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Abstract: Extreme heavy rainfall events in the hilly region pose a great threat to public safety and
causes dangerous landslides in the region. Several factors contribute to a landslide and, hence, it is
essential to analyze the causes of such related incidents in all possible ways. Though rainfall is the
major triggering factor for most of the landslides in the Western Ghats, the long period antecedent
moisture level prevailing in the soil of a hilly terrain cannot be ignored. Few of the drought assessing
and monitoring indices available in literature can be adopted to predict the degree of wetness from
long-term precipitation data of the region. In the present work, three moisture level assessment
indices, namely, standardized precipitation index (SPI), China Z-index (CZI), and statistical Z-Score
(SZS) index are used to categorize the antecedent moisture level of Coonoor station. Monthly rainfall
data for a period of 81 years is used for the study. It is evident from the study that higher level of
moisture followed by heavy rainfall triggers medium- to large-scale landslides. Further, from the
study it is inferred that an early warning for a landslide can be given once cumulative rainfall exceeds
300 mm during continuous storm periods.

Keywords: rainfall; landslide; moisture; standardized precipitation index (SPI); China Z-index;
statistical Z-score

1. Introduction

Landslides due to rainfall infiltration along the slope of the hilly terrain and cut slopes is one
of the important research areas in landslide investigations, for which short-duration rainfall data is
essential [1]. It is scientifically important to predict the spatial and temporal occurrence of landslides
triggered by rainfall due to its severe threat on human life and property [2]. Detailed landslide
inventory of the region can help in getting an insight on the nature of landslides, mechanisms, temporal
occurrence, and its frequency [3]. High-quality landslide inventories can be created with accurate
spatial locations for quantitative landslide hazard and risk assessments [4]. The hill and mountainous
terrains of India are experiencing more landslides due to rapid population growth [5]. Using daily
rainfall to assess the antecedent moisture condition prior to landslide events is very common in the
absence of short-duration rainfall data. Evaluation of wet and dry conditions can be made using
drought indices where the range for extreme drought to extreme wet is defined from rainfall data.
Such indices can be adapted for five days, weekly, monthly, seasonally, and annually for better
correlation with landslide events. The standardized precipitation index (SPI) is commonly used to
assess the moisture level of a station or region and it requires only rainfall data. Though most of
the drought indices are generally used to assess the dryness of a place that leads to different degrees
of drought severity, SPI, China Z-index, and statistical Z-score give ranges for moisture level in wet
conditions too. Hence, these three drought indices are used to assess the moisture level of the hilly
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terrain. There is not much work carried out to relate moisture level calculated using drought indices
with landslide events. The present study aims to understand rainfall as a triggering mechanism due to
antecedent moisture condition and to establish a rainfall threshold using moisture level indices.

Understanding the relationship between rainfall and landslide occurrences has invited several
researchers to investigate this hydro-geological phenomenon and, also, it is to be noted that rainfall is
the most common landslide-triggering factor in many regions in the world [6]. Several studies confirm
that rainfall contributes to the instability of hilly slopes due to infiltration of rain water that could
result either in the decrease of soil suction by a moving wetting front or increase of pore pressure by a
rising water table. Kawagoe et al. [7] indicated that landslides in Japan are closely associated with
its rainfall exceeding threshold values of precipitation. It is to be noted from various literatures that
cumulative rainfall, antecedent rainfall, rainfall intensity, and rainfall duration are the most commonly
investigated rainfall parameters for landslide initiation. Investigations by Chowdhury and Flent Je [8]
states that landslides triggered by rainfall needs complete understanding of the association between
the parameters—landslide, frequency of landslides, frequency of heavy rainfall event, subsurface
shear movement, and magnitude of pore pressure at the existing landslide locations—and the study of
characteristics of rainfall magnitude that causes landslides. Jaiswal [9] indicated that landslides in
the selected area of Western Ghats is mostly in the form of debris slides or debris flow triggered by
high-intensity or prolonged rainfall.

Coonoor station receives rainfall during both the monsoon periods of Tamilnadu state. But, rainfall
during the northeast monsoon is found to be very strong and often happens for longer durations,
which brings several consecutive rainfall events during this monsoon season. Coonoor station is
connected with the plain area by few roads, in which the Coonoor–Mettupalayam highway has a high
traffic volume and is the main connecting corridor for passengers and goods carriers. Hence, a detailed
analysis of moisture condition of a segment of this area is essential to predict and understand the
landslide and debris flow occurrences in the mountainous region. Intense rainfalls of short durations
usually occur within longer-duration storms rather than as isolated events. Several such events build
up moisture in the hill soil, which could be one of the potential triggering factors for landslides.

