:1. Introduction
2. Data and Methodology
2.1. Data
2.2. Methodology
3. Results and Discussion
3.1. Lower Stratospheric Temperature Changes
3.1.1. Trend Analysis
3.1.2. Periodogram Analysis
3.2. Relationship between the Lower Stratospheric and Tropospheric Temperature over the Arabian Peninsula
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- IPCC Climate Change. The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change; Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van der Linden, P.J., Dai, X., Maskell, K., Johnson, C.A., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2001. [Google Scholar]
- IPCC Climate Change. The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the IPCC; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007. [Google Scholar]
- Climate Change Science Program (CCSP). Temperature Trends in the Lower Atmosphere: Steps for Understanding and Reconciling Differences; Karl, T.R., Hassol, S.J., Miller, C.D., Murray, W.L., Veasey, S.W., McKay, E.E., Mahoney, J.R., Schultz, P.A., Glackin, M.M., Koblinsky, C.J., Eds.; CCSP: Washington, DC, USA, 2006. [Google Scholar]
- Randel, W.J.; Shine, K.P.; Austin, J.; Barnett, J.; Claud, C.; Gillett, N.P.; Keckhut, P.; Langematz, U.; Lin, R.; Long, C.; et al. An update of observed stratospheric temperature trends. J. Geophy. Res. 2009, 114, D02107. [Google Scholar] [CrossRef]
- Pawson, S.; Labitzke, K.; Leder, S. Stepwise changes in stratospheric temperature. Geophy. Res. Lett. 1998, 25, 2157–2160. [Google Scholar] [CrossRef] [Green Version]
- IPCC Climate Change. The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Manabe, S.; Strickler, R.F. Thermal equilibrium of the atmosphere with a convective adjustment. J. Atmos. Sci. 1964, 21, 361–385. [Google Scholar] [CrossRef]
- Solomon, S.; Rosenlof, K.; Portmann, R.; Daniel, J.; Davis, S.; Sanford, T.; Plattner, G. Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science 2010, 327, 1219–1223. [Google Scholar] [CrossRef]
- Simmons, A.J.; Willett, K.M.; Jones, P.D.; Thorne, P.W.; Dee, D.P. Low frequency variations in surface atmospheric humidity, temperature, and precipitation: Inferences from reanalyses and monthly gridded observational data sets. J. Geophys. Res. Atmos. 2010, 115, D01110. [Google Scholar] [CrossRef]
- Shine, K.P.; Bourqui, M.S.; PM de FForster Hare, S.H.E.; Langematz, U.; Braesicke, P.; Grewe, V.; Ponater, M.; Schnadt, C.; Smith, C.A.; Haigh, J.D.; et al. A comparison of model-simulated trends in stratospheric temperatures. Q. J. R. Meteorol. Soc. 2003, 129, 1565–1588. [Google Scholar] [CrossRef] [Green Version]
- Ramaswamy, V.; Schwarzkopf, M.D.; Randel, W.J.; Santer, B.D.; Soden, B.J.; Stenchikov, G.L. Anthropogenic and natural influences in the evolution of lower stratospheric cooling. Science 2006, 311, 1138–1141. [Google Scholar] [CrossRef] [PubMed]
- Ramaswamy, V.M.-L.; Chanin, J.; Angell, J.; Barnett, D.; Gaffen, M.; Gelman, P.; Keckhut, Y.; Koshelkov, K.; Labitzke, J.-J.R.; Lin, A.; et al. Stratospheric temperature trends: Observations and model simulations. Rev. Geophys. 2001, 39, 71–122. [Google Scholar] [CrossRef] [Green Version]
- World Meteorological Organization (WMO). Scientific Assessment of Ozone Depletion; Rep. 47; WMO: Geneva, Switzerland, 2006. [Google Scholar]
- Holton, J.R.; Tan, H.C. The influence of the Equatorial Quasi-Biennial Oscillation on the global circulation at 50 mb. J. Atmos. Sci. 1980, 37, 2200–2208. [Google Scholar] [CrossRef]
- Krishna Murthy, B.V.; Parameswaran, K.; Rose, K.O. Temporal variations of the tropical tropopause characteristics. J. Atmos. Sci. 1986, 43, 914–922. [Google Scholar] [CrossRef]
- Randel, W.J.; Wu, F.; Gaffen, D.J. Interannual variability of the tropical tropopause derived from radiosonde data and NCEP reanalyses. J. Geophys. Res. 2000, 105, 15509–15523. [Google Scholar] [CrossRef] [Green Version]
