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Abstract: Variations in urban form lead to the development of distinctive intra-urban surface
thermal patterns. Previous assessment of the relation between urban structure and satellite-based
Land Surface Temperature (LST) has generally been limited to single-city cases. Here, examining
25 European cities (June–August 2017), we estimated the statistical association between surface
parameters—the impervious fraction (λimp), the building fraction (λb), and the building height
(H)—and the neighborhood scale (1000 × 1000 m) LST variations, as captured by the Moderate
Resolution Imaging Spectroradiometer (MODIS) sensor. Correlation analysis, multiple linear
regression, and spatial regression were used. As expected, λimp had a consistent positive influence on
LSTs. In contrast, the relation of LST with λb and H was generally weaker or negative in the daytime,
whereas at night it shifted to a robust positive effect. In particular, daytime LSTs of densely built,
high-rise European districts tended to have lower values. This was especially the case for the city of
Athens, Greece, where a more focused analysis was conducted, using further surface parameters and
the Local Climate Zone (LCZ) scheme. For the urban core of the city, the canyon aspect ratio H/W had
a statistically significant (p <0.01) negative relationship with LST by day (Spearman’s rho = −0.68)
and positive during nighttime (rho = 0.45). The prevailing intra-urban surface thermal variability
in Athens was well reproduced by a 5-day numerical experiment using the meteorological Weather
Research and Forecasting Model (WRF) model and a modified urban parameterization scheme.
Although the simulation resulted in some systematic errors, the overall accuracy of the model was
adequate, regarding the surface temperature (RMSE = 2.4 K) and the near-surface air temperature
(RMSE = 1.7 K) estimations.

Keywords: urban heat island; urban form; local climate zones; land surface temperature; building
height; building density

1. Introduction

The urban influence on local microclimates is one of the most apparent human-driven modifications
to the natural environment. As a result of the distinct features of the urban form and function, cities
experience elevated temperatures relative to their surrounding rural areas—a phenomenon referred to
as the urban heat island (UHI). The most important processes that drive urban climate effects can be
summarized as follows [1]:
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• High values of the building height (H) to street width (W) ratio—the canyon aspect ratio
(H/W)—hinder long-wave radiative cooling [2] and reduce turbulent transport due to wind shelter.

• The thermal properties of urban materials as well as the characteristics of urban structure, lead to
a stronger heat storage uptake during daytime and to a gradual heat release at night, maintaining
a positive sensible heat flux [3].

• Low vegetation density is responsible for reduced latent heat flux and evapotranspiration
cooling [4].

• The canyon geometry and the radiative properties of typical construction materials favor the
absorption of solar radiation [5].

• Anthropogenic heat releases provide additional input to the Surface Energy Budget (SEB) [6].

The UHI effect has been linked to heat-related health implications [7], higher energy demand for
space cooling [8], and decreased human thermal comfort [9]. Therefore, a better understanding of
urban climate processes is critical for well-planned adaptation and mitigation responses [10]. Moreover,
the thermal climate of the cities is characterized by strong intra-urban variability, caused primarily by
the local-scale differentiation of surface cover and structure. This was highlighted in the literature
by the introduction of the Local Climate Zone (LCZ) scheme [11], which classifies neighborhoods
depending on their urban form and function. Hence, it follows that a dense network of meteorological
stations is needed to fully cover the local differences of air temperature (Tα) and to ensure the accurate
reporting of the UHI intensity [12]. Although such networks are becoming increasingly common in
recent years (e.g., [13]), installation and long-term maintenance remain a challenging task.

On the other hand, remote sensing enables thermal observations with large spatial coverage and
allows the retrieval of the radiometric surface temperature, or as it is typically referred to, the Land
Surface Temperature (LST). While a statistical relation between Tα and LST has been the scope of various
studies, it generally encompasses high uncertainty [14]. For example, Azevedo et al. [15] recently
demonstrated that although a strong correlation between Tα and LST could be achieved for specific
stations in their study domain, larger errors were obtained using a city-scale relationship. Nevertheless,
the physical relationship between Tα and LST is unequivocal, owing to the surface–atmosphere
coupling processes.

Besides the surface-air temperature relation, LST is often used to assess the connection between
the urban thermal environment and land cover features. The majority of earlier studies emphasized
the effect of vegetation on LST. Gallo et al. [16] showed a clear negative relationship between LST
and the Normalized Differentiated Vegetated Index (NDVI). In Weng et al. [17], it was suggested
that using the vegetation plan area fraction (λv) in place of NDVI can further improve the derived
correlation. Other studies used the similar parameter of the total impervious plan area fraction
(λimp) [18–20], or additional spectral indices, such as the Normalized Difference Built-up Index
(NDBI) [21], the Normalized Difference Moisture Index (NDMI) [22], the Normalized Difference
Bareness Index (NDBaI) [23], the Urban Index (UI) [24], the Enhanced Built-Up and Bareness Index
(EBBI) [25], and the Green Vegetation Index (GVI) [26]. On all the above occasions, a strong relationship
was obtained between the land cover features and LST.

Later studies investigated the suitability of landscape metrics to model the spatial variations
of surface temperature [20,27,28] or the Surface Urban Heat Island (SUHI) intensity [29,30].
Landscape metrics are divided into the composition (e.g., percentage of buildings, percentage of
vegetation) and configuration metrics (e.g., patch density, landscape shape index), which describe
the relative proportion and the arrangement of urban elements, respectively. While, in some cases,
configuration metrics demonstrated interesting interconnections between urban features and LST [31],
they tend to display a lower correlation with LST compared to composition metrics [27,32,33]. In several
of the above studies, a further division of the urban surface properties was made using the building
plan area fraction (λb) and the impervious ground plan area fraction (λi) (i.e., the aggregated fraction
of roads, sidewalks, etc.). This falls within a broader shift in urban climatic research, to statistically
assess the influence on LST by the three-dimensional urban structure, generally ignored in earlier
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studies—with a few notable exceptions [34,35]. Specifically, recent studies have studied the effect on
LST by the volumetric density [36,37], the sky view factor (ψsky) [31,37–42], and the building height
(H) [37,39,41,43–45].

In addition to satellite-derived observations, numerical modeling may also be used to study the
urban thermal climate. A large number of urban parameterization schemes have long been developed
and coupled to mesoscale atmospheric models [46–48]. The Weather Research and Forecasting
Model (WRF) model [49] has incorporated three urban schemes [50]: (a) The one-dimension bulk
scheme [51], (b) the Single-layer Urban Canopy Model (SLUCM) scheme [52], and (c) the Building Effect
Parameterization–Building Energy Model (BEP–BEM) scheme [53,54]. In recent years, several studies
have used and/or further modified WRF for urban simulations [55–60]. Moreover, urban areas are
increasingly incorporated into the model as highly heterogenous environments, using high-resolution
simulations with a grid size down to 100 m [61].

In this direction, WRF model runs are enhanced using ancillary geospatial data—for example,
using albedo and λv values derived by space-borne sensors [62]—or extending the default land
use and land cover (LULC) classes [60,63,64]. For the latter case, the LCZ scheme may be applied,
improving the configuration of the three-dimensional built geometry in the model input classes.
When specific urban surface parameters are not available for an urban area, a LCZ mapping using
remote sensing observations can be derived by the World Urban Database and Access Portal Tools
(WUDAPT) project [65]. Thereby, a growing number of studies incorporate the LCZ classes in urban
numerical simulations [66–70].

