Climate Drivers and Sources of Sediment and Organic Matter Fluxes in Intermittent Rivers and Ephemeral Streams (IRES) of a Subtropical Watershed, USA
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Field Sampling
2.3. Sample Analysis
2.4. Data Analysis
3. Results and Discussion
3.1. Physical and Chemical Attributes
3.2. Source of OM in Surface Waters during Storms: Active and Contributing Areas
3.3. Storm-Driven C Dynamics
3.4. The Water Year
3.5. The Climate Connection
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Datry, T.; Corti, R.; Foulquier, A.; von Schiller, D.; Tockner, K. One for all, all for one: A global river research network. Eos 2016, 97, 12–15. [Google Scholar] [CrossRef]
- Acuña, V.; Datry, T.; Barceló, D.; Dahm, C.N.; Ginebreda, A.; McGregor, G.; Sabater, S.; Tockner, K.; Palmer, M.A. Why should we care about temporary waterways? Science 2014, 33, 1080–1081. [Google Scholar] [CrossRef] [PubMed]
- Alexander, L.C.; Autrey, B.; Demeester, J.; Fritz, K.; Goodrich, D.; Kepner, W.G.; Lane, C.R.; LeDuc, S.; Leibowitz, S.; McManus, M.; et al. Connectivity and Effects of Streams and Wetlands on Downstream Waters: A Review and Synthesis of the Scientific Evidence. EPA/600/R-14/475F. January 2015. Available online: https://nepis.epa.gov (accessed on 7 July 2020).
- Gutiérrez-Jurado, K.Y.; Partington, D.; Batelaan, O.; Cook, P.; Shanafield, M. What triggers streamflow for intermittent rivers and ephemeral streams in low-gradient catchments in Mediterranean climates. Water Resour. Res. 2019, 55, 9926–9946. [Google Scholar] [CrossRef]
- Brintrup, K.; Amigo, C.; Fernández, J.; Hernández, A.; Pérez, F.; Félez-Bernal, J.; Butturini, A.; Saez-Carillo, K.; Yevenes, M.A.; Figueroa, R. Comparison of organic matter in intermittent and perennial rivers of Mediterranean Chile with the support of citizen science. Rev. Chil. Hist. Nat. 2019, 92, 3. [Google Scholar] [CrossRef]
- Raymond, P.A.; Saiers, J.E.; Sobczak, W.V. Hydrological and biogeochemical controls on watershed dissolved organic matter transport: Pulse—Shunt concept. Ecology 2016, 97, 5–16. [Google Scholar] [CrossRef]
- Raymond, P.A.; Hartmenn, J.; Lauerwald, R.; Sobek, S.; McDonald, C.; Hoover, M.; Butman, D.; Striegl, R.; Mayorga, E.; Humborg, C.; et al. Global carbon dioxide emissions from inland waters. Nature 2013, 503, 355–359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marx, A.; Dusek, J.; Jankovec, J.; Sanda, M.; Vogel, T.; van Geldern, R.; Hartmann, J.; Barth, J.A.C. A review of CO2 and associated carbon dynamics in headwater streams: A global perspective. Rev. Geophys. 2017, 55, 560–585. [Google Scholar] [CrossRef]
- Fritz, K.M.; Schofield, K.A.; Alexander, L.C.; McManus, M.G.; Golden, H.E.; Lane, C.R.; Kepner, W.G.; LeDuc, S.D.; DeMeester, J.E.; Pollard, A.I. Physical and chemical connectivity of streams and riparian wetlands to downstream waters: A synthesis. J. Am. Water Res. Assoc. 2018, 54, 323–345. [Google Scholar] [CrossRef]
- MacDonald, L.H.; Coe, D. Influence of headwater streams on downstream reaches in forested areas. For. Sci. 2007, 53, 148–168. [Google Scholar] [CrossRef]