2. Study Area

Coonoor Town (Lat: 11◦21′0.7488′′ N and Long: 76◦47′45.9744′′ E) is the second largest hill station
in the Nilgiris district of Tamilnadu State, India (Figure 1), and also it is a most preferred tourist
destination of the region. Areas surrounding the town are most affected by landslides. It is located at
an altitude of 1850 m above MSL and has a population of about 45,494 people according to the 2011
census. The climate falls under the sub-tropical highland type according to the Köppen classification
system. Charnockite is the most prevalent bedrock material, covered with laterite, which forms an
irregular soil horizon, and rocks are of metamorphic origin. Thick yellowish to reddish brown soil can
be seen in the region, which would have resulted due to the sub-tropical climate and intense physical
and chemical weathering [5]. Tea plantations and tourism are the prime activities of the region and
are the source of economy of the town. This town receives heavy rainfall during northeast monsoon
periods and brings a lot of landslides during the active monsoon period. Increased occurrences of
landslides in Nilgris have been noticed in the past three decades [10]. As intense rainfall occurrence
is witnessed around the globe, it is important to study the prospect of rainfall that has a triggered
several landslides.
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3. Standardized Precipitation Index (SPI)

Precipitation anomalies are a chronic feature of the global climate and it affects various components
of the hydrologic cycle to produce droughts and floods. SPI considers only precipitation data of a
station for its computation to represent abnormal wetness and dryness. SPI basically represents the
difference of precipitation from the mean divided by the standard deviation. The mean and standard
deviation should be determined from past continuous records, preferably a minimum of 30 years of
data. Using this, anomalies of rainfall can be standardized. This standard value can be used to assess the
moisture level of the region. McKee et al. [11] developed the SPI to assess the climate variability using
precipitation data alone. It is well known that rainfall data could be best fitted by Gamma distribution.
SPI normalize the rainfall data by fitting into Gamma distribution and transform the data to have
zero mean and standard deviation of one. It is interesting to note that SPI value can be calculated for
different time scales like one-month, three-month, six-month, twelve-month, and twenty-four month
to assess status of soil moisture, seasonal estimation of precipitation, ground water level, stream flow,
and reservoir storage. Further, SPI time scale of one to three-month, three to six-month, and six to
12-month are used mainly to ascertain meteorological, agricultural, and hydrological drought analyses
and applications [12]. The cumulative probability using Gamma distribution is found as follows:

G(x) =
1

βατ(α)

∫ x

0
xα − 1e−x/βdx for x > 0, (1)

where α—the shape parameter, β—the scale parameter, x—the precipitation value, and
τ(α)—Gamma function.

The α and β values can be determined using the maximum likelihood method (Thom, 1966)
as follows:
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√
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∑
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where n—number of precipitation observations and x = mean of precipitation.
As the gamma distribution is not defined for zero, Equation (1) cannot be used for zero values.

Thom (1966) suggested a method to handle zero values as follows:

H(x) = q + (1− q)G(x), (5)

where q—probability of having zero precipitation,

q =
m
n

, (6)

m—number of days having zero precipitation in the series.

4. China Z-Index (CZI)

The China Z-index was first introduced by the National Climate Centre of China to determine wet
and dry periods, assuming that precipitation follows a Pearson type III distribution and it is related to
the Wilson–Hilferty cube root transformation. The only input required to evaluate the index is monthly
precipitation [13]. The China Z-index is expressed as below:

CZi =
6

Cs

(Cs

2
Zi + 1

) 1
3
−

( 6
Cs

)
+

(Cs

6

)
, (7)

Cs =

∑n
i=1(xi − x)3

nσ3 , (8)

Zi =
xi − x
σ

, (9)

Cs—co-efficient of skewness
Zi—statistical Z-score of month i.