From the above discussion, it is clear that a multifaceted investigation of the intra-urban variability
is being conducted in recent years. The relation between the three-dimensional urban structure and
LST has been the scope of a few previous studies. However, analysis has generally been restricted
to studies of individual cities and to limited satellite images; frequently, only daytime observations
are considered. Furthermore, current results in the literature are, to an extent, conflicting, especially
regarding the effect of high-rise buildings; the different study areas, sensors, surface parameters, and
statistical models among previous studies have not allowed robust conclusions. Besides, there is little
discussion of the control on LST exerted by important parameters of the urban form, such as H/W.
With regard to WRF urban simulations, the coupling between SLUCM and LCZs has been assessed in
few works (e.g., [70]), whereas the model’s capability in capturing intra-urban variations related to
urban form and function requires further evaluation.

In this study, a comparative statistical analysis of the relation between urban form parameters
and LST was performed for 25 European cities. The period examined covered the clear-sky days of
June–August 2017, and the surface features examined were λimp, λb, and H. The selection of λimp and
λb was made following their strong connection to LST, according to the literature. H was selected in
place of other parameters, which offer a more complete description of the urban structure (e.g., H/W)
due to the wider data availability for the former, as well as in order to assess previous findings from
single-city studies. Daytime and nighttime LST observations from the Moderate Resolution Imaging
Spectroradiometer (MODIS) sensor were used. The widely used MODIS LST products, allow the study
of the bulk effect of urban elements to the urban thermal environment (neighborhood scale, 1000 m)
and ensure the presence of a large number of cloud-free satellite images for all the examined study
areas. A more focused analysis was conducted for Athens, Greece, using the LCZ scheme and further
urban surface features—H/W, the complete aspect ratio (ratio of the three-dimensional area of all urban
elements to the total plan area of a given pixel) (λc), and λi. Additionally, for Athens, a WRF numerical
simulation was performed for a 5-day case study, using a modified version of SLUCM through the
LCZ classification and specific input parameters for the urban environment of the city. It was assessed
whether the model is able to reproduce the surface thermal patterns and accurately predict urban
Tα values.
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2. Materials and Methods

2.1. Study Area

The first part of the study included 25 European capital cities (Figure 1). As follows from
Table 1—climate classification Köppen-Geiger, source: [71]—A variety of climate types can be found in
the study domain, shaped by differences in latitude, elevation, and proximity to the sea. Under typical
conditions, UHI tends to have adverse effects primarily for the southern European countries due to
their higher average Tα. However, a particular strong synergy between UHI and heatwave events has
been found for central and northern parts of Europe ([29] based on space-based thermal observations),
where on several occasions in the past, has led to severe impacts on public health (e.g., [72]). Moreover,
extreme temperatures in Europe during summer months are projected to increase in the future as a
result of global warming [73]. Athens, Greece (Athens Urban Area, Figure 2) is a highly populated
Mediterranean city (3,090,508 residents, [74]), bounded by the sea to the southwest (Saronic Gulf) and
by mountains to the north, northeast, and east directions. Scarce vegetation cover and closely-spaced
buildings for the majority of Athens contribute to a relatively strong UHI intensity [75,76].
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Table 1. Köppen-Geiger climate types for the European cities used in this study; source: [71]. In
brackets, the population (in millions) of each urban area [77] is given.

Climate Type Cities

Bsh: Hot semi-arid Nicosia (0.27)

Csa: Hot-summer Mediterranean Athens (3.09), Lisbon (2.93), Madrid (6.50), Rome (4.21)

Cfa: Humid subtropical Bucharest (1.82)

Cfb: Temperate oceanic

Amsterdam (1.13), Berlin (3.55), Bratislava (0.43),
Brussels (2.05), Budapest (1.76), Copenhagen (1.32),
Dublin (1.20), Ljubljana (0.29), London (9.05), Paris (10.90), Prague (1.29),
Sofia (1.27), Zagreb (0.69)

Dfb: Warm-summer continental Helsinki (1.28), Riga (0.64), Stockholm (1.58), Vilnius (0.54), Vienna (1.90),
Warsaw (1.77)
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Figure 2. Study domain of Athens and the location of the meteorological stations used in this study; the
station codes are given in Section 2.4. Base map: Landsat 8 Operational Land Imager (OLI), true color
composite image for 28 June 2017.

2.2. Satellite Observations and Surface Parameters

The total impervious plan area fraction (λimp) product “Imperviousness Density” (IMD) was
obtained from the Copernicus Land Monitoring Service (CLMS) at 100 m for the reference year
2015 (https://land.copernicus.eu/pan-european/high-resolution-layers/imperviousness/status-maps/
2015. It was developed by CLMS using a semiautomatic methodology that integrated multiple
high-resolution spaceborne observations (Resourcesat-2 LISS-III, SPOT 5, and Landsat 8) and used a
site-specific calibration of NDVI values. The CLMS product “Urban Atlas—Building Height 2012” (BH)
was used for H (https://land.copernicus.eu/local/urban-atlas/building-height-2012). It was produced
from stereo imagery from the Cartosat-1 satellite and was available at 10 m spatial resolution (reference
year: 2012). For the BH product, positive pixel values corresponded to the height of buildings, whereas
ground or trees were by default masked out. IMD and BH were aggregated from their initial spatial
resolution to 1 km, using a weighted area average. As a next step, the building plan area fraction (λb)
was calculated, based on the cumulative occupied area by the 10 × 10 m pixels with H > 0, within the
corresponding 1 × 1 km windows; for Athens, the available outlines of buildings in vector format
from [78] were also used.

To determine the total extent of each city that would be included in the analysis, the following
criteria were used. While the BH product was generally produced for the continuous built-up area of a
given city, in a few cases, extended sparsely built or natural areas on a city’s outskirts were also included.
Hence, to standardize the data across cities, only the 1 km pixels with λimp > 0.05 and H > 5 m were
retained. From CLMS, the “Water and Wetness” product was additionally accessed, for the reference

https://land.copernicus.eu/pan-european/high-resolution-layers/imperviousness/status-maps/2015
https://land.copernicus.eu/pan-european/high-resolution-layers/imperviousness/status-maps/2015
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year 2015 and at 100 m resolution (https://land.copernicus.eu/pan-european/high-resolution-layers/
water-wetness). Using this product, the pixels at 1 km resolution, which included water bodies at the
sub-pixel scale, were detected and masked out in order to achieve objective intercomparisons across
urban areas. The BH product was available by CLMS for 31 European cities; however, to ensure the
reliability of the statistical analysis, 6 cities with fewer than 100 pixels (after the previously described
preprocessing of the dataset) were excluded from further consideration, limiting the number of cities
to 25 (Table 1).

For Athens, 3 additional surface parameters were used: (a) The canyon aspect ratio (H/W), (b) the
complete aspect ratio (λc), and (c) the impervious ground plan area fraction (λi). These were derived
in [78] using very high-resolution digital elevation models—a digital surface model (DSM) at 0.8 m and
a digital terrain model (DTM) at 5 m—building footprints, and a 10 m land cover classification from
Sentinel-2 data. Figure 3 shows the spatial distribution of H/W, λc, and λi, as well as the previously
mentioned λimp, λb, and H. Using the above surface features, the LCZs of Athens were derived at
1000 m following the procedure of [78]; class assignments were based on the distinguishing surface
properties of each zone from [11]. As discussed in [78], the LCZ scheme did not allow the distinction of
the city center of Athens, attributing the vast majority of the central areas as LCZ 2 (“compact midrise”).
To address this, following the guidelines in [11], a new subclass was defined for the corresponding
pixels of the city center with H/W ≥ 2 or H ≥ 20 m: “Compact midrise with compact highrise” (LCZ 21)
(Figure 4).
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Figure 4. Mapping of the Local Climate Zones (LCZs) in Athens at 1 km resolution.