- Nadeau, T.; Rains, M. Hydrological connectivity between headwater streams and downstream waters: How science can inform policy. J. Am. Water Resour. Assoc. 2007, 43, 118–133. [Google Scholar] [CrossRef]
- Gomi, T.; Sidle, R.; Richardson, J. Understanding processes and downstream linkages of headwater systems. Bioscience 2002, 52, 905–916. [Google Scholar] [CrossRef] [Green Version]
- Triska, F.; Duff, J.; Sheibley, R.; Jackman, A.; Avanzion, R. DIN retention–transport through four hydrologically connected zones in a headwater catchment of the upper Mississippi River. J. Am. Water Res. Assoc. 2007, 43, 60–71. [Google Scholar] [CrossRef]
- Winterdahl, M.; Bishop, K.; Erlandsson, M. Acidification, dissolved organic carbon (DOC) and climate change. In Global Environmental Change; Freedman, B., Ed.; Springer: Dordrecht, The Netherlands, 2014; pp. 281–287. [Google Scholar]
- Mengistu, S.D.; Quick, C.G.; Creed, I.F. Nutrient exports from catchments on forested landscapes reveals complex nonstationary and stationary climate signals. Water Resour. Res. 2013, 49, 3863–3880. [Google Scholar] [CrossRef]
- Alveras-Cobelas, M.; Angeler, D.G.; Sanchez-Carillo, S.; Almendros, G. A worldwide view of carbon export from catchments. Biogeochemistry 2012, 107, 275–293. [Google Scholar] [CrossRef]
- Aufdenkampe, A.K.; Mayorga, E.; Raymond, P.A.; Melack, J.m.; Doney, S.C.; Alin, S.R.; Aalto, R.E.; Yoo, K. Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere. Front. Ecol. Environ. 2011, 9, 53–60. [Google Scholar] [CrossRef] [Green Version]
- Tank, J.L.; Rosi-Marshall, E.J.; Griffiths, N.A.; Entrekin, S.A.; Stephen, M.L. A review of allochthonous organic matter dynamics and metabolism in streams. J. N. Am. Benthol. Soc. 2010, 29, 118–146. [Google Scholar] [CrossRef] [Green Version]
- Hejzlar, J.; Dubrovsky, M.; Buchtele, J.; Ruzicka, M. The apparent and potential effects of climate change on the inferred concentration of dissolved organic matter in a temperate stream (the Malse River, South Bohemia). Sci. Total Environ. 2003, 310, 143–152. [Google Scholar] [CrossRef]
- Horton, R.E. Erosional development of streams and their drainiage basins: Hydrophysical approach to quantitative morphology. Bull. Geol. Soc. Am. 1945, 56, 275–370. [Google Scholar] [CrossRef] [Green Version]
- Dunne, T.; Black, R.D. An experimental investigation of runoff production in permeable soils. Water Resour. Res. 1970, 6, 478–490. [Google Scholar] [CrossRef]
- Hansen, W.F. Identifying stream types and management implications. For. Ecol. Manag. 2001, 143, 39–46. [Google Scholar] [CrossRef]
- Wipfli, M.; Richardson, J.; Naiman, R. Ecological linkages between headwaters and downstream ecosystems: Transport of organic matter, invertebrates, and wood down headwater channels. J. Am. Water Res. Assoc. 2007, 43, 72–85. [Google Scholar] [CrossRef]
- Wilson, H.F.; Saiers, J.E.; Raymond, P.A.; Sobczak, W.V. Hydrologic drivers and seasonality of dissolved organic carbon concentration, nitrogen content, bioavailability, and export in a forested New England stream. Ecosystems 2013, 16, 604–616. [Google Scholar] [CrossRef]