5. Statistical Z-Score Index (SZS)

It is customary to standardize precipitation of a station by dividing the difference in precipitation
from the mean for a specific time period with its standard deviation, and it is generally called statistical
Z-score. Several researchers used statistical Z-score as SPI [14,15]. The main advantage of this approach
is that it does not require any probability distribution like Gamma or Pearson Type III to adjust the
data. Jain et al. [16] indicated SPI calculation by statistical Z-score is found to be better in comparison
with SPI which uses Gamma distribution. In the present study, a statistical Z-score-based SPI is used
and it is calculated as follows:

Statistical Z− Score =
x − x
σ

, (10)

where x—monthly rainfall data; x—mean rainfall; σ—standard deviation of monthly data.
Table 1 presents the various level of moisture for different ranges of SPI, China Z-index, and

statistical Z-index.

Table 1. Ranges of SPI, China Z-index, and statistical Z-score for drought categorization.

Index Moisture Category

>2.0 Extremely wet (EW)
1.50 to 1.99 Very wet (VW)
1.00 to 1.49 Moderately wet (MW)
−0.99 to 0.99 Normal (N)
−1.49 to −1.0 Moderately dry (MD)
−1.99 to −1.5 Severely dry (SD)
≤−2.0 Extremely dry (ED)
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6. Moisture Severity Index (MSI)

When monthly moisture level is assessed by drought indices, it is commonly observed that some
months fall in wet and some in dry conditions. This may happen consecutively, some months in
dry and then wet, vice versa, or it may happen alternately and also randomly. The effect of wetness
or dryness of one month carries itself forward to subsequent months based on its intensity. Hence,
collective indication over a year on moisture level needs to be represented based on monthly value
moisture level rather than arriving at moisture level based on annual data. In the present work,
moisture severity index is defined as ratio between sum of positive monthly moisture index values
and the sum of negative moisture index values. This value can vary from zero to infinity. If MSI is zero
for a year, it indicates that the year does not have any wet periods and if it is infinity, then the year has
no dry period.

MSI =
∑

positive moisture index
−

∑
negative moisture index

. (11)

The proposed moisture severity index may address the average annual moisture level, but it
cannot be used for correlating with landslide events. Although, it can be used to assess surface water
and ground water levels.

7. Antecedent Precipitation Index (API)

Kohler and Linsley [17] presented the antecedent precipitation index (API) which was used in
rainfall–runoff modelling and Heggen [18] formulated normalized antecedent precipitation index by
modifying the API to include the antecedent precipitation prior to the event day, and normalizing the
station mean and antecedent series length. Build-up of moisture over consecutive rainfall events is
considered as an important triggering factor. Hence, its evaluation for a specific storm provides the
contributing time series rainfall within the longer time series.

API =
− j∑

t= −1

PtK−t, (12)

where j is the number of antecedent days; K is decay constant and it depends on watershed and seasonal
parameters. Viessman and Lewis [19] suggested that K lies between 0.8 and 0.98. It is possible to
evaluate which consecutive part of rainfall could have been the triggering rainfall when API is applied
for different time series of rainfall data prior to the landslide event. Giannecchini et al. [20] correlated
and compared with storm rainfall that triggered shallow landslides in the Serchio River valley, Tuscany,
Italy with antecedent rainfalls of three, seven, 15, and 30 days’ time intervals. The study has shown
that three to seven days cumulative rainfall will be the main triggering factor for shallow landslides.

8. Results and Discussion

Using the available 81 years of rainfall data of Coonoor station, its monthly mean, annual
mean, standard deviation, frequency of occurrence of various range of monthly rainfall, standardized
precipitation index, China Z- index, and statistical Z-score were computed. Figure 2 shows the mean
monthly rainfall and its standard deviation. It can be noticed that standard deviations of January,
February, and March are higher than its mean value. It indicates the high variability and erratic nature
of rainfall. Mean rainfall of October and November months are exceeding 300 mm and these two
months witnessed most of the moderate to severe landslides in the region. In general, in the present
study area, mean monthly rainfall of six months falls below 100 mm and the remaining six months
exceeds 100 mm rainfall. From Figure 2, it is evident that this part of the region of the Nilgris district
receives more rainfall during the northeast monsoon season than the southwest monsoon season.
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Figure 2. Monthly mean rainfall and its standard deviation in mm.