Surface temperature observations were derived from the LST product “MOD11A1” (Terra satellite)
and “MYD11A1” (Aqua satellite) (Collection 6) of the MODIS sensor. These corresponded to daily
thermal imagery with 2 scenes (daytime and nighttime) per satellite, at a spatial resolution of 1 km.
The average overpasses for the study area (all 25 European cities) were: (a) Terra: ≈ 09–11 UTC and
≈ 20–22 UTC, and (b) Aqua: ≈ 11–13 UTC and ≈ 00–02 UTC. LST values of the MODIS product
are retrieved using a split window algorithm and land cover-based emissivity for MODIS bands 31
(10.78–11.28 µm) and 32 (11.77–12.27 µm) [79]. A recent evaluation of MODIS–LST with in situ surface
temperature observations showed accuracy on the order of 1 K (Root Mean Square Error, RMSE) for
thermally homogeneous validation sites [80].

MODIS data were accessed from the Land Processes Distributed Active Archive Center (LP
DAAC) distribution server of the National Aeronautics and Space Administration (NASA) (http:
//e4ftl01.cr.usgs.gov/) for the period June–August 2017. The MODIS coordinate system was transformed
to the projection of the CLMS products (ETRS89–Lambert Azimuthal Equal Area, LAEA) using the
“MODIS Reprojection Tool” (MRTSwath). Next, LST images were cropped to the extents of the urban
area, and digital values were calibrated to Kelvin units. A given LST image was retained when at
least 95% of the corresponding total city extent was cloud-free (according to the quality band of the
product). For further standardization of the conditions, only observations with a sensor viewing zenith
angle (VZA) under 55◦ (in absolute value) were considered. Finally, the average (arithmetic mean) LST
values per satellite and per time of the day were derived for the period examined.

2.3. Statistical Analysis

The relation between urban form and surface temperature was assessed using several statistical
techniques. First, the bivariate relationships among λimp, λb, H, and LST were calculated using the
Spearman rank correlation coefficient (rho), which allowed the presence of non-linear monotonic
relations and non-normality in the examined datasets.

Then, multiple linear regression models (ordinary least squares, OLS) were developed between
the surface parameters (independent/explanatory variables) and LST (dependent variable) to examine
the unique contribution of each parameter after adjusting for the others. Multiple regression in the
case of n observations and k independent variables can be written in matrix notation as:

y = xβ+ e (1)

where y is the n × 1 vector of the dependent variable, x is the n × (k + 1) matrix of the independent
variables, β is the (k + 1) × 1 vector of the regression coefficients, and e is the n × 1 vector of the model
residuals. To assess the relative strength of each independent variable, Z-standardization (subtracting

http://e4ftl01.cr.usgs.gov/
http://e4ftl01.cr.usgs.gov/
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the mean and dividing by the standard deviation) of the variables was implemented prior to the
regression. Moreover, to qualitatively assess a potential non-linear and/or non-monotonic association
between surface parameters and LST, lowess (locally weighted scatterplot smoothing) regression [81]
was used. In this non-parametric method, the best-fitting line was determined after implementing
successive polynomial local regression functions.

The regression assumptions included that explanatory variables should be linearly
independent—i.e., that the model is not affected by multicollinearity. The variance inflation factor
(VIF) metric was calculated to assess the multicollinearity effect within the derived models. An upper
threshold value of 5 was used for VIF [82]; in the case of VIF being higher than 5, the number of
independent variables in the model was reduced to 2 in order to remove the multicollinearity. A further
assumption underlying regression models was that model predictions should be normally distributed
and not correlated. A measure for the spatial autocorrelation of a variable x (with n observations) is
the Moran’s I index:

I =
n∑n

i=1(xi − x)2

∑n
i=1
∑n

j=1 wi j(xi − x)(xi − x)∑n
i=1
∑n

j=1 wi j
(2)

where x is the arithmetic mean of x, i and j are indices, and wij corresponds to elements of the spatial
adjacency matrix (W). Hence, spatial regression was used to take into account spatial autocorrelation
effects in the assessment of LST patterns; more specifically, a Spatial Lag Model (SLM) was used. SLM
is a type of spatial regression, where after incorporation of neighboring pixels, the linear regression
equation (Equation (3)) is modified to:

y = ρWy + xβ+ e (3)

where ρ is a parameter reflecting the strength of the spatial correlation of y-values (spatial lag coefficient).
The matrix W was calculated using adjacency criteria that required 2 pixels to have a shared vertex; i.e.,
for each pixel, the surrounding 8 pixels were considered. Another frequently used spatial regression
model was the Spatial Error Model (SEM), where spatial autocorrelation was regarded to arise from
omitted independent variables. SLM was selected over SEM based on the Lagrange Multiplier statistical
test, which assessed the origin of autocorrelation in the dataset [83].

2.4. Configuration of the Numerical Simulation

A numerical simulation of the thermal climate of Athens was conducted using the meteorological
model WRF (version 3.7.1) for the period 6–11 August 2017 (the first 24 h of the model run were used as
spin-up time). The examined case-study period was particularly warm and dry, under a high-pressure
system; the average temperature of the city (meteorological stations of Figure 2) was 32.0 ◦C (standard
deviation: 2.5 ◦C), while the dominant wind direction was north-northeastern. Four two-way nested
grids were used (see Figure 1), with a spatial resolution of: (a) Domain 1 (D1): 27 km (118 × 104
cells), (b) D2: 9 km (112 × 121 cells), (c) D3: 3 km (136 × 115 cells), and (d) D4: 1 km (121 × 100 cells).
Regarding the vertical discretization, 32 atmospheric levels were used; the lowest level corresponded
to ≈ 30 m above the maximum building height. The initial and boundary conditions of the simulation
were obtained from the European Centre for Medium-Range Weather Forecast (ECMWF) (ERA-Interim
fields, https://apps.ecmwf.int/datasets) at a 0.25◦ × 0.25◦ spatial scale and were applied at 6-h intervals.

Cloud microphysics were parameterized using the WRF Single-Moment 6 (WMS6) scheme [84],
while the Kain-Fritsch scheme [85] was selected for convection (in D4, convection was explicitly
treated by the model). The parameterization schemes for shortwave and longwave radiation were
the MM5 Dudhia [86] and the Rapid Radiative Transfer Model (RRTM) [87] schemes, respectively.
The atmospheric boundary layer interactions were simulated using the Yonsei University (YSU)
scheme [88], the surface layer by the MM5 scheme [89], and the land surface by the Noah Land Surface
Model (LSM) scheme [90]. The selection of the parameterization schemes was determined following
the configuration of previous WRF runs for the urban area of Athens [55,64].

https://apps.ecmwf.int/datasets
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Input land cover types were a key element of the model configuration. The included International
Geosphere Biosphere Programme (IGBP)–MODIS classification [91] was selected for the coarser
domains D1–D3. For the natural areas of the finer grid (D4), the IGBP–MODIS classes (as well as their
pre-defined surface properties) were retained. However, their spatial arrangement was updated using
the CORINE LULC mapping from CLMS, for the reference year 2018 (https://land.copernicus.eu/pan-
european/corine-land-cover). The CORINE raster format data at a 100 m resolution was accessed,
followed by a majority resampling to 1 km. For the urban area of Athens (λimp > 0) in D4, the LCZ
scheme (urban classes of Figure 4) was incorporated in the model. In this way, the number of urban
surface types was increased from 3 in the default WRF configuration (“Low Intensity Residential”,
“High Intensity Residential”, and “Industrial or Commercial”) to 8 urban types.