- Hatten, J.A.; Goñi, M.A.; Wheatcroft, R.A. Chemical characteristics of particulate organic matter from a small mountainous river system in the Oregon coast Range, USA. Biogeochemistry 2012, 107, 43–66. [Google Scholar] [CrossRef]
- Raymond, P.A.; Saiers, J.E. Event controlled DOC export from forested watersheds. Biogeochemistry 2010, 100, 197–209. [Google Scholar] [CrossRef]
- Moody, C.S.; Worrall, F.; Evans, C.D.; Jones, T.G. The rate of loss of dissolved organic carbon (DOC) through a catchment. J. Hydrol. 2013, 492, 139–150. [Google Scholar] [CrossRef] [Green Version]
- McClain, M.E.; Boyer, E.W.; Dent, C.L.; Gergel, S.E.; Grimm, N.B.; Groffman, P.M.; Hart, S.C.; Harvey, J.W.; Johnston, C.A.; Mayorga, E.; et al. Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems 2003, 6, 301–312. [Google Scholar] [CrossRef]
- von Schiller, D.; Graeber, D.; Ribot, M.; Timoner, X.; Acuña, V.; Martí, E.; Sabater, S.; Tockner, K. Hydrological transitions drive dissolved organic matter quantity and composition in a temporary Mediterranean stream. Biogeochemistry 2015, 123, 429–446. [Google Scholar] [CrossRef]
- Vázquez, E.; Ejarque, E.; Ylla, I.; Romaní, A.M.; Butturini, A. Impact of drying/rewetting cycles on the bioavailability of dissolved organic matter molecular-weight fractions in a Mediterranean stream. Freshw. Sci. 2015, 34, 263–275. [Google Scholar] [CrossRef]
- Vázquez, E.; Romaní, A.M.; Sabater, F.; Butturini, A. Effects of the dry–wet hydrological shift on dissolved organic carbon dynamics and fate across stream–riparian interface in a Mediterranean catchment. Ecosystems 2007, 10, 239–251. [Google Scholar] [CrossRef]
- Gómez-Gener, L.; Obrador, B.; Marcé, R.; Acuña, V.; Catalán, N.; Casas-Ruiz, J.P.; Sabater, S.; Muñoz, I.; von Schiller, D. When water vanishes: Magnitude and regulation of carbon dioxide emissions from dry temporary streams. Ecosystems 2016, 19, 710–723. [Google Scholar] [CrossRef]
- Benstead, J.P.; Leigh, D.S. An expanded role for river networks. Nat. Geosci. 2012, 5, 678–679. [Google Scholar] [CrossRef]
- Karl, T.R.; Melillo, J.M.; Peterson, T.C. (Eds.) Global Climate Change Impacts in the United States; Cambridge University Press: New York, NY, USA, 2009. [Google Scholar]
- Haarsma, R.J.; Hazeleger, W.; Severijns, C.; de Vries, H.; Sterl, A.; Bintanja, R.; van Oldenborgh, G.J.; van den Brink, H.W. More hurricanes to hit western Europe due to global warming. Geophys. Res. Lett. 2013, 40, 1783–1788. [Google Scholar] [CrossRef]
- Knutson, T.R.; McBride, J.L.; Chan, J.; Emanuel, K.; Holland, G.; Landsea, C.; Held, I.; Kossin, J.P.; Srivastava, A.K.; Sugi, M. Tropical cyclones and climate change. Nat. Geosci. 2010, 3, 157–163. [Google Scholar] [CrossRef] [Green Version]
- Yoon, B.; Raymond, P.A. Dissolved organic matter export from a forested watershed during hurricane Irene. Geophys. Res. Lett. 2012, 39, L18402. [Google Scholar] [CrossRef]
