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Abstract

:

The changing climate is posing significant threats to agriculture, the most vulnerable sector, and the main source of livelihood in West Africa. This study assesses the impact of the climate-departure on the crop suitability and planting month over West Africa. We used 10 CMIP5 Global climate models bias-corrected simulations downscaled by the CORDEX regional climate model, RCA4 to drive the crop suitability model, Ecocrop. We applied the concept of the crop-climate departure (CCD) to evaluate future changes in the crop suitability and planting month for five crop types, cereals, legumes, fruits, root and tuber and horticulture over the historical and future months. Our result shows a reduction (negative linear correlation) and an expansion (positive linear correlation) in the suitable area and crop suitability index value in the Guinea-Savanna and Sahel (southern Sahel) zone, respectively. The horticulture crop was the most negatively affected with a decrease in the suitable area while cereals and legumes benefited from the expansion in suitable areas into the Sahel zone. In general, CCD would likely lead to a delay in the planting season by 2–4 months except for the orange and early planting dates by about 2–3 months for cassava. No projected changes in the planting month are observed for the plantain and pineapple which are annual crops. The study is relevant for a short and long-term adaptation option and planning for future changes in the crop suitability and planting month to improve food security in the region.
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1. Introduction


The West African region has been identified as one of the hotspots with high susceptibility and vulnerability to the impact of climate change and global warming [1]. For example, the global climate is projected to be above 1.5 °C above the pre-industrial level in the next decade [2]. An increase in temperature between 3 °C and 6 °C coupled with a rise in the rainfall variability is projected into the future over West Africa from the AR5 report [3]. Most countries in West Africa heavily rely on agriculture, which is predominantly rainfed, as an important and significant contributor to their economies. It accounts for over 16% of the Gross Domestic Product (GDP) of the region’s economy and employs over 60% of the labour force [4,5,6]. Additionally, West Africa has accounted for about 60% of the total value of the agricultural production in the continent for about 24 years [7]. However, the region has been identified as a hotspot to climate change impacts in the recent time owing to its reducing yields in the total agricultural production since 2007 in comparison to other sub-regions on the continent [7]. Current trends show that there may be further decreases in yields especially in the face of increasing warming and droughts which may lead to food insecurity over the region [8,9,10].



Findings from the Intergovernmental Panel on Climate Change (IPCC) fifth Assessment Report (AR5) shows widespread impacts from the changing climate to the historical month across all continents [11]. The report reveals a high exposure to climatic events and a low adaptive capacity of the African continent makes it one of the most vulnerable regions of the world. Agriculture is the most and major economic sector of Africa and has been described as the most vulnerable sector to the climate change impact with a great threat to the farming systems, crop production and food security at any level [7,12,13,14]. For example, past studies e.g., [15,16,17,18,19] have shown the impact of climate change on crop production and yield in Africa and West Africa in particular using different crop models. Sultan et al. [15] showed the decrease in the mean yield of sorghum cultivars due to the impact of climate change resulting from variation in the rainfall pattern and increasing temperature. Jalloh et al. [17] revealed that the impact of climate change will badly affect the production of major staple crops in West Africa particularly sorghum and groundnut in the Sahel. Moreover, Roudier et al. [6] combining the result of 16 published studies, showed that the projected impact of climate change on the crop yield over most African countries is negative (about 11%) with variations among crops, regions and modelling uncertainties posing the challenge for robust assessment of future yields at the regional scale. Further changes in the climate are expected in Africa over the next decades [1], as projections suggest a threat to food security due to the likely increase in climate variability over the next decades in Sub-Saharan Africa (SSA) [7]. As a result, impacts from the changing climate varies from subsectors among regions and different countries in SSA including West Africa but may be more detrimental to the West African region owing to its high susceptibility and low adaptive capacity with further warming [14,20].



The increase in global warming will lead to a new climate regime with a deviation from historical variability with a variation in the timing of emergence for different regions of the world called the climate departure [21,22]. For instance, [21] found that the mean temperature over West Africa will move outside the bounds of historical variability about two decades earlier before the global mean temperature thus making the region a hotspot of climate departure due to the impact of the global warming. On this premise and its direct consequence on rainfed crop production in West Africa, Egbebiyi et al. [23] explored the climate change induced crop realizations of the climate departing from historical variability, developed and proposed the concept called the crop-climate departure (CCD) in the context of recent climate historical variability and future climate projections. The study defines CCD “as a departure from historical crop suitability threshold, whether in terms of variability, mean or both, over a location both in space and in time resulting from climate change (whether radical climatic change or not)” This concept was used to characterize crop suitability across the three agro-ecological zones (AEZs) of West Africa. However, the CCD concept was only tested and applied using three weather stations, within the three AEZs of West Africa. Although these stations are a representation of the three AEZs, nevertheless these cannot be generalized for the entire region, hence there is a need to examine how CCD at different climate windows, near the future (2031–2050) till end of the century (2081–2100) will affect crop suitability over the region using the concept of CCD.



Based on our definition and understanding on CCD, the aim of this present study is to examine the impact of CCD from the historical variability on future changes in crop suitability and month of planting over the entire West African region. Section 2 describes the data and methods used. Results from the study are outlined in Section 3. The discussion of the results and concluding remarks and recommendations for the future are in Section 4 and Section 5, respectively.




2. Data and Methodology


2.1. Study Area


The West African (shown in Figure 1) region comprises of 15 countries namely Benin, Burkina Faso, Gambia, Ghana, Guinea Bissau, Guinea, Ivory Coast, Liberia, Mali, Mauritania, Niger, Nigeria, Senegal, Sierra Leone and Togo. It is geographically located at latitude 4–20 °N and 16 °W–20 °E and has rainfed agriculture as its mainstay economy. The region can be divided into three Food and Agriculture Organization (FAO) agro ecological zones (AEZs) namely, Guinea (4–8 °N), Savanna (8–12 °N) and the Sahel (12–20 °N) [24,25]. The region also has some localized highlands (Cameroon Mountains, Jos Plateau, and Guinea Highlands) which influence its climate. The climate of the region is mainly controlled by the West African Monsoon (WAM) which accounts for about 70% of the annual rainfall [24,26]. WAM is an important and dynamic characteristic of the West African climate during the summer month [27].WAM is produced from the reversal of the land and ocean differential heating and dictates the seasonal pattern of rainfall over West Africa between latitudes 9° and 20 °N. It is characterized by winds that blow south-westerly during warmer months (June–September) and north-easterly during cooler months (January–March) of the year [25,27]. It is the major system that influences the onset, variability and pattern of rainfall over West Africa [28], [29]. It alternates between wet (April–October) and dry seasons (November–March) as the rainfall belt follows the migration of Inter-Tropical Discontinuity (ITD) [30] and thus affects the rainfall producing systems with an impact on the rainfed agriculture and influences crops suitability and food production in the region.



Different crops are grown in various parts of West Africa. Some of the major crops grown in the region are cassava, groundnut, millet, maize, sorghum, yam, plantain, cocoa, rice, wheat [8,26,31,32]. Millet and sorghum account for 64% of the cereal production over the regions in the year 2000 thus making them among the important staple crops in West Africa [26,33]. Cassava is one of the most important staple food crops in terms of production in sub-Saharan West Africa owing to high resilience to drought in the region [26,32,34] This also applies to the Yam production, which account for about 91% of the world’s production [26,34,35]. Cereal, maize provides about 20% of the calorie intake in West Africa and is adjudged the most important staple food in the sub-Saharan Africa [26,33]. Other crops such as cocoa and plantain to mention a few contribute significantly to the economy of the region.