The urban environment was parameterized using the SLUCM scheme; it was coupled to Noah
LSM with a tile approach—i.e., SLUCM was applied to the urban part (tile) of a grid cell, while Noah
LSM simulated the vegetation-related processes. To configure SLUCM, various urban parameters must
be defined per LULC class (here, per LCZ). However, to allow a more detailed representation of the
vegetation density variability, a continuous mapping was implemented in the model for the urban
land cover fraction (λurb). A high-resolution land cover classification was used [92] that distinguished
10 man-made and natural materials; the classification was derived using a machine learning approach
integrating the 10 m resolution bands of Sentinel-2, land use information, and digital elevation models.
For the remaining urban parameters, the default approach of fixed, representative values per class
was kept; in Table 2 the most important SLUCM parameter values can be found, which were assigned
as follows:

Table 2. The surface parameters used in the Single-layer Urban Canopy Model (SLUCM) scheme.
All notations are given in the text.

Parameters 1 LCZ 21 LCZ 2 LCZ 3 LCZ 5 LCZ 6 LCZ 8 LCZ 9 LCZ E

H (m) 20 14 9 12 9 7.5 8 7.5
Hstd (m) 5 4.5 3.5 3.5 2.5 2 2 2
W (m) 10 11 9.5 15 15 25 20 35
R (m) 12 12 12 12 12 20 12 20

QF (W m−2) 60 40 20 20 20 10 10 10
αr (–) 0.2 0.2 0.2 0.2 0.15 0.2 0.15 0.2
αw (–) 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
αg (–) 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17
εr (–) 0.935 0.935 0.935 0.935 0.93 0.91 0.93 0.935
εw (–) 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93
εg (–) 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95

Cr (J m−3 K−1) 2 2 2 2 1.4 2 1.4 2
Cw (J m−3 K−1) 2 2 2 2 2 2 2.5 2
Cg (J m−3 K−1) 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1
kr (W m−1 K−1) 1.5 1.5 1.5 1.5 1 1.5 1 1.5
kw (W m−1 K−1) 1.5 1.5 1.5 1.5 1 1.5 2 1.5
kg (W m−1 K−1) 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4

1 Subscripts correspond to: r: Building roof, w: Canyon wall and g: Canyon floor.

The average value of QF per LCZ as well as its daily cycle (one common temporal profile for all
classes) were determined from [78] for the same time period (early August) in 2012 under similar
weather conditions. Anthropogenic heat releases were derived by a combination of top-down and
bottom-up inventory approaches, using detailed electricity consumption and traffic measurements.
For building height (H), standard deviation of the building height (Hstd), building fraction (λb), and
canyon aspect ratio (H/W), their average values per LCZ were calculated using the data from [78].
H/W was used to determine the average street width (W); roof width (R) was, respectively, calculated
from λb. For all the above parameters, spatial aggregation to the 1 × 1 km grid scale was implemented.
SLUCM used different values for the albedo (α) of the roof, walls, and canyon floor; the default values

https://land.copernicus.eu/pan-european/corine-land-cover
https://land.copernicus.eu/pan-european/corine-land-cover
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of the model were retained as specific measurements of α for each urban facet type were not available.
Broadband surface emissivity (ε) was derived using spectral libraries [93,94] and the methodology
of [92]. High thermal mass was a defining characteristic of the typical construction materials of the
building in Athens (concrete, cement) [95] as well as the residential roads, which were generally
a mixture of asphalt/bitumen and stone aggregate. Thus, utilizing a look-up table of the thermal
properties of built-up materials [96] conductivity k and heat capacity C were prescribed using: (a) The
values of dense concrete for roof and canyon walls (for LCZ 6 and LCZ 9 ceramic tiles were used as
rooftop material) and (b) the maximum values of asphalt with regard to the canyon floor.

As described in Li and Bou-Zeid [97], when SLUCM and Noah LSM were coupled in WRF
runs, the model output for the diagnostic variables of surface temperature (Ts) and near-surface air
temperature (Tas) (at 2 m above the zero-plane displacement length) was determined using the transfer
coefficients that corresponded solely to the vegetation tile of an urban cell. However, SLUCM calculated
at each model time-step the surface temperature (prognostic variable) of rooftops (Tr), canyon walls
(Tw), and canyon floor (ground) (Tg), integrating the last 2 to derive the canyon surface temperature
(Tcan). Hence, following Li and Bou-Zeid [97], the total Ts for urban cells can be recalculated using the
equation:

Ts = λurb × (λr × Tr + λcan × Tcan) + (1− λurb) × Tveg (4)

where λr = R/(R + W) is the roof fraction, λcan = 1 − λr is the canyon fraction, and Tveg is the surface
temperature of the vegetated (pervious) tile of an urban cell, calculated by the Noah LSM scheme.
For the diagnostic variable Tas, the default approach of WRF—using a neighborhood scale aggregated
transfer coefficient for all facets—was retained, however, the roughness length for momentum and
heat transfer from Kanda et al. [98] was used for the urban tile. The final total Tas for an urban cell
(impervious and vegetated tile) was calculated with a tile approach as in [99]:

Tαs = λurb × Tas,urb + (1− λurb) × Tas,veg (5)

Validation of Tas was conducted using in situ observations (above rooftop level) from the network
of automated meteorological stations of the National Observatory of Athens–Institute for Environmental
Research and Sustainable Development (IERSD) [100] (see Figure 2). Data were accessed using the
online database of IERSD: http://stratus.meteo.noa.gr/front. A full description of the stations used
in this study is given in Table 3; only the stations, which were located inside the urban grid cells of
Athens, were considered.

Table 3. The automated weather stations used in this study for the evaluation of WRF; source [100].

Name Code Coordinates (E–N) Elevation (m) LCZ

Alimos AL 23◦42′38”–37◦55′3” 25 LCZ 2
Ampelokipoi AMP 23◦45′30”–37◦58′54” 136 LCZ 2

Athens ATH 23◦42′55”–37◦58′42” 50 LCZ 2
Dafni-Ymittos DIM 23◦44′52”–37◦56′50” 125 LCZ 2

Faliro FAL 23◦41′34”–37◦55′45” 25 LCZ 5
Kifissia KIF 23◦49′12”–38◦3′57” 315 LCZ 6

Maroussi MAR 23◦48′36”–38◦2′54” 235 LCZ 5
Nikaia NIK 23◦43′10”–37◦57′5” 23 LCZ 3

Nea Smyrni NS 23◦38′54”–37◦57′50” 51 LCZ 2
Neos Kosmos NK 23◦43′57”–37◦57′32” 85 LCZ 21

Patissia PAT 23◦43′47”–38◦1′19” 90 LCZ 2
Penteli PEN 23◦51′52”–38◦2′49” 495 LCZ 9

Peristeri PER 23◦34′2”–37◦58′2” 55 LCZ 2
Petroupoli PET 23◦42′13”–38◦0′6” 223 LCZ 5
Psychico PS 23◦46′50”–38◦1′3” 209 LCZ 6
Vrilissia VR 23◦49′32”–38◦2′17” 245 LCZ 6

http://stratus.meteo.noa.gr/front
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3. Results

3.1. Overall Results for European Cities

The number of the available clear-sky MODIS–LST imagery for the period June to August 2017
varied significantly across cities, from 38 images for Amsterdam to 245 for Lisbon (average value: 119
images per city). Intra-urban spatial variability was found approximately twice as high during daytime
compared to nighttime, with an average LST standard deviation of 2.1 K and 1.1 K, respectively.
After normalization, the LST products MOD11A1 and MYD11A1 showed high similarity for each study
area, for both their daytime and nighttime average LSTs (rho = 0.886 and non-statistically significant
differences after a paired sample t-test). Thereby, the thermal spatial patterns and the statistical analysis
for a given city were to a great extent overlapping between the two MODIS satellites; thus, the results
presented in this section were derived only from Aqua (MYD11A1 product), which corresponds to
overpassing times at fully developed daytime and nocturnal urban boundary layers.