- Hood, L.L.; Soukharev, B.E. Quasi-Decadal Variability of the Tropical Lower Stratosphere: The Role of Extratropical Wave Forcing. J. Atmos. Sci. 2003, 60, 2389–2403. [Google Scholar] [CrossRef] [Green Version]
- Labitzke, K. On the interannual variability of the middle stratosphere during the northern winters. J. Met. Soc. Jpn. 1982, 60, 124–139. [Google Scholar] [CrossRef]
- Labitzke, K. Sunspots, the QBO and the stratospheric temperatures in the north polar regions. Geophys. Res. Lett. 1987, 14, 535–537. [Google Scholar] [CrossRef]
- Matthes, K.; Kuroda, Y.; Kodera, K.; Langematz, U. The transfer of the solar signal from the stratosphere to the troposphere: Northern winter. J. Geophys. Res. 2006, 111. [Google Scholar] [CrossRef]
- Crooks, S.A.; Gray, L.J. Characterization of the 11-year solar signal using a multiple regression analysis of the ERA-40 dataset. J. Clim. 2005, 18, 996–1015. [Google Scholar] [CrossRef]
- Camp, C.D.; Tung, K.-K. The influence of the solar cycle and QBO on the Late-Winter stratosphere polar vortex. J. Atmos. Sci. 2007, 64, 1267–1283. [Google Scholar] [CrossRef]
- Kodera, K.; Yamazaki, K.; Chiba, M.; Shibata, K. Downward propagation of upper stratospheric mean zonal wind perturbation to the troposphere. Geophys. Res. Lett. 1990, 9, 1263–1266. [Google Scholar] [CrossRef]
- Coughlin, K.; Tung, K.-K. QBO Signal found at the extratropical surface through Northern Annular Modes. Geophys. Res. Lett. 2001, 28, 4563–4566. [Google Scholar] [CrossRef]
- Thompson, D.W.J.; Baldwin, M.P.; Wallace, J.M. Stratospheric connection to northern hemisphere wintertime weather: Implications for prediction. J. Clim. 2002, 15, 1421–1428. [Google Scholar] [CrossRef]
- Rind, D.; Lean, J.; Lerner, J.; Lonergan, P.; Leboissitier, A. Exploring the stratospheric/tropospheric response to solar forcing. J. Geophys. Res. 2008, 113, D24103. [Google Scholar] [CrossRef]
- Ineson, S.; Scaife, A.A. The role of the stratosphere in the European climate response to El Niño. Nat. Geosci. 2009, 2, 32–36. [Google Scholar] [CrossRef]
- Garfinkel, C.I.; Waugh, D.W.; Oman, L.D.; Wang, L.; Hurwitz, M.M. Temperature trends in the tropical upper troposphere and lower stratosphere: Connections with sea surface temperatures and implications for water vapor and ozone. J. Geophys. Res. Atmos. 2013, 118, 9658–9672. [Google Scholar] [CrossRef] [Green Version]
- Holloway, C.E.; Neelin, D.J. The convective cold top and quasi equilibrium. J. Atmos. Sci. 2007, 64, 1467–1487. [Google Scholar] [CrossRef]
- Kistler, R.; Kalnay, E.; Collins, W.; Saha, S.; White, G.; Woollen, J.; Chelliah, M.; Ebisuzaki, W.; Kanamitsu, M.; Kousky, V.; et al. The NCEP-NCAR 50-year reanalysis: Monthly means CD-ROM and documentation. Bull. Am. Meteorol. Soc. 2001, 82, 247–268. [Google Scholar] [CrossRef]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 1996, 77, 437–471. [Google Scholar] [CrossRef]
- Hasanean, H.M. Tropical Meteorology—Middle East Meteorology; Encyclopedia of Life Support Systems (EOLSS): Paris, France, 2011. [Google Scholar]
- Wilks, D.S. Statistical Methods in the Atmospheric Sciences; Academic Press: New York, NY, USA, 2006; 627p. [Google Scholar]
- Hasanean, H.M. Variability of the North Atlantic subtropical high and associations with tropical sea surface temperature. Int. J. Climatol. 2004, 24, 945–957. [Google Scholar] [CrossRef]
- Nigam, S. In Teleconnection: In “Encyclopedia of Atmospheric Science”; Holton, J.R., Pyle, J., Curry, J.A., Eds.; Academic Press, Elsevier Science Ltd.: Amsterdam, The Netherlands, 2003. [Google Scholar]