Table 2 presents the probability of occurrence of different ranges of rainfall in a month. Higher
probability for the less than 20 mm rainfall category is reported during January, February, and March
months. The above 300 mm of rainfall category is more common only in the months of October and
November. The cumulative quantity of the rainfall of these two months over continuous periods
will be useful in evaluating threshold rainfall that triggers landslides. April to September months
receives moderate monthly rainfall of 50 to 150 mm that covers a six month period and is followed
by two heavy rainfall months. Consistent moisture availability for about six months prior to the any
landslide occurrence exists in the region according to the monthly rainfall data. As the terrain also
has a moderate slope gradient, quicker surface flow can take place, which gives little opportunity
to infiltrate the soil in-depth. Hence, consecutive rainfall events can trigger landslides. Figure 3
shows annual rainfall variation over the historical year. The 81-year mean rainfall is worked out as
1674.8 mm, with annual standard deviation of 398.4 mm. It can be observed from Figure 3 that, in the
recent past, the annual rainfall exceeds the long-term mean for several years. Figure 4 presents the
variation of the southwest and northeast monsoons rainfall over the historical years. It is to be noted
that whenever the southwest monsoon rainfall is recorded as less, the northeast monsoon rainfall
is found to be more in most of the years except a few. It can be recorded from this observation of
rainfall seasonal variation that failure in one monsoon brings abundance in the other monsoon in
most of the years. The mean and standard deviation of the southwest and northeast monsoons are
353 and 94.71 mm and 872.09 and 348.11 mm, respectively. The co-efficient of variation (CV) of both
the southwest and northeast monsoons are 0.26 and 0.40 respectively. Since CV is less than one, it is
generally considered as low-variance. The variation of the northeast monsoon is significantly higher
than the southwest monsoon. The CV for the first three months of the year exceeds one and it signifies
that inter-monthly variability of rainfall is higher for these three months. Next to these three months,
the May and December months possess higher value of CV (around 0.8) and these two months are the
hottest and coldest months of the region.
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Table 2. Frequency of occurrence of various ranges of monthly rainfall (in percent).

Rainfall
Ranges January February March April May June July August September October November December

<20 39.5 40.7 33.3 7.4 2.5 8.6 2.5 3.7 0.0 0.0 1.2 7.4
20–50 19.8 21.0 12.3 16.0 16.0 34.6 24.7 16.0 16.0 0.0 2.5 14.8
51–100 14.8 11.1 21.0 22.2 40.7 34.6 48.1 45.7 29.6 3.7 6.2 13.6

101–150 17.3 6.2 11.1 24.7 25.9 21.0 18.5 23.5 24.7 14.8 8.6 14.8
151–200 1.2 8.6 7.4 13.6 8.6 1.2 4.9 7.4 17.3 6.2 7.4 17.3
201–250 3.7 4.9 7.4 9.9 0.0 0.0 1.2 2.5 6.2 13.6 12.3 3.7
251–300 2.5 6.2 2.5 2.5 2.5 0.0 0.0 0.0 4.9 16.0 7.4 7.4

>300 1.2 1.2 4.9 3.7 3.7 0.0 0.0 1.2 1.2 45.7 54.3 21.0
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Monthly, seasonal, and annual SPI, China Z-index, and statistical Z-score were calculated using
81 years of monthly data. Figures 5–7 present the variation of moisture indices over historical years
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and the corresponding variation of annual rainfall. It is to be noted that all these three indices exactly
follow the annual rainfall variation. On observation of annual variation of indices, it depicts that the
frequency of various dry levels are seldom. A greater number of years falls in the normal moisture
category and only a few years are identified above moderately wet. Table 3 presents the probability of
occurrence of different moisture levels at the monthly scale obtained using three indices. CZI and SZS
predict higher probability of occurrence of normal moisture levels than as per SPI for all the months
of a year. Due to this variation, these two indices show that a fewer number of months fall in the
dry category. Whereas SPI predicts higher percentage of moderate wet periods comparing with CZI
and SZS. Normalization of precipitation data according to SPI is more effectively seen than the other
two indices. Table 4 presents the inventory on the major landslides that occurred in the Coonoor
region [21,22]. It can be seen from Table 4 that the moisture category during landslide events falls
in moderate to extreme wet categories, except one event on November 2006. Around 10% of years
go above the normal moisture category and they can be recorded as major landslide event periods.
Further, two more plots are prepared to estimate probability of occurrence of monthly rainfall exceeding
300 mm (Figures 8 and 9) and mean of the ten highest monthly rainfalls. Probability of occurrence
of 300 mm and above monthly rainfall for months October, November, and December are estimated
as 45%, 54%, and 21%, respectively, whereas in the remaining months its probability of occurrence
is insignificant. All major landslides are witnessed whenever monthly rainfall exceeds 500 mm and
above according to Table 4. When observing the means of the highest 10 monthly rainfalls over the
81-year period, it is to be noted that the rainfall of the October, November, and December months
exceeded 400 mm. These events normally have continuous rainfall of more than five days, as it is part
of monsoon rainfall. In order to examine the consecutive day rainfall, the daily rainfall data for year
2009 is investigated. Table 5 presents the details of consecutive rainfall day events in each month for
year 2009.Climate 2019, 7, x FOR PEER REVIEW 9 of 16 
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Table 3. Probability of occurrence of various moisture categories using drought indices.