2.2. Data


2.2.1. Historical and Future Climate Datasets


For this study, three datasets were used as observations of the present-day climate and the locations where crops are grown as observed from the crop suitability model, Ecocrop output, and modelled simulations of the present and projected crop suitability driven by the observed and projected climate data. The observation dataset was the 0.5° × 0.5° resolution monthly precipitation and minimum and mean temperature gridded dataset for the month of 1901 to 2016 obtained from the Climate Research Unit (CRU TS4.01 version, land only) University of East Anglia [36]. This was used to evaluate the available bias corrected RCMs forced by the 10 CMIP5 global climate models. The bias-corrected climate data were obtained from the Swedish Meteorological and Hydrological Institute, Linköping, Sweden. The modelled climate data were used as inputs into the crop suitability model, Ecocrop [37]. For this study, five different crop types namely; cereals (maize, pearl millet and sorghum), root and tuber (cassava, plantain and yam), legumes (cowpea and groundnut), horticulture (pineapple and tomato) and fruit (mango and orange) were selected based on the FAO 2016 statistics and their economic importance in the region. These different datasets are defined in the sub-sections below.



Temperatures and rainfall are important climate variables used in determining the impacts of climate change at different scales [38,39]. These two climate variables have a significant effect on crop yield [40,41]. While rainfall affects crop production in relation to the photosynthesis and leaf area, the temperature affects the length of the growing season [42,43]. For this study, we used the bias-corrected mean monthly minimum temperature (tmin), mean monthly temperature (tmean) and total monthly precipitation (prec). Data from 10 CMIP5 GCMs downscaled by SMHI-RCA4 are used as input into the crop suitability model (Table 1). We used the RCP8.5 emission scenario for the analysis to investigate the impact of CCD from the historical variability on the crop growth suitability and month of planting over West Africa. We used RCP8.5 because it seems the most realistic emission scenario as seen from the greenhouse gas emission trajectories in comparison to other scenarios and also has the largest simulation ensemble members [44].




2.2.2. Ecocrop—A Crop Suitability Model


The Ecocrop model is a crop suitability model. It uses a crop growth suitability threshold dataset hosted by the FAO [37]. It is a simple mechanistic and empirical model originally developed by Hijmans et al. [37] and based on the FAO-Ecocrop database [45]. It is designed at a monthly scale with the ability to analyse the crop suitability in relation to the climate conditions over a geographical location [37,45]. Ecocrop employs environmental ranges of a crop coupled with numerical assessment of the environmental condition to determine the potential suitable climatic condition for a crop. The suitability rating can be linked to the agricultural yield which is partly dependent on the strength of the climate signal in the agricultural yield [46] The computation of optimal, suboptimal and non-optimal conditions based on these datasets allows for the simulation of the suitability of crops in response to the 12-month climate via t-min, t-mean and prec. [37]. The Ecocrop model evaluates the relative suitability of crops in response to a range of climates including rainfall, temperature and the growing season for optimal crop growth. A suitability index is generated as follows: 0 < 0.20 (not suitable), 0.20 < 0.4 (very marginally suitable), 0.4 < 0.6 (marginally suitable), 0.6 < 0.8 (suitable), and 0.8 < 1.0 (highly suitable) [45,47]. The default Ecocrop parameters were assumed. Although those thresholds may vary with different geographical and/or climatic conditions, previous studies have reported a close correlation between the Ecocrop model and the climate change impact projections from other crop models [45,48,49,50]. A paucity of data over regions of interest like SSA limits the validation of these processes [51]. Nevertheless, the method contributes to the demand for the regional scale assessment of the crop response to future climate projections.





2.3. Methods


We analyzed 10 CMIP 5 GCMs datasets downscaled by CORDEX RCM, RCA4 to assess the impacts of CCD from the historical variability on crop suitability and planting season over West Africa for five different crop types, cereal (maize, pearl millet and sorghum), fruit (mango and orange), horticulture (pineapple and tomato), legume (cowpea and groundnut) and root and tuber (cassava, plantain and yam). We used the RCA4 simulation output for the monthly minimum and mean temperature and total monthly precipitation as input into Ecocrop, a crop suitability model. Using a 20-year moving average at five year time steps, we computed the Suitability Index Value (SIV) for each crop across the 10 downscaled GCMs over West Africa. The Ecocrop suitability output were then used to assess the impact of global warming through CCD from the historical variability on the crop suitability and planting season over a month 1951–2100. Across the agro-ecological zones (AEZs) of West Africa. After the simulation, we computed the mean of the best three consecutive suitability index and best three months of planting window within the growing season across each grid point over the region for the historical and future month. Before examining the RCM-projected changes in the future crop suitability and planting season, we evaluated the capability of the models in simulating the crop suitability spatial distribution and planting date/season during the reference month (1981–2000).



We also used the statistical tool to calculate the trend of change across the three windows compared to the historical month. We assessed the trend of change in the crop suitability and month of planting at each global warming levels for each crop using the Theil-Sen estimator or Sen’s slope [52,53]. The Theil-Sen slope estimator is an estimation of the average trend rate only and magnitude of the trend. It is a linear slope that is compatible with the Mann-Kendall test and more robust such that it is less sensitive to outliers in the time series as compared to the standard linear regression trend [54]. The Theil-Sen slope method can detect significant trends with the changing rate than the linear trend [55]. Previous studies [56,57] have used this method in calculating trends.



2.3.1. Simulation Approach and Analysis of suitability


Past studies (e.g., [25,58,59,60] have evaluated the performance of the RCA4 historical data against the CRU dataset in the past climate. Their results showed that there is a good agreement with a strong correlation (r ≥ 0.6) between the CRU dataset and RCA4 monthly simulated past climate data for both the temperature and precipitation over West Africa. For example, the model replicates the CRU north-south temperature gradient that concurs with previous findings by [58]. Additionally, the RCA4 simulated total monthly rainfall realistically captures the essential features namely, both the zonal pattern and meridional gradient and the rainfall maxima over high topography (i.e., Cameroon Mountains and Guinean Highlands) as observed in CRU which agrees with previous findings by [25,59,60]. The performance of RCA4 in simulating the essential features of West African climate variables, temperature and rainfall, and doubles as the needed input variables for the crop suitability model, Ecocrop makes it suitable and gives confidence in the use of the RCA4 for the crop suitability simulation over the region.



In addition, we compare the Ecocrop simulation over the region with the MIRCA2000 annual harvested area around year 2000 from the global monthly gridded data as described by [61] for six crops, cassava, maize, groundnut, sorghum, millet and plantain available in the MIRCA2000 dataset. The MIRCA2000 dataset provides monthly irrigated and rainfed crops area for 26 crop classes for each month of the year around year 2000 with a spatial resolution about 9.2 km. We compare the spatial agreement between the Ecocrop simulation and MIRCA2000 by using an overlap in the spatial agreement between the two datasets. Although, we admit the short time length of the MIRCA dataset however, it is a useful gridded dataset that has been used to provide information on the crop harvested area across different regions of the world [61] and will be useful to evaluate the simulated Ecocrop spatial suitability distribution at present due to the paucity of the suitability dataset across the globe. To see the overlap and area of agreement in the spatial suitability output of the two datasets, we set the MIRCA2000 annual harvested area dataset as one (1) and the Ecocrop simulated suitable area suitability index value from 0.2 (SIV ≥ 0.2) as two(2). Where the two datasets agree as three(3). The output shows a good agreement between the Ecocrop and MIRCA2000 data for the examined crops with a strong spatial correlation (r > 0.7) (Figure 2). This gives some level of confidence in the use and performance of the Ecocrop simulation over the region.



To assess the impact of CCD from the historical variability on the crop suitability over West Africa, we computed the monthly climatological mean for a 20-year running month, at every five-year timestep for the t-min, t-mean and prec. from 1951–2100. For example, the first 20-year mean computed was 1951–1970, the second 20-year mean was 1956–1975, etc., until the last month 2081–2100. The resulting 12-month values per the 20-year month window was used as an input climatology into the Ecocrop suitability model as developed by the Food and Agriculture Organization, FAO [37] to simulate crop suitability for each downscaled GCM based on the methodologies described in [45]. Ecocrop calculates the crop suitability values in the response climate variables such as a monthly rainfall and temperature datasets and generates an output with a suitability index score from zero (unsuitable) to one (optimal/excellent suitability). It should be noted that this study did not undertake any additional ground-truthing or calibration of the range of climate parameters preferred for either crop and therefore the default EcoCrop parameters were assumed. Suitability index scores were calculated for the range of climate variables reported for the historical baseline (1981–2000) future months, near future (2031–2050), mid-century (2051–2070) and end of century (2081–2100) for the downscaled 10 CMIP5 GCMs that participated in the CORDEX experiment.