Spearman’s rho linear correlation coefficients between the urban surface parameters and LST by
day are presented in Table 4. For the majority of the cities the λimp–LST relationship had a statistically
significant positive correlation (p < 0.05), with an average value for all cases of rho = 0.54. For cities
characterized by warmer and dryer summer conditions (southern European cities; Bsh and Csa climate
types in Table 1), the correlation was noticeably weaker and, in two cases, negative (Nicosia and
Madrid). Bivariate correlations between λimp and the other two surface features were also high;
mainly for the case of λb (average rho = 0.83) and to a lesser extent for H (rho = 0.54)—all the pairwise
correlations among the three morphological parameters can be found in the Appendix A (Table A1).
Thus, not surprisingly, λb showed a somewhat similar connection to LST in the daytime (average rho
= 0.40) as that of λimp. The pairwise relation of H with LST yielded higher variability across cities
and generally lower rho values (average rho = 0.29). Depending on the city, the H–LST correlation
varied from strongly negative (e.g., Madrid) or with no obvious association (e.g., Athens, London)
to moderately/strongly positive—for most cases. Nighttime correlations (Table 5) were generally
more consistent across study areas. All measures of cover and structure were detected to be strongly,
positively correlated with LST at night; average rho was equal to 0.55, 0.52, and 0.51 for λimp, λb, and H,
respectively. Hence, in contrast to daytime hours, H at night was found positively correlated to LST in
all but one case (Dublin) and with rho values of similar magnitude to those for λimp. It should be noted
that all results in Tables 4 and 5 correspond to statistically significant correlations (p < 0.05), except for
the λimp–LST and H–LST correlations for daytime Rome.

Table 4. Spearman’s rho linear correlation between the urban surface parameters and LST (MODIS–Aqua)
during daytime for all cities.

City
Correlation with LST

City
Correlation with LST

λimp λb H λimp λb H

Amsterdam 0.59 0.48 0.53 Madrid −0.21 −0.52 −0.37
Athens 0.55 0.34 0.06 Nicosia −0.58 −0.66 −0.47
Berlin 0.78 0.63 0.53 Paris 0.74 0.51 0.41

Bratislava 0.44 0.26 −0.02 Prague 0.70 0.61 0.53
Brussels 0.77 0.47 0.44 Riga 0.71 0.69 0.14

Bucharest 0.72 0.58 0.40 Rome 0.07 −0.08 −0.01
Budapest 0.64 0.46 0.42 Sofia 0.67 0.46 0.40

Copenhagen 0.66 0.54 0.26 Stockholm 0.57 0.55 0.26
Dublin 0.70 0.65 0.12 Vienna 0.64 0.59 0.40

Helsinki 0.57 0.43 0.31 Vilnius 0.73 0.57 0.67
Lisbon 0.24 0.05 0.24 Warsaw 0.71 0.48 0.59

Ljubljana 0.76 0.67 0.58 Zagreb 0.79 0.70 0.64
London 0.65 0.55 0.29
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Table 5. As in Table 4, for observations during nighttime.

City
Correlation with LST

City
Correlation with LST

λimp λb H λimp λb H

Amsterdam 0.42 0.36 0.46 Madrid 0.58 0.55 0.53
Athens 0.78 0.77 0.58 Nicosia 0.54 0.60 0.45
Berlin 0.59 0.55 0.70 Paris 0.71 0.58 0.52

Bratislava 0.49 0.49 0.45 Prague 0.64 0.65 0.67
Brussels 0.53 0.59 0.63 Riga 0.51 0.42 0.30

Bucharest 0.50 0.48 0.78 Rome 0.69 0.67 0.73
Budapest 0.62 0.43 0.49 Sofia 0.59 0.63 0.45

Copenhagen 0.49 0.55 0.50 Stockholm 0.28 0.34 0.28
Dublin 0.59 0.72 0.01 Vienna 0.50 0.43 0.53

Helsinki 0.50 0.46 0.53 Vilnius 0.45 0.53 0.54
Lisbon 0.47 0.44 0.48 Warsaw 0.53 0.43 0.68

Ljubljana 0.57 0.53 0.61 Zagreb 0.46 0.37 0.33
London 0.63 0.55 0.41

The relationship between the examined urban features and MODIS–LST was examined in more
detail using scatter plots and deriving the non-parametric best fitting functions from lowess regression.
For λimp an almost linear relation with LST was determined, observed both in daytime and nighttime
observations. This relationship was obtained both when examining each city independently (not
shown) and when aggregating all study areas, as presented in Figure 5a,d. To avoid oversampling the
larger cities in Figure 5, 100 randomly distributed pixels for each case were prior selected. A similar,
approximately linear relationship was obtained for λb–LST (Figure 5b,e). Greater complexity can
be observed for the relationship of H and LST. Specifically, during daytime (Figure 5c), for the
values above a critical building height (approximately one standard deviation above the mean H),
the lowess regression results in a less steep increasing curve, while no obvious relation can be
observed. A significant number of observations can also be detected in the upper left region of
Figure 5c—corresponding to low H and high LST. At night (Figure 5f), LST was found to increase more
consistently with H.
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To achieve a more detailed investigation of the H–LST relationship, the individual scatter plots and
the associated lowess regression fit per city are given in Figures 6 and 7. In Figure 6 (daytime surface
temperatures) several distinguishing interlinks can be detected across study areas. For a significant
number of occasions—most noticeably for Athens, Copenhagen, Paris, and London—daytime LST
increased approximately linearly up to maximum value at intermediate heights, above which the
positive association levels off or is reversed. In a few cities (e.g., Amsterdam and Brussels) as H
increased, LST values were consistently larger. Finally, mainly for southern/Mediterranean cities,
a particularly weak (Lisbon and Rome) or negative (Madrid and Nicosia) relation between H and
LST was observed. Conversely, during nighttime (Figure 7) H and LST presented a more consistent
association across cities; LST was positively affected by increasing building height for the vast majority
of the examined cases.
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As noted previously, strong intercorrelations were found for λimp, λb, and H; thereby the
independent effect of each variable on LST may to an extent be concealed in the pairwise correlations.
The relative influence of each surface parameter after adjusting for the others was assessed within
multiple regression models. The overall results of the regression analysis are given in Table 6,
where regression coefficients are standardized (beta coefficients).

The main findings for the surface influences during daytime can be summarized as follows:
The impervious fraction (λimp) was shown to be the stronger controlling factor of LST; for almost
all cities it had statistically significant positive beta coefficients, larger in magnitude than λb and H.
Besides, it can be observed that after adjusting for the other two surface parameters, λimp exerted a
positive influence on LST also for all southern European cities. Regarding λb and H, the sign and
statistical significance of beta coefficients had larger variability among different study areas. However,
all statistically significant coefficients for λb were negative (apart from Stockholm), with a value
ranging between −0.88 and −0.10. For H, cities with a consistent positive relationship in Figure 6,
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resulted in positive regression coefficients. On the other hand, when daytime LST was decreasing
with increasing H or had a peak at intermediate heights, the regression coefficients were statistically
significant negative, however, with a weaker effect on LST than that exerted by λimp.