- Wheatcroft, R.A.; Goñi, M.A.; Hatten, J.A.; Pasternack, G.B.; Warrick, J.A. The role of effective discharge in the ocean delivery of particulate organic carbon by small, mountainous river systems. Limnol. Oceanogr. 2010, 55, 161–171. [Google Scholar] [CrossRef] [Green Version]
- Nash, D.B. Effective Sediment-Transporting Discharge from Magnitude-Frequency Analysis. J. Geol. 1994, 102, 79–95. [Google Scholar] [CrossRef]
- Vidon, P.; Allan, C.; Burns, D.; Duval, T.P.; Gurwick, N.; Inamdar, S.; Lowrance, R.; Okay, J.; Scott, D.; Sebestyen, S. Hot spots and hot moments in riparian zones: Potential for improved water quality management. J. Am. Water Resour. Assoc. 2010, 46, 278–298. [Google Scholar] [CrossRef]
- Leigh, C.; Boulton, A.J.; Courtwright, J.L.; Fritz, K.; May, C.L.; Walker, R.H.; Datry, T. Ecological research and management of intermittent rivers: An historical review and future directions. Freshw. Biol. 2015, 61, 1181–1199. [Google Scholar] [CrossRef]
- Mangum, C. Flux and Source of Dissolved Organic and Inorganic Constituents in Managed Headwaters of the Upper Gulf Coastal Plain, Mississippi. Master’s Thesis, Mississippi State University, Starkville, MS, USA, 2012. [Google Scholar]
- McMullen, J.W.; Ford, J.G. Soil Survey of Webster County Mississippi. In Cooperation with the Mississippi Agricultural and Forestry Experiment Station; Natural Resources Conservation Service, United States Department of Agriculture: Washington, DC, USA, 1978; 99p. [Google Scholar]
- Choi, B.; Dewey, J.C.; Hatten, J.A.; Ezell, A.W.; Fan, Z. Changes in vegetative communities and water table dynamics following timber harvesting in small headwater streams. For. Ecol. Manag. 2012, 281, 1–11. [Google Scholar] [CrossRef]
- U.S. Geological Survey. Little Sand Creek Quadrangle, Mississippi. 1:24,000; 7.5 Minute Series; United States Department of the Interior: Reston, VA, USA, 1983. [Google Scholar]
- Choi, B.; Hatten, J.A.; Dewey, J.C.; Otsuki, K.; Cha, D. Effect of timber harvesting on stormflow characteristics in headwater streams of managed, forested watersheds in the Upper Gulf Coastal Plain of Mississippi. J. Fac. Agric. Kyushu Univ. 2013, 58, 395–402. [Google Scholar]
- National Climatic Data Center. Eupora 2E, MS, US, Precipitation 15 Minute Station Details. NOAA National Centers for Environmental Information. 2013. Available online: http://www.ncdc.noaa.gov/cdo-web/datasets/PRECIP_15/stations/COOP:222896/detail (accessed on 16 October 2015).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2017; Available online: https://www.R-project.org/ (accessed on 10 August 2017).
- Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S, 4th ed.; Springer: New York, NY, USA, 2002; ISBN 0-387-95457-0. Available online: http://www.stats.ox.ac.uk/pub/MASS4 (accessed on 10 August 2017).
- Lambert, T.; Pierson-Wickmann, A.-C.; Gruau, G.; Thibault, J.-N.; Jaffrezic, A. Carbon isotopes as tracers of dissolved organic carbon sources and water pathways in headwater catchments. J. Hydrol. 2011, 402, 228–238. [Google Scholar] [CrossRef]
- Morel, B.; Durand, P.; Jaffrezic, A.; Gruau, G.; Molenat, J. Sources of dissolved organic carbon during stormflow in a headwater agricultural catchment. Hydrol. Process 2009, 23, 2888–2901. [Google Scholar] [CrossRef]