2.3.2. Assessing the Robustness of Climate Change


We use two conditions (model agreement and statistical significance) to evaluate the robustness of the projected climate change for the three future months. For the model agreement, at least 80% of the simulation must agree on the sign of change. For the statistical significance, at least 80% of the simulations must indicate that the influence of the climate change is statistically significant, at 95% confidence level using a t test with regards to the baseline month, 1981–2000. When these two conditions are met then we consider the climate change signal to be significant. [30,44,62,63] have all used the methods to test and indicate the robustness of the climate change signals.






3. Result


3.1. Crop Suitability in the Historical Climate over West Africa


The RCA4 simulated crop suitability from the observed climatology inputs (RCA4-Ecocrop) shows a decreasing mean suitability from south to north over West Africa (north-south suitability gradient). The spatial suitability representation reveals unsuitable or very marginal suitability to the north in the Sahel from lat. 14 °N with a low Suitability Index Value (SIV) value between 0.0–0.4 and a higher suitability to the south in the Guinea-Savanna AEZ with a high SIV (0.6–1.0) sandwiched by an ash/silver suitability line called the Marginal Suitability Line (MSL) with an SIV between 0.41–0.59. In general, the MSL are observed around lat.14 °N in the Sahel AEZ (northern Sahel) for the simulation across the region except for the one observed around lat. 12 °N, the boundary between the Sahel and Savanna AEZ. The RCA4 simulation of all crop types examined, legumes (cowpea and groundnut), root and tuber (cassava, plantain, Yam, white yam), cereals (maize, pearl millet and sorghum) and fruit and horticultural crops (mango, orange, pineapple and tomato) shows that all the crops are very suitable to the south of the MSL but with no or low suitability to the north (Figure 3, Figure 4, Figure 5 and Figure 6, column 1).



Along the coastal areas, legumes and root and tuber crops are suitable along the south-west coast of Senegal to the south-west coast of Cameroon. High SIV are observed for the root and tuber crops, plantain and Yam in the north central part of Nigeria in the Savanna. It is worth mentioning because the surrounding areas are observed to be unsuitable for the cultivation of both crops. For cereals, pearl millet is suitable along the west coast of Senegal and from the south coast Ivory Coast to the south-west coast of Cameroon. Maize is suitable from the south coast of Ivory Coast to the south-west coast of Nigeria. Fruit and horticultural crops are all suitable along the south coast of the Ivory Coast to the south-west coast of Nigeria. Mango and pineapple are suitable along the west coast of Senegal to Gambia while orange and tomato are only suitable along the west coast of Gambia.



RCA4 was also used in simulating the best planting months (PM) from the range of month in a planting window within the Length of Growing Season (LGS) over West Africa for the historical climate (Figure 7, Figure 8, Figure 9 and Figure 10, column 1). LGS provides information on the start and end of the growing season and can also assist in the simulation process of identifying the best PM within a possible planting window in a growing season over a given location. The simulated planting month represents the first month of the best three months of the planting window. For example, a simulation of April means April–June is the three best PM and varies with crop types across the three AEZs of the region. For the legumes, our simulation shows January–July as the planting windows for cowpea and groundnut over the region (Figure 7, column 1). Jan (January–March) and Feb (February–April) as the best PM for cowpea and groundnut, respectively in the central Guinea and Savanna AEZs except over Sierra Leone, Liberia and the south coast of Nigeria. The month of Feb (Feb-April) was simulated as the best three planting months in the western and eastern Savanna-Sahel AEZs for cowpea, while it was Mar (March–May) over the same area and month for the groundnut. Along the coastal areas, July is simulated as the PM along the southwest coast from southern Sierra Leone to Liberia and the south coast of Nigeria and April along the southwest coast of northern Sierra Leone. For the groundnut, April is the PM along the west coast of Guinea, while May is the PM along the west coast of Sierra Leone and northern Liberia. August and March are the PM at the south coast of Liberia and Nigeria, respectively. The months of December and January are the PMs along the south coast of Ivory Coast to Ghana for the cowpea and groundnut, respectively.



The root and tuber plantain is an annual crop that can be planted at any month of the year (Figure 9). The simulated PM is an overlay of the simulation of other months in the year as the crop may be planted in the suitable zones, Guinea and Savanna at any month/month of the year. For cassava, our simulation shows March (March–May) as the best PM generally over the region (Guinea-Savanna AEZs) except along the south-east coast of Ivory Coast to Ghana with PM in July, northern Guinea to Gambia and south east Senegal and from the boundary of Benin Republic to north west Nigeria in April. The Ecocrop simulation for Yam shows June as the best PM in the central Guinea zone from the south-east Ghana to the south-east of Nigeria and in the north central part of Nigeria as well as Togo in the central Savanna zone. The month of February is observed as the best PM from the south-east Mali to the north-western part of Nigeria in the Savanna. Over the coastal area, April is observed as the PM along the south west coast from Sierra Leone to Liberia and the south coast of Nigeria and June along the west coast of Guinea and from the south coast of Ivory Coast to the south-west coast of Ghana in the past climate.



Our simulation for cereal crops shows February as the PM for pearl millet in Guinea, March and April are the best PMs in the south Savanna and northern savanna and Sahel AEZs, respectively although with exception. For example, in central savanna, from the northern Benin Republic to the north-western Nigeria for millet, the PM is April while in the north-eastern Nigeria in the Sahel it is March compared to April in the Sahel zone. However, for the pearl millet, the PM is April in the western Sahel along the south-west coast of Senegal, June along the west coast of Guinea and January along the south coast of Ivory Coast to the south-west coast of Nigeria. For maize, the PM is simulated to be in May (May–July) in the Guinea and southern Savanna zone of West Africa while it is in December (December–February) in the northern Savanna into the Sahel zone. For sorghum, June is simulated as the PM over Sierra Leone to Liberia and its coastal areas as well as the south coast of Ivory coast and Nigeria while it is May in the central south of Ivory coast and southern Ghana. The crop is simulated to be best cultivated in January in the Savanna-Sahel zones and best in December in the northern Sahel.



The Ecocrop simulation of the best PM for the horticultural crops (Figure 10) in the past climate shows tomato is mainly planted in March over the regions except from the south-east Ivory coast to south-west Ghana and around 14 °N in the Sahel where the best PM in February, along the west and south coast of Liberia and Nigeria, respectively where the best PM is July. Pineapple is an annual crop and it shows similar characteristics as plantain as mentioned above, which can be planted at any month of the year. For the fruit crop, orange shows February as the best PM over Sierra Leone to Liberia and along the west coast from Guinea to Liberia and the south coast of Nigeria. June is observed as the best PM in the south of Ivory coast to Ghana and Nigeria as well as the south coast of the Ivory and Ghana. June is also simulated as the best PM from Guinea Bissau to north-east Nigeria around lat 14 °N in the Sahel. The Ecocrop simulation for mango in the past climate shows February as the PM from the Guinea to southern savanna AEZ, April, May in the northern savanna AEZ and June as the best PM in the southern Sahel AEZ. Along the coastal areas, March is simulated and observed as the best PM from the west coast of Guinea to Liberia and south coast of Nigeria but February over the south coast of Ivory coast and Ghana.



Nevertheless, the evaluation simulations demonstrate that (RCA4-Ecocrop) captures the spatial variation in the suitability with different crops across the three AEZs of West Africa in the present-day climate and can serve as a baseline for evaluating the changes in crop suitability under global warming at different time windows over the region. The model also captures the spatial distribution of the best planting month within a growing season for crops over the region which varies with different months of the year.