- Koutroulis, A.G.; Grillakis, M.G.; Tsanis, I.K.; Kotroni, V.; Lagouvardos, K. Lightning activity, rainfall and flash flooding—Occasional or interrelated events? A case study in the island of Crete. Nat. Hazards Earth Syst. Sci. 2012, 12, 881–889. [Google Scholar] [CrossRef]
- Broersen, P.M.T. Automatic Autocorrelation and Spectral Analysis; Springer: Delft, The Netherlands, 2006; 298p, ISBN 9781846283284. [Google Scholar]
- Priestley, M.B. Spectral Analysis and Time Series Analysis; Academic Press: London, UK, 1981. [Google Scholar]
- Mitchell, J.M.; Dzerdzeevskii, B.; Flohn, H.; Hofmery, W.L. Climatic Change; WMO Technical Note, 79. WMO No. 195. TP-100; World Meteorological Organization (WMO): Geneva, Switzerlands, 1966. [Google Scholar]
- Liebmann, B.; Dole, R.; Jones, C.; Bladé, I.; Allured, D. Influence of choice of time period on global surface temperature trend estimates. Bull. Am. Meteorol. Soc. 2010, 91, 1485–1492. [Google Scholar] [CrossRef]
- Angell, J.K. Stratospheric warming due to Agung, El Chichon, and Pinatubo taking into account the quasi-biennial oscillation. J. Geophys. Res. 1997, 102, 9479–9485. [Google Scholar] [CrossRef]
- Self, S.; Zhao, J.; Holasek, R.E.; Torres, R.C.; King, A.J. The atmospheric impact of the 1991 Mount Pinatubo eruption. In FIRE and MUD: Eruptions and Lahars of Mount Pinatubo, Philippines; University of Washington: Washington, WA, USA, 1997. [Google Scholar]
- Salby, R.S.A.; Callaghan, P.F. Systematic changes of stratospheric temperature: Relationship between the tropics and extratropics. J. Geophys. Res. 1996, 108, D3. [Google Scholar] [CrossRef]
- World Meteorological Organization (WMO). Scientific Assessment of Ozone Depletion: 1998, Rep. 44, NASA; Office of the Mission to Planet Earth: Washington, DC, USA, 1999.
- Yu, Z.; Li-Bo, Z. Quasi-biennial oscillation signal detected in the stratospheric zonal wind at 55–65° N. Atmos. Ocean. Sci. Lett. 2016, 9, 147–152. [Google Scholar]
- Anstey, J.A.; Shepherd, T.G.; Scinocca, J.F. Influence of the Quasi-Biennial Oscillation on the Extratropical Winter Stratosphere in an Atmospheric General Circulation Model and in Reanalysis Data. J. Atmos. Sci. 2010, 67, 1402–1419. [Google Scholar] [CrossRef]
- Huesmann, A.S.; Hitchman, M.H. The stratospheric quasibiennial oscillation in the NCEP reanalyses: Climatological structures. J. Geophys. Res. 2001, 106, 859–874. [Google Scholar] [CrossRef]
- Kuai, L.; Shia, R.-L.; Jiang, X.; Tung, K.K.; Yung, Y.L. Modulation of the Period of the Quasi-Biennial Oscillation by the Solar Cycle. J. Atmos. Sci. 2009, 66, 2418–2428. [Google Scholar] [CrossRef] [Green Version]
- Haigh, J.D. The impact of solar variability on climate. Science 1996, 272, 981–984. [Google Scholar] [CrossRef]
- Haigh, J.D. A GCM study of climate change in response to the 11-year solar cycle. Q. J. R. Meteorol. Soc. 1999, 125, 871–892. [Google Scholar] [CrossRef]
- Hoyt, D.V.; Schatten, K.H. The Role of the Sun in Climate Change; Oxford University Press: New York, NY, USA, 1997. [Google Scholar]
- Mohanakumar, K. Stratosphere Troposphere Interactions: An Introduction; Springer: Berlin, Germany, 2008. [Google Scholar] [CrossRef]
- Quanliang, C.; Lingxiao, W. Relationship of Temperature Variation between in the Stratosphere and the Troposphere. Procedia Environ. Sci. 2012, 12, 666–671. [Google Scholar] [CrossRef] [Green Version]
- Hartley, D.E.; Villarin, J.T.; Black, R.X.; Davis, C.A. A new perspective on the dynamical link between the stratosphere and troposphere. Nature 1998, 391, 471–474. [Google Scholar] [CrossRef]
- Black, R.X. Stratospheric forcing of surface climate in the Arctic oscillation. J. Clim. 2002, 15, 268–277. [Google Scholar] [CrossRef]
- Kunz, T.; Greatbatch, R.J. On the Northern Annular Mode surface signal associated with stratospheric variability. J. Atmos. Sci. 2013, 70, 2103–2118. [Google Scholar] [CrossRef]