Table 6. Standardized regression coefficients and coefficient of determination R2 for the multiple
regression models between the urban surface parameters and LST.

City
Daytime Nighttime

λimp λb H R2 λimp λb H R2

Amsterdam 0.44 *** 0.03 0.24 *** 0.40 0.24 0.03 0.26 ** 0.22
Athens 0.75 *** −0.16 −0.15 ** 0.36 0.48 *** 0.24 *** 0.17 *** 0.64
Berlin 0.81 *** −0.11 * 0.04 0.56 0.17 ** 0.18 *** 0.45 *** 0.49

Bratislava 0.56 *** – −0.25 ** 0.25 0.36 *** – 0.27 ** 0.30
Brussels 0.89 *** −0.10 −0.11 0.58 −0.02 0.44 *** 0.37 *** 0.46

Bucharest 0.72 *** −0.06 0.16 ** 0.54 0.22 * 0.16 0.61 *** 0.66
Budapest 0.65 *** −0.01 −0.06 0.36 0.45 *** 0.06 0.20 *** 0.40

Copenhagen 0.84 *** −0.13 −0.16 ** 0.44 −0.23 ** 0.62 *** 0.49 *** 0.48
Dublin 0.65 *** 0.03 −0.08 0.44 −0.21 * 0.89 *** −0.06 0.51

Helsinki 0.90 *** −0.21 ** −0.27 *** 0.34 −0.13 0.38 *** 0.48 *** 0.35
Lisbon 0.80 *** −0.71 *** 0.15 ** 0.19 0.23 ** 0.14 0.26 *** 0.29

Ljubljana 0.69 *** – 0.11 0.61 0.33 ** – 0.37 *** 0.42
London 0.71 *** 0.05 −0.24 *** 0.45 0.37 *** 0.23 *** 0.15 *** 0.42
Madrid 0.50 *** −0.79 *** −0.26 *** 0.40 0.34 *** 0.17 ** 0.25 *** 0.43
Nicosia −0.48 *** – −0.30 *** 0.43 0.43 *** – 0.28** 0.36

Paris 1.13 *** −0.40 *** −0.15 *** 0.59 0.53 *** 0.02 0.27 *** 0.54
Prague 0.62 *** – 0.11 * 0.48 0.42 *** – 0.39 *** 0.52

Riga 0.48 *** 0.22 −0.01 0.47 0.39 * 0.12 0.08 0.27
Rome 0.73 *** −0.70 *** −0.10 * 0.12 0.27 *** 0.18 *** 0.47 *** 0.65
Sofia 1.06 *** −0.63 *** 0.21 *** 0.49 0.16 0.44 *** 0.09 0.43

Stockholm 0.41 *** 0.32 *** −0.10 * 0.36 −0.12 0.34 *** 0.28 *** 0.17
Vienna 0.69 *** 0.15 −0.25 ** 0.43 0.02 0.17 0.47 *** 0.35
Vilnius 0.63 *** −0.06 0.32 *** 0.64 −0.33 ** 0.67 *** 0.37 *** 0.38
Warsaw 0.85 *** – −0.30 *** 0.42 0.20 * – 0.41 *** 0.44
Zagreb 0.67 *** – 0.17 ** 0.62 0.42 *** – 0.12 0.25

*** p < 0.001; ** p < 0.01; * p < 0.05.

For nighttime observations, the strength and direction of the influence on LST was found to be
much more evenly distributed among surface parameters. The impervious fraction was no longer the
prevailing determining factor of LST; in some cases, it had a negative association with LST, however,
for the majority of the statistically significant beta coefficients, the effect was positive. For λb and H,
the nighttime regression results were noticeably different from those by day. Firstly, for the majority
of the cases, beta coefficients increased in value, which was often accompanied by a change of their
sign. Furthermore, the statistically significant coefficients for λb and H were positive and of similar
magnitude to those for λimp.

The coefficient of determination (R2) of the multiple regression models had an average value of
0.45 and 0.42 in daytime and nighttime, respectively. Despite the intercorrelation between surface
paraments, the multicollinearity metric VIF had moderate values, below the theoretical, critical
threshold of 5 (average VIF for all regression models: 3.40). As can be seen in Table 6 for six cities,
that the original regression models resulted in a VIF value over 5, only λimp and H were finally included
in the analysis to avoid the emerging multicollinearity effects.

Besides the central role of urban morphology discussed above, sea breeze has also been found to
be an important determinant of the urban heat island intensity, usually exerting a strong moderating
influence [101–103]. To include the effects of the sea breeze in the current statistical analysis, further
regression models were developed incorporating the proximity to the sea—the distance between the
center of a given image pixel and the coastline (d)—as an additional independent variable. Only the
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urban areas within ten kilometers of the coast were considered, in order to ensure a strong influence of
the local sea breeze circulation, irrespective of other local characteristics of each study area. As can be
seen from Table 7, during daytime for all the examined urban areas, a larger distance from the coast
resulted in higher surface temperatures. For five of the seven cases, the cooling effect of the sea breeze
was also found to be statistically significant. At night, the developing land breeze provided more
diverging results—which may be attributed to local influences not taken into account in the current
analysis. Nevertheless, as expected, for the majority of the nighttime cases, the proximity to the sea
results in a positive influence on LST. In addition, the statistically significant results of all 4-variable
regression models were in agreement with the findings presented previously (Table 6) regarding the
control of urban form—i.e., that closely packed and/or high-rise buildings tend to result in lower
temperatures during daytime and to higher LST values at night.

Table 7. Standardized regression coefficients for the multiple regression models between the urban
surface parameters, proximity to the sea, and LST for seven coastal urban areas.

City
Daytime Nighttime

λimp λb H d λimp λb H d

Athens 0.60 *** −0.10 −0.52 *** 0.21 ** 0.32 *** 0.46 *** 0.01 *** −0.17 ***

Copenhagen 0.93 *** −0.28
** −0.16 ** 0.20 −0.12 ** 0.46 *** 0.53 *** 0.06

Dublin 0.42 *** 0.30 ** −0.05 0.46 *** −0.24 ** 0.95 *** −0.09 0.17 ***
Helsinki 0.68 *** 0.02 ** −0.26 *** 0.15 ** −0.06 0.23 *** 0.29 *** −0.44 ***

Lisbon 0.80 *** −0.64
*** 0.08 0.23 *** 0.23** 0.06 0.31 *** −0.29 ***

Riga 0.21 0.29 0.03 0.36 ** 0.36 −0.01 0.12 −0.52 **
Rome 0.53 ** −0.35 * −0.28 ** 0.65 0.22 0.36 0.41 *** 0.09

*** p < 0.001; ** p < 0.01; * p < 0.05.

Statistically significant and relatively high was the spatial autocorrelation of the multiple regression
models. The average Moran’s I measure of spatial autocorrelation was found equal to 0.61 in the
daytime and 0.66 at nighttime. Hence, spatial regression models were used to incorporate in the
analysis of the neighboring influences on the LST values. Specifically, spatial lag models (SLM) were
developed, assuming that the spatial influence was constrained to the eight direct neighbors of a given
pixel. Different choices regarding the adjacency weights did not lead to improved accuracy, thus were
not included in the findings. A summary of the spatial regression results is given in Table 8; regression
coefficients are standardized, and they correspond to the total influence—the sum of direct and indirect
effects—of the independent variables according to [104].