3.2. Projected Changes in Tmin, Tmean and Precip over West Africa


An increasing clear trend of warming is projected across West Africa in the future, with predictions of increases of the t-min and t-mean of approximately 1–4.5 °C (Figure 11, Row 2 and 3 respectively). The mean and minimum monthly temperature (t-mean and t-min) is predicted to increase by 1.5–2 °C in the Guinea-Savanna of the regions, about 2–2.5 °C in the Sahel and increases of about 1 °C predicted for the south-west coastal area in the near future month (2031–2050). By mid- century, the t-mean is projected to increase by 2.5 °C and 3.0 °C over the Guinea-Savanna and Sahel, respectively and 3.0 °C increase over the Guinea and 3.5 °C over the Savanna-Sahel for t-min. At the end of the century, a 4.0 °C temperature increase is projected over the Guinea-Savanna zone except the western area and 3.5 increase over the Sahel for t-mean. The projected change in the minimum temperature by the end of the century showed a different pattern over the region as the Guinea zone, southern Guinea-coastal area, is warmer than the Sahel. The projection shows an increase up to 4.5 °C in the southern Guinea (coastal area) and 4 °C inland. A similar characteristic is also observed over the Sahel as the southern Sahel (12–14 °N) is projected as warmer (4.0 °C) than north of 14 °N (3.5 °C) in the Sahel zone. The savanna zone is however different to the Guinea and Sahel as the temperature increases northward over the zone, i.e., southern Savanna (3.5 °C) is lower to the northern Savanna (4.0 °C) except for the western part of the Savanna zone, which is much cooler than the rest with an increase of 2.5 °C. Our findings are consistent with the findings by [30].



With respect to the predicted effects of climate change on rainfall, it is not a major change in the mean monthly precipitation that is projected over the region except in the south-west Guinea zone extending to the southern Guinea in the Savanna and the south coast of Nigeria (Figure 11, Row 1). The projected increase of about 10 mm extends from the south-west coastal area of Sierra-Leone to Liberia to the south-west coast of Ghana and south coast Nigeria in the near future (2031–2050) compared to the historical climate. By mid-century (2051–2070), the projected change of about 10 mm is expected in the western part of the region from the Guinea zone to the southern Sahel zone and the north-central part of Nigeria. Over the coastal area, an increase up to 25 mm is projected along the south-west coast of Sierra-Leone to Liberia and 10 mm over the south coast of Nigeria. The projection shows that no change is expected in the eastern part of the region by the mid-century. In contrast, by the end of the century, the projected change in the rainfall will be characterized by a decrease in the monthly precipitation across the entire region compared to the baseline. A gradient decrease in the rainfall is projected from south to north with a reduction up to 35 mm over the Guinea-Savanna and about 25 mm over the Sahel. Over the coastal area, a decrease above 35 mm is projected along the west coast of Gambia to northern Liberia and south coast of Nigeria. Our findings are in agreement with [30].




3.3. Impact of CCD on Future Crop Suitability over West Africa


Projected changes in the future crop suitability for all crop types varies across the three future climate windows, from the near future period (2031–2051) to the end of the century (2081–2100) (Figure 3, Figure 4, Figure 5 and Figure 6, column 2–4). The variation in the impact for the crops can may be linked to the difference in crops response to the different climate window as described in Table 2 below for the three-climate window/period. For the near future, our simulation projects a general no change in the suitability for cereals south of 12 °N except the south coast of Nigeria (Figure 3, column 1). However, a project decreases of about 0.1 SIV is expected in the south coast of Nigeria for all the cereal crop, over Guinea for pearl millet, from Sierra Leone to Liberia for sorghum and from eastern Guinea to Liberia in the western Guinea-Savanna zone. In contrast, an increase in SIV up to 0.2 is expected in the southern Sahel zone for cereals. No suitability change is projected for legumes (Figure 4, column 2) except an increase in SIV of about 0.1 in the southern Sahel (12–14 °N) and up to 0.2 in the central savanna zone, (Figure 6). On the other hand, a projected decrease of 0.1 in SIV is expected along the west coast of Sierra Leone and the south coast of Nigeria for groundnut. The projected increase in SIV provides an increase in the suitable area for the cultivation of both crops. This is so because a 0.2 increase in SIV for the marginally suitable (SIV, 0.4–0.6) areas in the southern Sahel results in the area becoming suitable (SIV, 0.6–0.8) for both crops. The projected decrease in the SIV values along the coastal areas and over Sierra Leone also does not affect the area negatively as the area remains suitable for these crops. For the root and tuber crop (Figure 5, column 2), a projected decrease of about 0.1 SIV is expected for cassava and up to 0.2 in southern Nigeria and along the west coast of Guinea to Liberia for plantain and yam extending to south of Ivory Coast for plantain. A similar magnitude decrease is also expected in the western Guinea-Savanna zone from Guinea to the western Ivory Coast. For the horticulture and fruit crops (Figure 5, column 1), a 0.1 projected decrease in SIV is expected south of 12 °N and the savanna zone for tomato and pineapple, respectively while up to 0.2 SIV decrease is expected in the south coast of Nigeria for mango and orange. However, a projected increase up to 0.2 SIV is expected in the southern Sahel for mango. The projected suitability changes are robust (i.e., at least 80% of the simulation that the climate change is statistically significant at 95% confidence level) for cassava, maize and mango in the near future month (2031–2050) while the changes are consistent for the other nine crops (i.e., at least 80% of the model agree to the sign of change).



The Ecocrop suitability simulation by mid-century (2051–2070) shows a projected increase in the magnitude of change of SIV and spatial suitability distribution of suitable areas compared to the past climate for the different crop types. The projected spatial suitability distribution for mid-century shows a similar spatial pattern as the near future period (2031–2050) with an increase in the suitability spatial extent and the magnitude of change in SIV. For cereals (Figure 3, column 3), the projected change is like the spatial suitability pattern as the near future period except for the spatial extension in the suitable area further north in the central Sahel zone for pearl millet. In contrast, a decrease in the suitable area in the western Nigeria for pearl millet and north-west Nigeria for maize and sorghum. The legume (Figure 4, column 3) crops show a similar projected suitability spatial pattern as the near future period except a projected decrease in SIV of about 0.1 and 0.2 of the suitable area is expected in the south-west Chad Republic in the eastern Sahel zone for the groundnut and cowpea, respectively. For the root and tubers (Figure 5 column 3), a decrease of about 0.2 SIV is projected for both the plantain and yam but with a similar spatial suitability pattern as shown for the near future period. However, for cassava about 0.2 decrease SIV is projected over the guinea-Savanna zone but the area remains suitable. For the fruit and horticulture crops (Figure 6, column 3), there are no changes in the projected spatial suitability pattern as observed in the near future period by mid-century. However, there is an increase in the magnitude of change of SIV from 0.1 to 0.2 and 0.2 to 0.3 for the tomato and pineapple, respectively. All the projected suitability changes are statistically significant at 95% confidence level for cassava, maize and mango and are consistent for the other nine crops (i.e., at least 80% of the model agree to the sign of change) by mid-century (2051–2070).