- Boville, B.A. The influence of the polar night jet on the tropospheric circulation in a GCM. J. Atm. Sci. 1984, 41, 1132–1142. [Google Scholar] [CrossRef]
- Perlwitz, J.; Graf, H. The statistical connection between tropospheric and stratospheric circulation of the northern hemisphere in winter. J. Clim. 1995, 8, 2281–2295. [Google Scholar] [CrossRef]
- Domeisen, D.I.V. Stratosphere Troposphere Interaction during Stratospheric Sudden Warming Events. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2012. [Google Scholar]
- Angell, J.K. Comparison of surface and tropospheric temperature trends estimated from a 63-station radiosonde network, 1958–1998. Geophys. Res. Lett. 1999, 26, 2761–2764. [Google Scholar] [CrossRef]
- Hurrell, J.W.; Brown, S.J.; Trenberth, K.E.; Christy, J.R. Comparison of troospheric temperatures from radiosondes and satellites: 1979–1998. Bull. Am. Met. Soc. 2000, 81, 2165–2177. [Google Scholar] [CrossRef]
- Brown, S.J.; Parker, D.E.; Folland, C.K.; Macadam, I. Decadal variability in the lower-tropospheric lapse rate. Geophys. Res. Lett. 2000, 27, 997–1000. [Google Scholar] [CrossRef] [Green Version]
- Pielke Sr, R.A.; Eastman, J.; Chase, T.N.; Knaff, J.; Kittel, T.G.F. Errata to 1973–1996 Trends in depth-averaged tropospheric temperature. J. Geophys. Res. 1998, 103, 16927–16933. [Google Scholar] [CrossRef]
- Pielke Sr, R.A.; Eastman, J.; Chase, T.N.; Knaff, J.; Kittel, T.G.F. 1973–1996 Trends in depth-averaged tropospheric temperature. J. Geophys. Res. 1998, 103, 28909–28912. [Google Scholar] [CrossRef]
- Stendel, M.; Christy, J.R.; Bengtsson, L. Assessing levels of uncertainty in recent temperature time series. Clim. Dyn. 2000, 16, 587–601. [Google Scholar] [CrossRef]
- Thorne, P.W.; Brohan, P.; Titchner, H.A.; McCarthy, M.P.; Sherwood, S.C.; Peterson, T.C.; Haimberger, L.; Parker, D.E.; Tett, S.F.; Santer, B.D.; et al. A quantification of uncertainties in historical tropical tropospheric temperature trends from radiosondes. J. Geophys. Res. Atmos. 2011, 116, D12116. [Google Scholar] [CrossRef]
- Seidel, D.J.; Gillett, N.P.; Lanzante, J.R.; Shine, K.P.; Thorne, P.W. Stratospheric temperature trends: Our evolving understanding. Clim. Chang. 2011, 2, 592–616. [Google Scholar] [CrossRef]
- Haimberger, L.; Tavolato, C.; Sperka, S. Homogenization of the global radiosonde temperature dataset through combined comparison with reanalysis background series and neighboring stations. J. Clim. 2012, 25, 8108–8131. [Google Scholar] [CrossRef]
- Thompson, D.W.; Seidel, D.J.; Randel, W.J.; Zou, C.Z.; Butler, A.H.; Mears, C.; Osso, A.; Long, C.; Lin, R. The mystery of recent stratospheric temperature trends. Nature 2012, 491, 692–697. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.K.; Zou, C.Z.; Qian, H.F. Construction of stratospheric temperature data records from Stratospheric Sounding Units. J. Clim. 2012, 25, 2931–2946. [Google Scholar] [CrossRef]
- Christy, J.R.; Parker, D.E.; Brown, S.J.; Macadam, I.; Stendel, M.; Norris, W.B. Differential trends in tropical sea surface and atmospheric temperatures. Geophys. Res. Lett. 2001, 28, 183–186. [Google Scholar] [CrossRef]
- Gaffen, D.J.; Santer, B.D.; Boyle, J.S.; Christy, J.R.; Graham, N.E.; Ross, R.J. Multidecadal changes in the vertical structure of the tropical troposphere. Science 2000, 287, 1242–1245. [Google Scholar] [CrossRef]
- Karl, T.R.; Hassol, S.J.; Miller, C.D.; Murray, W.L. (Eds.) Temperature Trends in the Lower Atmosphere: Steps for Understanding and Reconciling Differences; U.S. Climate Change Science Program and the Subcommittee on Global Change Research Synthesis and Assessment Product 1.1; U.S. Climate Change Science Program and the Subcommittee on Global Change Research: Washington, DC, USA, 2006; p. 164.