Index Moisture
Category January February March April May June July August September October November December

SPI

EW 0.0 0.0 0.0 0.0 2.5 1.2 2.5 2.5 1.2 3.7 1.2 1.2
VW 4.9 4.9 4.9 2.5 3.7 4.9 3.7 3.7 7.4 3.7 3.7 4.9
MW 13.6 16.0 11.1 11.1 3.7 16.0 8.6 9.9 4.9 8.6 4.9 6.2

N 61.7 56.8 67.9 75.3 81.5 63.0 71.6 70.4 66.7 65.4 77.8 76.5
MD 1.2 1.2 3.7 4.9 6.2 6.2 7.4 6.2 8.6 11.1 7.4 3.7
SD 18.5 21.0 1.2 3.7 0.0 6.2 3.7 3.7 8.6 6.2 3.7 4.9
ED 0.0 0.0 11.1 2.5 1.2 2.5 2.5 3.7 2.5 1.2 1.2 2.5

CZI

EW 3.7 1.2 4.9 2.5 1.2 1.2 2.5 1.2 1.2 3.7 3.7 2.5
VW 4.9 7.4 2.5 3.7 4.9 4.9 4.9 3.7 7.4 6.2 3.7 3.7
MW 4.9 12.3 8.6 11.1 8.6 16.0 7.4 11.1 4.9 6.2 2.5 9.9

N 86.4 79.0 84.0 64.2 64.2 63.0 71.6 70.4 67.9 65.4 74.1 67.9
MD 0.0 0.0 0.0 12.3 0.0 11.1 8.6 3.7 12.3 14.8 8.6 16.0
SD 0.0 0.0 0.0 6.2 2.5 3.7 2.5 1.2 6.2 3.7 3.7 0.0
ED 0.0 0.0 0.0 0.0 18.5 0.0 2.5 8.6 0.0 0.0 3.7 0.0

SZS

EW 7.4 7.4 4.9 4.9 3.7 3.7 3.7 3.7 4.9 4.9 4.9 6.2
VW 1.2 2.5 2.5 3.7 2.5 3.7 6.2 2.5 6.2 6.2 3.7 2.5
MW 2.5 9.9 7.4 7.4 0.0 14.8 4.9 7.4 2.5 4.9 1.2 3.7

N 88.9 80.2 85.2 65.4 91.4 63.0 72.8 76.5 70.4 65.4 76.5 76.5
MD 0.0 0.0 0.0 18.5 2.5 13.6 9.9 9.9 16.0 18.5 13.6 11.1
SD 0.0 0.0 0.0 0.0 0.0 1.2 2.5 0.0 0.0 0.0 0.0 0.0
ED 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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Table 4. Coonoor region landslide inventory and estimated moisture indices.

Month and Year
Corresponding Monthly

Rainfall (in mm)
Moisture Indices Value

SPI China Z-Index Statistical Z-Index

November, 1978 832 1.4 1.56 1.78
November, 1979 1348 2.26 2.57 3.78

October, 1990 807.7 2.21 2.26 2.82
November, 1993 1060.2 1.81 2.05 2.66
December 2001 502 1.18 1.29 1.35
November 2006 578.6 0.85 0.95 0.79
November 2009 1181 1.98 2.24 3.07
November 2015 676 1.07 1.18 1.17

Table 5. Consecutive rainfall statistics for the year 2009.