The projected increase in global warming will lead to increasing the magnitude in the projected change for the crop SIV and spatial suitability distribution across different crop types by the end of the century (2081–2100). Cereal (Figure 3, column 4) as projected will be severely affected as more areas becomes less suitable by the end of the century. For legume (Figure 4, column 4), the Savanna zone will be less suitable with a decrease of about 0.1 in SIV while a decrease of about 0.2 SIV is expected along the eastern Sahel zone for groundnut as well as the south coast of Nigeria. Cowpea as projected will be more affected with a decrease of about 0.2 SIV in the northern savanna in the southern Chad Republic and Nigeria with its boundary with south-east Niger Republic in the Sahel and south-west Mali in the western Sahel zones. A decrease up to 0.2 in SIV is expected in the southern Sahel for cereal except maize with an increase of about 0.2 in the central southern Sahel zone. The root and tubers (Figure 5, column 4), show a similar spatial pattern for the decrease in the suitable area as the near future period and mid-century but with an increase in the SIV magnitude of about 0.2, 0.3 and 0.4 for yam, plantain and cassava, respectively. The fruit and horticulture crops (Figure 6, column 4) shows further reduction in the suitable area compared to the near future period with an increase up to 0.4 SIV for the horticulture crop. The Guinea-Savanna will become less suitable with a decrease of 0.1 and 0.2 SIV for orange and mango, respectively. All the projected suitability changes are statistically significant at 95% confidence level for cassava, maize and mango and are consistent for the other nine crops (i.e., at least 80% of the model agree to the sign of change) by the end of the century (2081–2100).




3.4. Impact of CCD on Crop Planting Month over West Africa


At all the three future climate windows, the Ecocrop projected change on the planting month varies for different crop types across the different AEZs of West Africa (Figure 7, Figure 8, Figure 9 and Figure 10). The impact of CCD resulted in an early or late/delay in the PM for different crops and increases in magnitude across the three zones as described in Table 3 below. It is worth stating that the change in PM describes a change in the best three planting months under the three future windows.



In the near future, cereals crops, pearl millet and sorghum are projected to experience a one-month delay over the region and up to 0.2 along the west coast of Sierra Leone to Liberia and the south coast of Nigeria (Figure 7, column 2). In contrast, the two-month delayed planting is expected over the Savanna-Sahel zone for maize. For the legumes crops, cowpea and groundnut (Figure 8 column 2, see Table 4) no projected change in the PM compared to the past climate is expected over the regions except about one-month delay (i.e., from June to July) in planting over Sierra-Leone and Liberia in the Guinea zone and the southern Sahel zone from Senegal to Chad Republic compared to the planting month (June) over the area. For the root and tuber (Figure 9 column 2), about three to four months early (February/March) the planting is projected for cassava in the near future as compared to June/July, the PM from the historical climate across the region except the north-east Nigeria and the coastal areas (Figure 9, Table 3). No change in the PM is expected in the near future over the coastal areas but about three months delay in planting is projected in the north-eastern part of Nigeria. No change in the PM is projected for plantain, an annual crop which can be planted anytime of the year while a 3–4 months delay is expected for yam except in western Guinea-Savanna and the south coast of Nigeria. For fruits and horticulture (Figure 10, column 2), no projected change in the planting month is expected for tomato and pineapple except a two-month delay over Liberia. Early planting between one to two months is expected in the Guinea-Savanna zone and about three-months delay in the planting of orange in the southern Sahel zone. About two-months and up to four-months delay in planting is projected for mango in the Guinea-Savanna zone and the northern Sahel zone, respectively while a two-month early planting of the crop is expected in the southern Sahel zone. The projected change is consistent for all crops as 80% of the simulation agree to the sign of change.



By mid (2051–2070) and end of the century (2081–2100), most crop types show a similar spatial pattern in the planting month as observed in the near future but with an increase in the magnitude of the delay or early planting period (Figure 7, Figure 8, Figure 9 and Figure 10, column 3–4). For example, cereal crops show a similar spatial pattern as projected for the near future for sorghum and pearl millet by mid-century (Figure 7, column 3) and the end of the century (Figure 7, column 4) except over Liberia and south coast of Nigeria for pearl millet. These areas are expected to experience a 2–3-month delay in planting. Legume crops, cowpea and groundnut show similar characteristics of no projected change in the PM as the near future period but for an increase in the magnitude a delay period in the south coast of Nigeria and southern Liberia. A delay in planting from one to two months is expected from Sierra-Leone to Liberia and over the south coast of Nigeria for cowpea by mid-century (Figure 8, column 3) and up to three months by the end of century (Figure 8, column 4). A two-month delay in the PM is projected over southern Liberia and a one-month delay in the southern Sahel zone by mid and end of the century (Figure 8, column 3–4). For the root and tuber crops (Figure 9, column 3–4), about a four-month delay in planting is projected over the Savanna zone except the western area of the zone and in the central Guinea zone by mid-century for yam (Figure 9, column 3). A similar pattern is projected by the end of the century for crop (Figure 9, column 4). No change in the planting period is projected for plantain because it is annual crop over these two periods. For cassava a month delay planting by mid-century and up to two-months by the end of the century is projected in the western Guinea-Savanna zone while an early planting is expected in other parts of the Savanna zone and north of the Guinea zone over the two-climate change period. For the fruit and horticulture crops, there is no change in the PM for pineapple being an annual crop. A one-month PM delay is projected for tomato over the region and up to two-months over Liberia by mid and end of the century. However, a projected two-month early planting is expected by the end of the century in the southern Sahel zone. For fruit crops, a four-month early planting compared to the historical climate is projected in the Guinea-Savanna zone with a delay of about three-months in the south Sahel by mid-century. By the end of the century, an early planting of about four-month early compared to the historical climate is projected over the region for orange. Similarly, a two-month early planting is projected for mango in the southern Sahel zone for mid and up to three-months by the end of the century. In contrast, a delay in planting of about two-three months is expected over the Guinea-Savanna zone and up to four-months in the northern Sahel zone. All the projected changes are consistent for all crops as 80% of the simulation agree to the sign of change over the two climate periods.




3.5. Trends in Projected Crop Suitability and Crop Planting over West Africa


We used the Theil-Sen slope to evaluate the trend in the projected suitability and month of planting for the crop types for the near future, mid and end of the century over West Africa (Table 4 and Table 5). The trend describes the rate of increase and decrease of the suitable area and SIV with increasing warming over the three-window month. In general, all the crop types show an increasing trend in the projected change in the crop suitability compared to the past climate from the near future to the end of the century when compared to the past climate except for yam (Table 4). The projected change in the suitability index value of suitable areas for tomato showed the highest trend value from 1.219 in the near future month to 1.997 by the end of the century. Compared to other crops, our analysis showed that there was a decreasing trend (from 0.873, the near future to 0.779, end of the century) for yam in the projected suitability change with increasing warming across each time of month from the near future to the end of century over West Africa. Additionally,, there was decrease in the trend between the near future month and mid-century month in the projected change for orange but later increased at end of the century. Moreover, there was no trend in the projected change in the suitability for cowpea over the near future month and mid-century but there was increase in the trend of the projected change for the crop by the end of the century.



Our Theil-Sen slope trend analysis shows a general decreasing trend in the projected change in the planting month compared to the past climate for the different crop types except for orange which gives an increasing trend pattern of the projected planting for all the crop (Table 5). Our trend analysis test show there was no change in the projected change in planting for plantain, pineapple (1.000) and for sorghum for the near future and mid-century month (1.000).





4. Discussion


4.1. Crop Type Sensitivity to CCD and Impact on Food Security


Horticulture, cereals, root and tubers (hereafter HCRT) crops, respectively will be the most impacted by the climate change/departure impact from the historical variability in West Africa. All the five different crop types show a different response to the impact of the global warming induced CCD across the examined three-window month, near the future to the end of the century in West Africa. The variability in the response of the different crop types to CCD is very cardinal to the agricultural production and food security in the region. HCRT are the most negatively affected with decreasing suitability across the three AEZs of West Africa due to the impact of the climate change compared to the legumes and fruit crops. In terms of sensitivity, the HCRT crop suitability show a negative linear relationship with increasing global warming over the region except for cereals with a positive linear relationship in the southern Sahel zone. The negative linear relationship is observed notably over the Guinea-Savanna zone for the HCRT resulting in a decrease in the crop suitable area with increasing warming across the three months examined. The projected negative linear relationship due to an increase in global warming may result in a decrease in the yield of these crop types over West Africa due to a decrease in the crop suitable land [6,64]. For example, previous studies (e.g., Lobell et al. [65], Sultan et al. [15]) have revealed that the impact of climate change will result in a decrease in the yield of cereals by 20% in the near future month over West Africa. Additionally, the result is in line with the findings of [32] that there will be a decline in the suitability and suitable cultivated areas for cassava due to a result of the temperature increases but the crop will remain suitable over the region. In addition, our result also agrees with [66] findings that increasing warming will lead to a decrease in the availability of the suitable land for the cultivation of horticulture with a direct implication on the horticultural production. This agrees with [14] that the variability in the climate will lead to a reduction in the yield quantity of pineapple in Ghana which is one of the key producers of pineapple, which may be linked to the decrease in the suitable areas and SIV as projected in this study.