The results of SLM models were generally in agreement with the OLS regression regarding the
direction of urban structure controls on LST. By day, on almost all occasions, the statistically significant
spatial regression coefficients were positive for λimp and negative—also smaller in magnitude—for λb
and H. In contrast, during nighttime, almost all statistically significant coefficients were positive for
all three surface parameters. In some cases, non-statistically significant sign changes were observed
in comparison to the multiple regression results. An inter-comparison of the accuracy of the two
regression types can be derived using the Akaike information criterion (AIC), where a lower value
corresponds to better performance of the model. The reduction of AIC when using SLM—by an
average of 67% in the daytime and 81.6% at night compared to the OLS regression—highlights the
improvement in modeling LST when spatial autocorrelation was taken into account.
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Table 8. Standardized regression coefficients (total effect) for the spatial regression models SLM between
the urban surface parameters and LST.

City
Daytime Nighttime

λimp λb H λimp λb H

Amsterdam 0.75 * 0.29 0.22 1.27 0.02 −0.18
Athens 2.76 *** −0.88 −1.48 ** 0.98 *** 1.03 *** −0.15
Berlin 2.13 *** −0.10 −0.54 *** 0.30 1.02 *** 0.56 **

Bratislava 1.30 ** – −0.30 0.75 ** – 0.65 *
Brussels 3.20 * 0.57 −0.61 0.58 2.60 *** 1.22 **

Bucharest 1.36 *** −0.25 0.10 0.44 0.29 1.00 ***
Budapest 1.82 *** 0.26 −0.71 ** 1.11 * 1.23 *** −0.21

Copenhagen 2.51 *** −0.01 −0.74 *** −0.34 1.57 *** 0.58 *
Dublin 2.72 *** −0.68 −0.49 * 1.40 ** 0.62 −0.50 *

Helsinki 3.18 *** −0.71* −0.98 *** −0.21 0.83 ** 0.73 **
Lisbon 2.10 *** −1.28 ** −0.12 0.98 −0.14 0.85 *

Ljubljana 1.64 *** – −0.05 1.64 *** – 0.44
London 3.41 *** −0.32 −1.52 *** 1.78 *** 0.47 −0.39
Madrid 1.00 *** −1.59 *** −0.54 ** 1.13 *** 0.46 * 0.47 **
Nicosia −2.01 *** – −0.47 2.80 *** – −0.15

Paris 2.67 *** −0.47 ** −0.76 *** 1.43 *** 0.53 * 0.07
Prague 1.97 *** – −0.35 * 1.51 *** – 1.08 ***

Riga 0.91 * 0.57 −0.02 0.25 1.05 0.52
Rome 2.97 *** −2.69 *** −0.83** 0.84 *** 0.58** 0.47 ***
Sofia 2.69 *** −1.31 *** 0.21 0.41 1.81 ** −0.12

Stockholm 1.47 *** 0.60 *** −0.56 *** −0.61 1.03 *** 0.49
Vienna 4.45 *** – −1.88 *** 1.83 ** – 0.57
Vilnius 2.04 *** −0.57 ** 0.14 0.06 1.64 ** −0.02
Warsaw 1.78 *** – −0.06 1.02 ** – 1.24 **
Zagreb 1.76 *** – −0.12 0.78 * – 0.79 *

*** p < 0.001; ** p < 0.01; * p < 0.05.

3.2. Urban Area of Athens

In the previous section, a broad statistical assessment of the relation between surface parameters
and LST was conducted for 25 European cities. A more focused analysis was carried out next for the
city of Athens in order to highlight the aspects of urban form and the physical processes that drive
the derived associations. A point of concern in the previous discussion was the high intercorrelations
among λimp, λb, and H. It is common that in urban areas, impervious fraction, building density, and
building height increase largely concurrently—typically from the city outskirts to the city center [105].
Although multiple regression allows the isolation of the independent effect of a given variable,
statistical analysis is accompanied by uncertainties and its underlying assumptions are not fully
satisfied in practice. The particular characteristics of the urban environment of Athens enable us to
define well-distinguished zones of differing three-dimensional structures, controlling in this way for
vegetation variations.

As follows from Figure 3, a clear division can be observed for Athens, between the well-vegetated,
less densely built northeastern part of the city (to a lesser extent also for the southeastern districts) and
the central areas. Focusing on the urban core—as defined in Figure 2—the following characteristics
can be outlined: The inner-city area (LCZ 21 and LCZ 2, Figure 4) corresponds to neighborhoods of
dense and high-rise structure; vegetation is generally scarce except for few fragmented urban parks
(see Figure 2). In close proximity, there is an extended area of light industrial use, mainly with open set
low-rise buildings (LCZ 8). Moreover, the western districts of the urban core correspond to compact
housing with medium/low building height (LCZ 2 and mostly LCZ 3).

For all the above-mentioned zones, vegetation density is low and similar across the LCZs; the
average λimp inside the urban core was found equal to 0.66, 0.66, 0.70, and 0.69 for LCZ 21, LCZ 2,
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LCZ 3, and LCZ 8, respectively. For this calculation, as well as in the following discussions, three
pixels inside the urban core that include extended urban parks were not taken into account. Figure 8
shows the average surface temperature of Athens during the summer months of 2017 using the
product MODIS LST product (clear sky observations of Aqua). It can be observed that the northeastern
regions of the urban area were associated, both during daytime and nighttime, with lower surface
temperatures. That is in accordance to the results of Figure 5 and Tables 6 and 7 for Athens, regarding
the negative relation of λimp with LST. Overall, the classes LCZ 5, 6, and 9 had an average lower LST
by ≈ 1.9 K in comparison to the other urban LCZs. Of more interest is the spatial variability inside
the urban core of the city. There, during daytime pixels included in the LCZ 8 class (high values
of λimp and relatively low values of λb and H) were clearly distinguished as the warmer spots in
Athens (LST ≈ 317 K). The districts where closely-packed, high-rise buildings prevail (LCZ 21) were
characterized by notably lower temperatures (LST ≈ 315.3 K). Thus, the negative relation of H with
daytime LSTs that was previously derived for Athens using multiple regression analysis (Table 6) can
also be detected here. The western periphery tends to be characterized by intermediate values of
λb and H that was subsequently mirrored in the observed LSTs. The thermal patterns of the urban
core were reversed when examining the nighttime spaceborne observations: The densely built-up
neighborhoods exhibited in this case higher LST than the LCZ 8 zone. In Table 9, the overall surface
temperature statistics are shown per LCZ (natural type LCZs were not included).Climate 2020, 8, x FOR PEER REVIEW 18 of 33 
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Figure 8. Spatial distribution of the average MODIS–LST (AQUA) in Athens for June–August 2017,
(a) ≈14.30 local time and (b) ≈02.30 local time.

Table 9. Mean (± one standard deviation), minimum and maximum land surface temperature (degrees
Kelvin) for remotely-sensed MODIS–AQUA in Athens per LCZ (June–August 2017).