- Kolstad, E.W.; Breiteig, T.; Scaife, A.A. The association between stratospheric weak polar vortex events and cold air outbreaks in the Northern Hemisphere. Q. J. R. Meteorol. Soc. 2010, 136, 886–893. [Google Scholar] [CrossRef] [Green Version]
- Sigmond, M.; Scinocca, J.F.; Kushner, P.J. Impact of the stratosphere on tropospheric climate change. Geophys. Res. Lett. 2008, 35, L12706. [Google Scholar] [CrossRef]
- Scaife, A.A.; Spangehi, T.; Cubasch, U.; Langematz, U.; Akiyoshi, H.; Bekki, S.; Butchart, N.; Chipperfield, M.P.; Gettelman, A.; Hardiman, S.C.; et al. Climate change projections and stratosphere–troposphere interaction. Clim. Dyn. 2012, 38, 2089–2097. [Google Scholar] [CrossRef]
- Polvani, L.M.; Waugh, D.W.; Correa, G.J.P.; So, S.-W. Stratospheric ozone depletion: The main driver of twentieth-century atmospheric circulation changes in the southern hemisphere. J. Clim. 2011, 24, 795–812. [Google Scholar] [CrossRef]
- Karpechko, A.Y.; Manzini, E. Stratospheric influence on tropospheric climate change in the Northern Hemisphere. J. Geophys. Res. 2012, 117, D05133. [Google Scholar] [CrossRef]
- Fereday, D.R.; Maidens, A.; Arribas, A.; Scaife, A.A.; Knight, J.R. Seasonal forecasts of Northern Hemisphere winter 2009/10. Environ. Res. Lett. 2012, 7, 034031. [Google Scholar] [CrossRef]
- Greatbatch, R.J.; Gollan, G.; Jung, T.; Kunz, T. Tropical origin of the severe European winter of 1962/1963. Q. J. R. Meteorol. Soc. 2015, 141, 153–165. [Google Scholar] [CrossRef]
- Labitzke, K.; McCormick, M.P. Stratospheric temperature increases due to Pinatubo aerosols. Geophys. Res. Lett. 1992, 19, 207–210. [Google Scholar] [CrossRef]
- Young, R.E.; Houben, H.; Toon, O.B. Radiatively forced dispersion of the Mt. Pinatubo volcanic cloud and induced temperature perturbations in the stratosphere during the first few months following the eruption. Geophys. Res. Lett. 1994, 21, 369–372. [Google Scholar] [CrossRef]
- Soden, B.J.; Wetherald, R.T.; Stenchikov, G.L.; Robock, A. A Global cooling after the eruption of Mount Pinatubo: A test of climate feedback by water vapor. Science 2002, 296, 727–730. [Google Scholar] [CrossRef] [PubMed]
CC | North Hemisphere LST (0°–90° N) | Tropical LST (0°–23.5° N) | Subtropical LST (23.5°–40° N) | Mid-Latitude LST (40°–60° N) | Polar LST (60°–90° N) |
---|---|---|---|---|---|
Arabian Peninsula LST | 0.08 | 0.60 ** | 0.80 ** | 0.37 ** | −0.46 ** |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
M. Hasanean, H.; H. Labban, A. Study of the Lower Stratospheric Temperature over the Arabian Peninsula. Climate 2019, 7, 54. https://doi.org/10.3390/cli7040054
M. Hasanean H, H. Labban A. Study of the Lower Stratospheric Temperature over the Arabian Peninsula. Climate. 2019; 7(4):54. https://doi.org/10.3390/cli7040054
Chicago/Turabian StyleM. Hasanean, Hosny, and Abdulhaleem H. Labban. 2019. "Study of the Lower Stratospheric Temperature over the Arabian Peninsula" Climate 7, no. 4: 54. https://doi.org/10.3390/cli7040054
APA StyleM. Hasanean, H., & H. Labban, A. (2019). Study of the Lower Stratospheric Temperature over the Arabian Peninsula. Climate, 7(4), 54. https://doi.org/10.3390/cli7040054