The projected impacts of CCD on crop suitability will further compound the challenge of food security in West Africa. This is in line with past findings that climate variability and change in the coming decades will further threaten food security in sub-Saharan Africa notably West Africa, a region that plays a major role in the agricultural production [1,7]. West Africa for about 24 years mainly accounts for about 60% of the total value of agricultural outputs within Africa [7]. However, the story has not been the same since 2007 due to instability in the agricultural production over the region and this has been a source of concern [7]. As a result, the projected decrease in crop suitability due to a reduction in the suitable area for crop cultivation coupled with the projected delay in the month of planting will both strongly have a negative impact on the crop yield and agricultural production. This may further plunge the plan for food security in the region into a mirage.




4.2. Impact of CCD on Spatial Suitability Distribution


The impact of CCD will lead to a projected variability in the spatial suitability distribution across the three AEZs for the three future months and different crop types. The magnitude of deviation due to the increase in warming may influence the suitability over the zones as well as crop sensitivity to the projected change in the climate. The crop growth and yield are directly proportional to the climate-crop threshold i.e., climate suitability/threshold [67]. It is important to note that each crop has their climatic or suitability threshold for healthy growth, development and optimal yield and that future changes/departure in the climate generally has a reaching impact on the yield of the crop. This is further buttressed by our finding that CCD may lead to future constraint in the available cultivated area in the Guinea and southern Savanna zones of West Africa. On the other hand, it tends to provide an opportunity in the northern Savanna extending to the southern Sahel. The projected spatial constraint in the suitability and cultivated area will strongly affect the crop production and yield over West Africa. The Guinea-Savanna zone provides and significantly contributes to the agricultural production over the region and a large proportion in the continent [7]. For example, about four of the five different crop types (except the legumes) examined in the study is and will be significantly affected with the projected decrease in SIV and reduction in the cultivated area of the crops. This projected decrease in SIV and the reduction in the spatial distribution of suitable areas for cultivation of major crops such as cassava and the horticulture crops such as pineapple pose a great challenge to the economy of most countries and further raises the challenge of food security in the region. The challenge of food security arising from the projected decrease in the crop suitable area may compound the climatic stress over the region due to the increase in food production to meet the present food demand but with the projected and limited available land for cultivation are not realistic and may become a mirage with the projected increase in the population over the region by mid-century, 2050 [68,69].



On the other hand, crop suitability due to CCD from the historical variability is projected and will lead to an increase in SIV and more suitable area notably in the Southern Sahel. The increase in suitable areas provides an opportunity for more suitable areas in the region for the cultivation of cereals, legumes and mango in the southern Sahel zone (12–14 °N), plantain and yam in the Savanna zone as well as the legume crops in the central savanna zone of West Africa. The projected increase into the Sahel agrees with the previous finding for maize in the Sahel zone with CCD. This shows that the crop spatial suitability distribution and productivity are highly sensitive to variations in the climate such that a departure of the future African climate from the recent range of historical variability will have the most devastating effect on agriculture over the continent [70,71,72].




4.3. Implication for Socio-Economic Development and Strategy Policy


The above result provides a basis for developing the policy and strategy to reduce future crop loss due to a lack of suitable land and risks of food security over West Africa. At the same time, it advocates for a more proactive response to increase resilience and adaptive options via the urgency and timing of adaptation. For instance, the analysis of crop suitability indicates that a greater proportion of suitable land areas in the West African region may become less suitable or unsuitable in the future from CCD due to global warming, which may enhance a decrease in the crop yield and agricultural production of some crop. On the other hand, the analysis showed an expansion of the suitable area into the Sahel for the cereal and legume crops with CCD, which provide future opportunities for more suitable areas for the cultivation of one of the most staple crops, maize. This will have both positive and negative impacts on regional development and economic activities (e.g., regional trade and international relation in terms of exports and importing goods). The increasing population also implies that the demand for food will be on the increase. However, the projected change in suitability also suggests that a well-planned land use change (through the urgency of adaptation to the CCD) could help reduce the impacts of CCD on the crop yield and food security in the region. Hence, there is a need for the formulation of a strategic policy that can accommodate or encourage such a land-use change. A strategic policy is also required more importantly for the new opportunities such as an expansion into the Sahel for maize and the other crops that may arise out of the impact of CCD over the region. Hence, the results can guide policymakers on how to prioritize their adaptation plan in terms of the urgency of response and redefine mitigation measures to the future impact of CCD on the crop suitability and planting season over West Africa.





5. Conclusions


Summary and Conclusions


In investigating the impact of CCD on the crop suitability and planting month over the entire West African region, we analyzed 10 CMIP 5 GCM datasets downscaled by CORDEX RCM, RCA4 for five different crop types, cereal (maize, pearl millet and sorghum), fruit (mango and orange), horticulture (pineapple and tomato), legume (cowpea and groundnut) and root and tuber (cassava, plantain and yam). The summary from our study are as follows:



We suggest that projected changes in the temperature may lead to an increase between 1–4.5 °C for the minimum and mean temperature over West Africa from the near future to the end of the century. A change of about 10 mm is projected over the western Guinea-Savanna zone and no major changes in other parts of the region and up to 25 mm along the coastal areas (west coast of Sierra-Leone to south-west Ghana and the south coast of Nigeria) for the near future and mid-century. A projected decrease up to 25 mm is expected over the region and up to 35 mm over the coastal area (from the west coast of Gambia to north Liberia) by the end of the century.



Addressing our main objective, the Ecocrop simulated spatial suitability distribution of the crops shows higher suitability are to the south of 14 °N while a lower suitability is to the north. The marginal suitability line (around 12–14 °N) shows the transition between the higher and lower suitability of the crop. Results show that the horticulture crops, pineapple and tomato, respectively are the most negatively affected by the impact of CCD from the historical variability over the region. There is a projected constraint showing a negative linear correlation with increasing warming in the cultivation of most different crop types except for cowpea in the Guinea-Savanna AEZs (south of 14 °N) by the end of the century due to an increasing reduction in the suitable area and crops suitability index value due to the climate departure although most of the crop remains suitable. The impact of CCD will provide opportunities for more suitable areas in the southern Sahel zone for cereals, mango and legumes crops showing a positive linear correlation with increasing warming thus creating more land for cultivation, which can in turn increase the yield and production of the crops. Generally, a projected delay of 1–4 months is expected for most of the crop types with CCD except for orange and cassava as well as maize in the Savanna zone. No projected changes are observed for plantain and pineapple, mainly because they are annual crops.



Statistically, we demonstrated that over 80% of the simulations agree with the sign of the projected change for all the crop types due to the CCD and the changes are statistically significant at 95% confidence interval for maize, cassava and mango. Additionally, we showed there is an increasing trend in the projected crop suitability for all crops except yam with a decreasing trend due to CCD from the historical variability while a decreasing trend is projected for the future change in the month of planting of the crops.



Despite our analysis, the results of this study can be improved and applied to reduce the future impact of crop suitability and risks of food security over West Africa in many ways. For instance, future studies may investigate the impact of CCD on the crop suitability and planting season over the region using more RCMs with different forcing GCMs other than only RCA4. This may help resolve the challenge of uncertainty in the future simulation of the crop suitability and planting season. In addition, the results of the study will be more robust and improve our knowledge on the impact of CCD and its influence on the crop suitability and planting season over West Africa. Further studies on how to reduce the uncertainty will improve the credibility and application of the results. Nevertheless, the present work shows the impact of CCD on the crop suitability and planting season using GCMs downscaled with RCMs. This establishes a premise for future work in advancing our knowledge into how CCD influences the crop suitability and planting season in West Africa.