- Shumilova, O.; Zak, D.; Datry, T.; von Schiller, D.; Corti, R.; Foulquier, A.; Obrador, B.; Tocknet, K.; Allan, D.C.; Altermatt, F.; et al. Simulating rewetting events in intermittent rivers and ephemeral streams: A global analysis of leached nutrients and organic matter. Glob. Chang. Biol. 2019, 25, 1591–1611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corti, R.; Datry, T. Invertebrates and sestonic matter in an advancing wetted front travelling down a dry river bed (Albarine, France). Freshw. Sci. 2012, 31, 1187–1201. [Google Scholar] [CrossRef]
- Johnson, M.S.; Lehmann, J.; Selva, E.C.; Abdo, M.; Riha, S.; Couto, E.G. Organic carbon fluxes within and stream exports from headwater catchments in the southern Amazon. Hydrol. Process 2006, 20, 2599–2614. [Google Scholar] [CrossRef]
- Carter, L.; Terando, A.; Dow, K.; Hiers, K.; Kunkel, K.E.; Lascurain, A.; Marcy, D.; Osland, M.; Schramm, P. Southeast. In Impacts, Risks, and Adaptation in the United States: Fourth National Climate Assessment; Reidmuller, D.T., Avery, C.W., Easterling, D.R., Kunkel, K.E., Lewis, K.L.M., Maycock, T.K., Stewart, B.C., Eds.; U.S. Global Change Research Program: Washington, DC, USA, 2017; Volume II, pp. 743–808. [Google Scholar] [CrossRef]
- Pan, Z.; Zhang, Y.; Liu, X.; Gao, Z. Current and future precipitation extremes over Mississippi and Yangtze River Basins as simulated in CMIP5 models. J. Earth Sci. 2016, 27, 22–36. [Google Scholar] [CrossRef]
- Pan, Z.; Arritt, R.W.; Takle, E.S.; Gutowski, W.J., Jr.; Anderson, C.J.; Segal, M. Altered hydrologic feedback in a warming climate introduces a “warming hole”. Geophys. Res. Let. 2004, 31, L17109. [Google Scholar] [CrossRef] [Green Version]
- Ouyang, Y.; Zhang, J.; Feng, G.; Wan, Y.; Leininger, T.D. A century of precipitation trends in forest lands of the Lower Mississippi River Alluvial Valley. Sci. Rep. 2020, 10, 12802. [Google Scholar] [CrossRef]
- Lundquist, E.J.; Jackson, L.E.; Scow, K.M. Wet-dry cycles affect dissolved organic carbon in two California agricultural soils. Soil Biol. Biochem. 1999, 31, 1031–1038. [Google Scholar] [CrossRef]
- Hotchkiss, E.R.; Hall, R.O., Jr.; Sponseller, R.A.; Butman, D.; Klaminder, J.; Laudon, H.; Rosvall, M.; Karlsson, J. Sources of and processes controlling CO2 emissions change with the size of streams and rivers. Nat. Geosci. 2015, 8, 696–699. [Google Scholar] [CrossRef]
- Datry, T.; Foulquier, A.; Corti, R.; voon Schiller, D.; Tockner, K.; Mendoza-Lera, C.; Clement, J.C.; Gessner, M.O.; Moleón, M.; Stubbington, R.; et al. A global analysis of terrestrial plant litter dynamics in non-perennial waterways. Nat. Geosci. 2018, 11, 497–503. [Google Scholar] [CrossRef]
- Yasarer, L.M.W.; Bingner, R.L.; Garbrecht, J.D.; Locke, M.A.; Lizotte, R.E., Jr.; Momm, H.G.; Busteed, P.R. Climate change impacts on runoff, sediment, and nutrient loads in an agricultural watershed in the Lower Mississippi River Basin. Appl. Eng. Agric. 2017, 33, 379–392. [Google Scholar] [CrossRef]