Month Total Amount
in mm

No. of Rainy
Days

No. of
Consecutive
Rainy Days

Amount of
Rainfall

Maximum Daily
Rainfall (mm)

January 10.2 2 4.6
February 0.0 0

March 84.7 4 3 80.2 49.6
April 20 1 20
May 86.2 7 3 53.2 25
June 39.8 3 3 36.4 23.2
July 74 9 7 36.4 10

August 147.6 9 8 118 43.2
September 110.8 8 8 104 39

October 138.3 11 5 74.4 27
November 1181 15 9 991.2 395
December 190 10 5 130.2 48.6

Total 2081.8 79 Year Maximum 991.2 395

(Source: Sujatha and Suribabu, [22]).

There were six incidents of more than five days of consecutive rainfall events. Among six events,
rainfall in November had a high rainfall; 395 mm within nine days continuous rainfall. 9, 10, and
11 November had 141.2, 363.0, and 395 mm rainfall, respectively, and triggered a massive landslide
on 11 November 2009. It is clear that such heavy rainfall created full saturation of soil mass before
initialization of the landslide. Kothari [23] established an equation (T = R1 + 0.491R30 − 51.293) to find
a 30-day minimum rainfall threshold value (T) by correlating the 30-day rainfall amount (R30) and the
rainfall amount on the landslide day (R1) of the Alaknanada river catchment located in Uttaranchal
State, India. In order to get the monthly threshold rainfall value for the study area, the same equation is
employed to match with the present study area. The 30-day cumulative rainfall (R30) for 11 November
2009 of 1221.7 mm and R1 rainfall of 395 mm gives the minimum threshold rainfall value of 943.56 mm.
Accordingly, the mean of the ten maximum monthly rainfall data of November is found to be close
to the threshold value obtained using Kothari’s monthly rainfall threshold equation. Though the
study areas are different, the rainfall-triggered landslides due to such heavy rainfall can be used in
comparison. The antecedent precipitation index is a measure for how rainfall occurrence in the prior
days influences the runoff that gets generated from the watershed. Debris flow in the hilly terrain
that continues over time can be a potential factor for major and minor landslides in the study area.
From the available daily rainfall data of November 2009 and October 2014, API is calculated for two
incidents of landslides. It can be seen from Figure 10 that both the landslides occurred due to five
days of antecedent precipitation, as there is very heavy rainfall prior to the landslide. Though there
are long periods of wet spells, the rainfall that occurred five days prior to the landslides could be a
driving factor for both the events. The frequent cycles of saturation of the soil pores, the movement of
subsurface flow underlying bedrock, and soil depth make the flow path on hill slope ends emerge
wherever abrupt changes in slope are witnessed. This could establish a saturated slope circle and
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reduces the shear stress along the path due to consecutive rainfalls. The soil moves suddenly once it
loses its shear strength to retain equilibrium under highly saturated conditions. This kind of incident
is commonly found along cut slopes.
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9. Conclusions

In the Coonoor town of the Nilgiri district of Tamilnadu, India, precipitation and related
phenomena, like soil moisture and pore pressure, are the main triggering factors for the occurrence
of landslides. Past incidents of large-scale landslide events depict that high-intensity rainfall within
consecutive days of rainfall events, and month with above normal moisture levels, could be the main
cause for massive landslides in the region. Coincidence of historical landslides with monthly moisture
level, monthly cumulative rainfall, and also daily rainfall indicate that whenever the moisture levels of
months exceeds normal levels, moderate to tragic landslide events occurred. Further, it is confirmed
from the study that the northeast monsoon rainfall in this region triggers landslides due to development
of antecedent moisture whenever cumulative rainfall exceeds 500 mm. According to 81 years of
monthly rainfall data, though there were 40 months in which monthly rainfall exceeded 500 mm,
landslides are reported in a few months only. High-intensity rainfall within 24 h could be the main
triggering factor for continuous rainfall periods. Early warning can be given whenever a cumulative
amount of rainfall of an event during the northeast monsoon season exceeds 300 mm. This magnitude
of rainfall can be treated as a threshold rainfall for landslides of large magnitude, which could initiate
in the region when other parameters such as soil type, soil porosity, soil moisture, hill slope, and area
of drainage catchment are kept constant. A scientific and complete landslide inventory of this region is
needed, as it could provide very valuable information on points of landslides, such as type, date of
occurrence, intensity, causality, and damage.
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