In conclusion, the application of the concept of CCD in this study has demonstrated future changes in how the crop suitability and planting season can be analyzed. The application of CCD established the impact of climate change on crop suitability over West Africa and further identified spatial variability in the future suitability showing that horticulture, cereal, root and tubers crops will be most negatively affected by the impact of CCD in West Africa. It also identifies the three best planting months in a growing season and the changes in the planting time is about four month delay in the planting season for most crops but early planting for cassava, orange and maize but only in the savanna zone. The application of CCD aims to underpin future works to advance the study of future changes in crop suitability and planting in any region of the world. This type of analysis is important for adaptation options and planning for future changes in the crop suitability and planting period to improve food security.
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Figure 1. The study area, showing the West African topography and the three Food and Agriculture Organization (FAO) agro-ecological zones, designated as Guinea, Savannah and Sahel, respectively [24,25]. 






Figure 1. The study area, showing the West African topography and the three Food and Agriculture Organization (FAO) agro-ecological zones, designated as Guinea, Savannah and Sahel, respectively [24,25].



[image: Climate 07 00102 g001]







[image: Climate 07 00102 g002 550] 





Figure 2. A simulated spatial distribution of the crop harvested area and suitability over West Africa for the year 2000 as simulated by the MIRCA2000 dataset and Ecocrop, respectively. The blue area (represented by 1) are the crop harvested area around the year 2000 as simulated by the MIRCA2000 dataset while the yellow colour represents the suitability index value above0.2 (SIV ≥ 0.2) which is represented by two. The red colour represents the area where the two datasets agree as denoted by three. The number at the left-hand corner represents the spatial correlation (r ≥ 0.7) value between the two datasets. The red colour depicts in Fig. 2a-2f depicts harvested and suitable areas as simulated by MIRCA2000 and Ecocrop from cassava to sorghum respectively. The blue colour depicts MIRCA2000 simulated harvested area only for each crop while yellow means Ecocrop simulated suitable areas for cultivation of each crop in year 2000. The purple colour, 0 depicts non harvested and unsuitable areas as simulated by both MIRCA2000 and Ecocrop for each of the crops around the year 2000. 
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Figure 3. Simulated spatial suitability distribution for the cereal crops, maize pearl millet and sorghum over West Africa for the historical month (1981–2000) (column 1) and the projected change in the crop suitability for the near future month (2031–2050), mid-century (2051–2070) and end of century (2081–2100) (column 2–4, respectively). The vertical strip (|) indicates where at least 80% of the model simulations agrees on the projected sign of change while the horizontal strip (−) indicates where at least 80% of the model simulations agree that the projected change is statistically significant at 99% confidence level. The cross (+) indicates where the two conditions are met, meaning that the change is robust. 
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Figure 4. Same as Figure 3 but for the legume crops, cowpea and groundnut. 
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Figure 5. Same as Figure 3 but for the root and tuber crops, cassava, plantain and yam. 
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Figure 6. Same as Figure 3 but for the fruit crops, mango and orange and horticultural crops, pineapple and tomato. 
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Figure 7. Simulated month of planting for cereals, maize, pearl millet and sorghum over West Africa for the historical month (1981–2000) (column 1) and the projected change in the crop planting month for the near future month (2031–2050), mid-century (2051–2070) and end of century (2081–2100) (column 2–4 respectively). The planting is simulated from September to August. The vertical strip (|) indicates where at least 80% of the model simulations agrees on the projected sign of change while the horizontal strip (−) indicates where at least 80% of the model simulations agree that the projected change is statistically significant at 99% confidence level. The cross (+) indicates where the two conditions are met, meaning that the change is robust. 
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Figure 8. Same as Figure 7 but for the legumes, cowpea and groundnut. 
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Figure 9. Same as Figure 7 but for the root and tubers, cassava, plantain and yam. 
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Figure 10. Same as Figure 7 but for the fruit and horticultural crops. 
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Figure 11. Projected changes in the total monthly rainfall (PRE), minimum (TASMIN) and mean (TAS) monthly temperature over West Africa as simulated by RCA4 for the near future month (2031–2050), mid-century (2051–2070) and the end of the century (2081–2100). 
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Table 1. List of dynamically downscaled Global Climate Models (GCMs) used in the study.
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	Modelling Institution
	Institute ID
	Model Name
	Resolution





	Canadian centre for climate modelling and analysis
	CCCMA
	CanESM2
	2.8° × 2.8°



	Centre National de Recherches Meteorolo-Giques/Centre Europeen de Recherche et Formation Avanceesencalcul scientifiqu
	CNRMCERFACS
	CNRM-CM5
	1.4° × 1.4°



	Commonwealth Scientific and Industrial Research Organisation in collaboration with the Queensland Climate Change Centre of Excellence
	CSIRO-QCCCE
	CSIRO-Mk3.6.0
	1.875° × 1.875°



	NOAA geophysical fluid dynamic laboratory
	NOAAGDFL
	GFDL_ESM2M
	2.5° × 2.0°



	UK Met Office Hadley centre
	MOHC
	HadGEM2-ES
	1.9° × 1.3°



	EC-EARTH consortium
	EC-EARTH
	ICHEC
	1.25° × 1.25°



	Institute Pierre-Simon Laplace
	IPSL
	IPSL-CM5A-MR
	1.25° × 1.25°



	Japan agency for Marine-Earth Science and Technology
	MIROC
	MIROC5
	1.4° × 1.4°



	Max Planck institute for meteorology
	MPI
	MPI-ESM-LR
	1.9° × 1.9°



	Norwegian climate centre
	NCC
	NorESM1-R
	2.5° × 1.9°
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Table 2. Projected changes in crop suitability over West African AEZs at different future window periods.
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Crops

	
Near Future (2031–2050)

	
Mid-Century (2051–2070)

	
End-Century (2081–2100)




	
Guinea

	
Savanna

	
Sahel

	
Guinea

	
Savanna

	
Sahel

	
Guinea

	
Savanna

	
Sahel






	
Cassava

	
No change remains suitable

	
No change remains suitable

	
No change remains unsuitable

	
A 0.2 SIV decrease but still suitable

	
A 0.2 SIV decrease but still suitable

	
Same as GWL1.5

	
About 0.4 SIV decrease still suitable

	
About 0.4 SIV decrease but still suitable

	
Same as GWL1.5




	
Plantain

	
About 0.1 SIV decrease but still suitable

	
A 0.1 & 0.2 SIV decrease and increase in west and central respectively

	
No change unsuitable

	
About 0.2 decrease in SIV but still suitable

	
A 0.2 SIV decrease and increase in west and central respectively

	
No change remains unsuitable

	
About 0.4 SIV decrease may become marginally suitable

	
About 0.4 and 0.2 SIV decrease to the west and central respectively

	
No change unsuitable




	
Yam

	
Suitable, but not along the coastal area

	
Only suitable in the west & central Savana

	
No change, unsuitable

	
Same as in GWL1.5

	
Same as GWL1.5

	
Same as GWL1.5

	
Same as in GWL1.5

	
Same as GWL1.5

	
Same as GWL1.5




	
Maize

	
No change but 0.1 decrease SIV northern Cameroon

	
Suitable, but not along the west coast of Guinea to Sierra Leone

	
About 0.2 SIV increase, now suitable over the southern Sahel

	
No change in suitability

	
About 0.1 SIV decrease but still suitable

	
Same as GWL1.5

	
No change in suitability

	
About 0.2 decrease in SIV but still suitable

	
Same as GWL1.5 but SIV increase up to 0.3




	
Pearl millet

	
No change but very marginal suitability in the south coast Nigeria and north Liberia