Watershed | Watershed Size (ha) | Stream Length (m) | Harvest Treatment | Length of Q Record (months) | Total Q (×103 m3 year−1) | Storm Flow Samples | Base Flow Samples |
---|---|---|---|---|---|---|---|
Ephemeral 1 | 2.4 | 78 | * Reference | 14.9 | 27.13 | 67 | 14 |
Ephemeral 2 | 3.6 | 83 | † BMP2 | 14.8 | 5.49 | 82 | 21 |
Ephemeral 3 | 3.8 | 92 | ‡ BMP1 | 14.0 | 27.79 | 14 | 6 |
Ephemeral 4 | 1.8 | 81 | § CC | 15.3 | 4.99 | 40 | 10 |
Ungaged Ephemeral | 20.6 | - | - | - | - | - | - |
Ephemeral Average | 173.51 | ||||||
Perennial | 32.2 | - | - | 239.91 | 30 | 30 |
(A) | Ephemeral 1 | Ephemeral 2 | Ephemeral 3 | Ephemeral 4 | Ephemeral Average | Perennial | Pr > Chi-Square |
TSS (mg L−1) | 342.6 ± 74.4 | 1713.0 ± 708.1 | 54.1 ± 14.8 | 154.7 ± 31.3 | 566.1 ± 386.9 | 101.1 ± 46.3 | <0.0001 |
POC (mg L−1) | 21.3 ± 11.0 | 8.06 ± 1.31 | 2.27 ± 0.43 | 5.54 ± 1.79 | 9.30 ± 4.18 | 3.46 ± 0.96 | 0.0004 |
DOC (mg L−1) | 11.6 ± 1.9 | 13.54 ± 0.97 | 15.15 ± 0.97 | 17.73 ± 1.42 | 14.51 ± 1.29 | 5.83 ± 1.07 | <0.0001 |
Cl (mg L−1) | 1.89 ± 0.10 | 1.65 ± 0.07 | 1.69 ± 0.22 | 1.26 ± 0.11 | 1.62 ± 0.13 | 2.91 ± 0.14 | <0.0001 |
UVA254 (cm−1) | 0.55 ± 0.03 | 0.47 ± 0.02 | 0.44 ± 0.05 | 0.76 ± 0.03 | 0.56 ± 0.07 | 0.19 ± 0.02 | <0.0001 |
SUVA254 (L mg−1 M−1) | 4.1 ± 0.4 | 3.56 ± 0.13 | 3.51 ± 0.18 | 4.05 ± 0.17 | 3.79 ± 0.15 | 4.04 ± 0.49 | 0.992 |
DON:DOC | 0.17 ± 0.06 | 0.11 ± 0.03 | 0.10 ± 0.02 | 0.04 ± 0.01 | 0.11 ± 0.03 | 0.30 ± 0.08 | 0.0003 |
DOC-δ13C | −27.20 ± 2.15 | −28.50 ± 0.09 | −28.90 ± 0.12 | −28.80 ± 0.16 | −28.30 ± 0.39 | −28.60 ± 0.16 | 0.4865 |
%OC | 4.6 ± 0.5 | 2.9 ± 0.2 | 3.8 ± 0.4 | 4.9 ± 0.7 | 4.0 ± 0.5 | 5.3 ± 0.5 | 0.0012 |
POC:DOC | 1.69 ± 1.24 | 0.88 ± 0.45 | 0.15 ± 0.02 | 0.26 ± 0.09 | 0.75 ± 0.35 | 0.67 ± 0.23 | 0.0470 |
PON:POC | 0.08 ± 0.00 | 0.08 ± 0.00 | 0.10 ±0.01 | 0.09 ± 0.00 | 0.09 ± 0.01 | 0.08 ± 0.00 | 0.6116 |
POC-δ13C | −25.10 ± 2.63 | −27.47 ± 0.29 | −27.58 ± 0.32 | −27.31 ± 0.31 | −26.86 ± 0.59 | −27.66 ± 0.21 | 0.3550 |
PON-δ15N | 0.91 ± 0.46 | 0.70 ± 0.25 | 2.05 ± 0.4 | 1.83 ± 0.69 | 1.37 ± 0.33 | 1.00 ± 0.63 | 0.7762 |
(B) | Precipitation | Throughfall | O-horizon | Mineral Soil | Ground Water | ||
DOC (mg L−1) | 3.48 ± 1.56 | 21.82 ± 6.34 | 26.73 ± 3.43 | 11.6 ± 1.96 | 2.8 ± 0.32 | ||
Cl (mg L−1) | 0.82 ± 0.07 | 2.05 ± 0.28 | 1.91 ± 0.57 | 2.23 ± 0.4 | 3.52 ± 0.21 | ||
UVA254 (cm−1) | 0.04 ± 0.02 | 0.44 ± 0.07 | 1.3 ± 0.04 | 0.5 ± 0.4 | 0.13 ± 0.02 | ||
SUVA254 (L mg−1 M−1) | 1.39 ± 0.34 | 2.94 ± 0.30 | 5.09 ± 0.64 | 4.78 ± 0.51 | 8.21 ± 2.25 | ||
DON:DOC | 0.36 ± 0.05 | 0.07 ± 0.01 | 0.16 ± 0.03 | 0.04 ± 0.00 | 0.28 ± 0.03 | ||
DOC-δ13C | −26.60 ± 0.35 | −29.40 ± 0.30 | −30.3 ± 0.03 | −28.7 ± 0.53 | −28.2 ± 0.18 |
Unit Q | TSS | POC | PN | DOC | DON | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(×103 m3 sec−1 ha−1) | (g sec−1 ha−1) | ||||||||||||
A | Ephemeral | 12.6 | (26) | 3432.1 | (7285) | 99.6 | (307) | 7.6 | (18) | 207.6 | (589) | 13.5 | (41) |
Perennial | 5.7 | (9) | 530.1 | (1412) | 21.8 | (36) | 2.1 | (4) | 96.3 | (167) | 4.5 | (9) | |