	
No change but about 0.1 SIV decrease in eastern Guinea

	
About 0.2 SIV increase make northern Sahel suitable

	
Same as GWL1.5

	
Same as GWL1.5

	
Same as GWL1.5

	
Same as GWL1.5

	
About 0.3 decrease in SIV but still suitable

	
A 0.4 SIV decrease in west Sahel but still suitable




	
Sorghum

	
No change in suitability

	
No change in suitability

	
About 0.2 SIV increase make northern Sahel suitable

	
No change in suitability

	
About 0.1 decrease in SIV but still suitable

	
About 0.1 SIV increase makes Sahel suitable

	
About 0.1 decrease in SIV but still suitable

	
About 0.2 SIV decrease west respectively

	
Above 0.2 SIV decrease but still suitable




	
Mango

	
No change in suitability

	
No change in suitability

	
No change in suitability

	
About 0.1 decrease in SIV but still suitable

	
About 0.1 decrease in SIV but still suitable

	
About 0.1 increase in SIV but still unsuitable

	
About 0.2 SIV decrease but still suitable

	
About 0.2 SIV increase but still unsuitable

	
About 0.2 SIV increase but still unsuitable




	
Orange

	
About 0.1 SIV increase

	
About 0.1 SIV increase

	
No change in suitability

	
Same as GWL1.5

	
Same as GWL1.5

	
Same as GWL1.5

	
About 0.2 SIV decrease but still suitable

	
About 0.2 SIV decrease but still suitable

	
Same as in GWL1.5




	
Pineapple

	
No change in suitability

	
About 0.2 SIV decrease but still suitable

	
No change in suitability

	
About 0.1 decrease but still suitable

	
About 0.3 decrease but still suitable

	
Same as GWL1.5

	
About 0.4 decrease but still suitable

	
About 0.4 SIV decrease but still suitable

	
Same as GWL1.5




	
Tomato

	
About 0.1 decrease but still suitable

	
About 0.1 decrease but still suitable

	
No change in suitability

	
About 0.3 decrease but still suitable

	
About 0.3 SIV decrease but still suitable

	
Same as GWL1.5

	
About 0.4 decrease but still suitable

	
About 0.4 SIV decrease but still suitable

	
Same as GWL1.5




	
Cowpea

	
No change in suitability

	
No change in suitability

	
About 0.2 SIV increase make southern Sahel suitable

	
Same as GWL1.5

	
Same as GWL1.5

	
Same as GWL1.5

	
Same as GWL1.5

	
About 0.1 decrease in SIV but still suitable

	
Same as GWL1.5




	
Groundnut

	
No change in suitability

	
No change in suitability

	
About 0.2 SIV increase makes southern Sahel suitable

	
Same as GWL1.5

	
Same as GWL1.5

	
Same as GWL1.5

	
Same as GWL1.5

	
About 0.1 decrease in SIV but still suitable

	
Same as GWL1.5
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Table 3. Projected changes in time of planting (crop planting months) over West African AEZs at different global warming levels.
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Crops

	
Near Future (2031–2050)

	
Mid-Century (2051–2070)

	
End-Century (2081–2100)




	
Guinea

	
Savanna

	
Sahel

	
Guinea

	
Savanna

	
Sahel

	
Guinea

	
Savanna

	
Sahel






	
Cassava

	
Delayed planting for one month

	
Early planting by four months

	
Not applicable

	
Same as GWL1.5

	
Same as GWL1.5 but for more area

	
No planting date

	
Same as GWL1.5

	
Same as GWL1.5

	
No planting date




	
Plantain

	
No change in planting date

	
No change in planting date

	
No change in planting date

	
No change in planting date

	
No change in planting date

	
No change in planting date

	
No change in planting date

	
No change in planting date

	
No change in planting date




	
Yam

	
On month delayed planting

	
No change in planting date

	
No change in planting date

	
Same as GWL1.5

	
Same as GWL1.5

	
No change in planting date

	
Same as GWL1.5

	
Same as GWL1.5

	
No change in planting date




	
Maize

	
Three months delayed planting

	
Four months early and delay planting in east and west respectively

	
No change in planting date

	
Same as GWL1.5

	
Same as GWL1.5

	
No change in planting date

	
Same as GWL1.5

	
Same as GWL1.5

	
No change in planting date




	
Pearl millet

	
One-month delayed planting

	
Two months delayed planting

	
Two months delayed planting

	
Same as GWL1.5

	
Same as GWL1.5

	
Same as GWL1.5

	
Same as GWL1.5

	
Same as GWL1.5

	
Same as GWL1.5




	
Sorghum

	
No change in planting date

	
No change in planting date

	
No change in planting date

	
No change in planting date

	
No change in planting date

	
No change in planting date

	
No change in planting date

	
No change in planting date

	
No change in planting date




	
Mango

	
Delayed planting for two months

	
Early planting by four months

	
One-month delay in southern Sahel zone

	
Same as GWL1.5

	
Same as GWL1.5 but for more area

	
No planting, date

	
Same as GWL1.5

	
Same as GWL1.5

	
No planting date




	
Orange

	
One-month delayed planting

	
No change in planting date

	
No change in planting date

	
Same as GWL1.5

	
Same as GWL1.5

	
No change in planting date

	
Same as GWL1.5

	
Same as GWL1.5

	
No change in planting date




	
Pineapple

	
No change in planting date

	
No change in planting date

	
No change in planting date

	
No change in planting date

	
No change in planting date

	
No change in planting date

	
No change in planting date

	
No change in planting date

	
No change in planting date




	
Tomato

	
One-month delayed planting

	
No change in planting date

	
No change in planting date

	
Same as GWL1.5

	
Same as GWL1.5

	
No change in planting date

	
Two months delayed planting

	
One-month early planting

	
No change in planting date




	
Cowpea

	
One-month delayed planting

	
Two months delayed planting

	
Two months delayed planting

	
Same as GWL1.5

	
Same as GWL1.5

	
Same as GWL1.5

	
Same as GWL1.5

	
Same as GWL1.5

	
Same as GWL1.5




	
Groundnut

	
No change in planting date

	
No change in planting date

	
No change in planting date

	
No change in planting date

	
No change in planting date

	
No change in planting date

	
No change in planting date

	
No change in planting date

	
No change in planting date
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Table 4. Trends in the projected change in suitability over West Africa for the near future, mid and end of the century periods for different crops.
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	Crops/Period
	2031–2050
	2051–2070
	2081–2100





	Cassava
	1.053
	1.141
	1.497



	Cowpea
	1.000
	1.000
	1.002



	Groundnut
	1.000
	1.001
	1.030



	Maize
	1.007
	1.021
	1.082



	Mango
	1.013
	1.046
	1.137



	Orange
	0.981
	0.974
	1.089



	Pearl millet
	1.007
	1.022
	1.057



	Pineapple
	1.061
	1.216
	1.580



	Plantain
	1.017
	1.025
	1.215



	Sorghum
	1.007
	1.018
	1.032



	Tomato
	1.219
	1.421
	1.997



	Yam
	0.873
	0.784
	0.779
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Table 5. Trends in the projected change in the month of planting over West Africa for the near future, mid and end of the century periods for the different crops.






Table 5. Trends in the projected change in the month of planting over West Africa for the near future, mid and end of the century periods for the different crops.





	Crops/Period
	2031–2050
	2051–2070
	2081–2100





	Cassava
	1.125
	1.171
	0.974



	Cowpea
	0.972
	0.957
	0.887



	Groundnut
	0.969
	0.952
	0.857



	Maize
	1.000
	0.990
	0.950



	Mango
	1.000
	0.976
	0.909



	Orange
	1.000
	1.111
	1.930



	Pearl millet
	0.980
	0.959
	0.912



	Pineapple
	1.000
	1.000
	1.000



	Plantain
	1.000
	1.000
	1.000



	Sorghum
	1.000
	1.000
	0.944



	Tomato
	0.938
	0.900
	0.851



	Yam
	1.000
	0.924
	0.909
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