B | Ephemeral | −5.7 | (1.7) | −0.6 | (2.1) | −4.1 | (1.9) | −6.4 | (1.8) | −3.5 | (2.0) | −6.3 | (2.1) |
Perennial | −7.6 | (3.3) | −3.8 | (3.6) | −6.3 | (3.5) | −8.7 | (3.4) | −5.0 | (3.6) | −7.7 | (3.1) |
Precipitation | Q | Peak Time | Flow Time | Rate Change | Event Time | WY Day | R2 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SC | SE | SC | SE | SC | SE | SC | SE | SC | SE | SC | SE | SC | SE | |||
TSS | ES | 0.300 | 0.051 | 1.014 | 0.115 | 0.049 | 0.126 | −0.005 | 0.131 | 0.065 | 0.066 | −0.209 | 0.064 | 0.225 | 0.057 | 0.664 |
PER | −0.205 | 0.073 | 0.468 | 0.142 | 0.144 | 0.065 | 0.684 | |||||||||
POC | ES | 0.225 | 0.044 | 0.674 | 0.097 | −0.130 | 0.054 | −0.106 | 0.072 | 0.111 | 0.049 | 0.777 | ||||
PER | −0.171 | 0.052 | 0.465 | 0.102 | 0.117 | 0.047 | 0.788 | |||||||||
PN | ES | 0.248 | 0.042 | 0.645 | 0.080 | −0.129 | 0.047 | 0.174 | 0.108 | 0.805 | ||||||
PER | −0.329 | 0.092 | 0.801 | 0.179 | 0.184 | 0.082 | 0.796 | |||||||||
DOC | ES | 0.043 | 0.032 | 1.307 | 0.166 | 0.324 | 0.136 | −0.291 | 0.086 | −0.179 | 0.076 | −0.117 | 0.069 | 0.909 | ||
PER | 1.189 | 0.422 | 0.581 |
Q | Precipitation | Peak Time | FlowTime | Rate Change | TimeEvent | WY Day | 5% ∆ in Precip | 5% ∆ in Q | ||
---|---|---|---|---|---|---|---|---|---|---|
TSS | ES | 0.408 | 0.297 | −0.211 | 0.237 | 2.0 | 2.0 | |||
PER | 0.320 | −0.221 | 4.197 | −4.6 | 1.6 | |||||
POC | ES | 0.388 | 0.103 | −0.012 | −0.064 | 0.003 | 0.7 | 1.9 | ||
PER | 0.484 | −0.268 | 5.040 | −5.4 | 2.4 | |||||
PN | ES | 0.349 | 0.131 | −0.015 | 0.007 | 0.9 | 1.7 | |||
PER | 0.551 | −0.349 | 5.196 | −7.0 | 2.7 | |||||
DOC | ES | 0.563 | −0.003 | 0.018 | −0.007 | −0.040 | −0.003 | 0.0 | 2.8 | |
PER | 0.466 | 0.0 | 2.3 |
5% ∆ Unit Q | ∆ TSS | ∆ POC | ∆ PN | ∆ DOC | ∑ OM | |
---|---|---|---|---|---|---|
(×103 m3 s−1 ha−1) | (g s−1 ha−1) | |||||
Ephemeral | 0.63 | 69.00 | 1.90 | 0.13 | 5.78 | 7.82 |
Perennial | 0.28 | 8.34 | 0.52 | 0.06 | 2.22 | 2.79 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dewey, J.; Hatten, J.; Choi, B.; Mangum, C.; Ouyang, Y. Climate Drivers and Sources of Sediment and Organic Matter Fluxes in Intermittent Rivers and Ephemeral Streams (IRES) of a Subtropical Watershed, USA. Climate 2020, 8, 117. https://doi.org/10.3390/cli8100117
Dewey J, Hatten J, Choi B, Mangum C, Ouyang Y. Climate Drivers and Sources of Sediment and Organic Matter Fluxes in Intermittent Rivers and Ephemeral Streams (IRES) of a Subtropical Watershed, USA. Climate. 2020; 8(10):117. https://doi.org/10.3390/cli8100117
Chicago/Turabian StyleDewey, Janet, Jeff Hatten, Byoungkoo Choi, Clay Mangum, and Ying Ouyang. 2020. "Climate Drivers and Sources of Sediment and Organic Matter Fluxes in Intermittent Rivers and Ephemeral Streams (IRES) of a Subtropical Watershed, USA" Climate 8, no. 10: 117. https://doi.org/10.3390/cli8100117
APA StyleDewey, J., Hatten, J., Choi, B., Mangum, C., & Ouyang, Y. (2020). Climate Drivers and Sources of Sediment and Organic Matter Fluxes in Intermittent Rivers and Ephemeral Streams (IRES) of a Subtropical Watershed, USA. Climate, 8(10), 117. https://doi.org/10.3390/cli8100117