Daytime Nighttime

Mean Min Max Mean Min Max

LCZ 21 315.3 ± 0.3 314.6 315.8 298.6 ± 0.2 298.4 299.0
LCZ 2 315.3 ± 0.8 313.8 317.1 298.2 ± 0.6 296.5 299.0
LCZ 3 316.1 ± 0.6 314.0 316.8 298.2 ± 0.4 297.3 298.8
LCZ 5 314.6 ± 0.8 312.7 316.2 297.4 ± 0.6 296.2 298.5
LCZ 6 314.3 ± 1.6 310.7 316.8 296.7 ± 0.8 294.9 298.1
LCZ 8 317.1 ± 0.9 314.3 317.9 297.9 ± 0.8 295.7 298.6
LCZ 9 313.3 ± 1.5 310.6 316.2 295.5 ± 0.5 294.8 296.8

The local differentiations across the city can be more clearly outlined deriving the normalized—the
temperature anomaly relative to the average value of LST for the study area—isotherms. As can be
observed in Figure 9, the center of the LCZ 8 class was by day, on average, 3 ◦C warmer than the
average temperature of the study area and up to 2 ◦C than the neighboring densely built central area.
At night—where in general LST variability was weaker—a local minimum can be detected in LCZ 8,
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with a lower LST up to 1 ◦C compared to the adjacent areas. Furthermore, in the broader region, three
distinct centers of excess heat were developed.
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Figure 9. As in Figure 8, showing the isopleths of the difference to the average LST of the total study
area, (a) ≈14.30 local time and (b) ≈02.30 local time.

The thermal signature of the local climate zones is driven by the vegetation density and the
characteristics of urban structure, with the latter being the determining influence for the urban core
of Athens. In Section 3.1, the average building height H was used as a means of accounting the total
three-dimensional effects (i.e., used as a proxy variable). Figure 10 shows the relation of LST with two
additional surface parameters of the urban structure (H/W and λc) and a parameter that describes the
fraction of impervious ground (i.e., impervious surface without buildings) (λi). During the daytime,
H/W had a similar association with LST, as shown previously for H in Figure 6. Specifically, LST is
increasing with H/W for the range 0 to ≈1, while for larger height-to-width ratios, there is a noticeable
decline in LSTs. No obvious relation is found for λc (Figure 10b), whereas λi (Figure 10c) shows a
remarkable linearity and strong correlation with LST (rho = 0.70, p <0.01). For nighttime observations,
all three parameters exerted a positive influence on LSTs (Figure 10d–f).
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The surface temperatures of the urban districts of Athens in close proximity to the sea were
expected to be influenced by the presence of the local sea breeze circulation. To quantify the magnitude
of this effect, the sea breeze days for June–August 2017 were firstly identified, considering the cases
when the wind direction was between 150◦ and 280◦ during daytime hours and between 300◦ and 130◦

at night [106]. For the remaining dates, the city was under the influence of the synoptic flow (northern
wind). As seen from Table 10, depending on the circulation type, the neighborhoods that were close to
the seashore—distance lower than 3 km—were generally relatively cooler during daytime and warmer
at night, in agreement to Table 7.

Table 10. Mean land surface temperature (degrees Kelvin) for remotely-sensed MODIS–AQUA
in Athens per LCZ, per circulation type, and per distance (d) to the coastline during daytime
(June–August 2017).

Sea Breeze Synoptic Flow

d < 3 km d > 3 km d < 3 km d > 3 km

LCZ 2 314.5 315.0 314.7 314.4
LCZ 3 314.8 315.7 315.2 315.6
LCZ 5 314.4 314.5 314.6 313.7
LCZ 6 315.0 314.2 315.0 313.5

To isolate the influence of the urban structure, the corresponding scatterplots and lowess regression
lines for the urban core—which was characterized by little variability in green areas (after excluding the
main urban parks) and was less influenced by the sea breeze—are in given in Figure 11 (total number
of pixels: 70). For H/W and λc, the association with LST had an obvious dependence on the time of
the day. The above features had a statistically significant (p < 0.01) strong negative relation with LST
in the daytime (rho = −0.68 and −0.70 for H/W and λc, respectively) and positive at night (rho = 0.45
and 0.59, respectively). For H/W > 2 and λc > 2.5 the nocturnal LST slightly decreased; however, the
included number of pixels in this range was limited. As expected, LST increased consistently with λi
during daytime (rho = 0.65, p < 0.01); at night, no significant correlation was evident within the urban
core. Surface parameters H/W and λc showed a high bivariate correlation with H (rho = 0.71 and 0.84,
respectively), which can explain the similarity of their observed influence on LST.
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Next, the urban thermal climate of Athens was investigated using the WRF model for a five-day
case-study (7–11 August 2017). The simulated surface temperature (Ts) was tested against cloud-free
MODIS LST (Terra and Aqua) images. A reasonable agreement was found for the urban fabric—i.e., for
the urban cells, λurb > 0—with an average RMSE = 2.4 K and a Mean Absolute Error (MAE) equal to 2.0
K. For the total study area—including the forested areas at the city boundaries—RMSE and MAE were
2.8 K and 2.3 K, respectively. However, as can be seen from Figure 12, the modeled surface temperature
was generally systematically overestimated. The mean Ts–LST error (bias) was 1.3 K (2.0 K during
daytime and 0.6 K at night). In addition, in the nighttime the highly vegetated neighborhoods (LCZ 5,
6, and 9) exhibited a slight to moderate underestimation of Ts (average bias = −0.4 K).Climate 2020, 8, x FOR PEER REVIEW 21 of 33 
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from WRF (Ts) (average for the available imagery in 7–11 August 2017).

The above discrepancies can be better highlighted in the spatial mapping of Ts presented in
Figure 13 (average model estimations compared against synchronous average LST values retrieved from
MODIS Aqua). Nevertheless, despite the systematic differences, it can be observed that WRF–SLUCM
was capable of matching to a fairly good extent the spatial patterns of satellite-derived LST.

By day (Figure 13a) LCZ 8 (high λi and low H/W) was correctly simulated to have a higher
surface temperature of ≈2 K compared to the neighboring densely built districts (LCZ 21 and LCZ
2). At night, the center of the open set LCZ 8 zone corresponded to a local minimum, 0.5–1 K cooler
than the central areas with closely packed buildings (Figure 13b), in agreement to Aqua observations
(Figure 13d). In addition, the model-observation comparison demonstrates that WRF noticeably
captured the differentiation between the highly built-up and the heavily vegetated urban districts.
However, the intra-urban variations were overestimated at nighttime because of the previously noted
systematic errors. The evaluation of the model’s ability to predict the near-surface air temperature (Tas)
is given in Figure 14. In general, WRF provided good estimates for the majority of the stations, with an
RMSE varying from 1.2 to 3.2 K and an average value of 1.7 K. The larger errors were obtained for the
less densely built-up LCZs as a result of significant underestimation of nocturnal Tas (average bias
equal to −0.9 K for all stations). In addition to a general underestimation of the nocturnal thermal stress
in well-vegetated urban areas that was also observed previously for Ts, the disagreement between
modeled and observed values are considered to be further influenced by the location of the automatic
meteorological stations. Specifically, while the majority of the stations are located within or near
residential districts, modeled Tas corresponds to the aggregated temperature of both the impervious
and the vegetated tile of the urban grid cell. Limiting the evaluation only to the impervious part of the
modeled temperatures (Tas,urb), the negative bias was seen to consistently decrease (average bias =

−0.1 K for all stations), while RMSE also became smaller, from 1.7 K to 1.1 K (Figure 15).
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Figure 15. As in Figure 14, for the diagnostic variable Tas,urb.

The considerably low bias using Tas,urb as a diagnostic output variable is reflected on the average
modeled air temperature per LCZ for the total examined period (Table 11); results are divided into
daytime (7 a.m. to 8 p.m. local time) and nighttime (9 p.m. to 7 a.m. local time) hours. It can be
observed that the average thermal conditions for the different LCZs were well predicted. As expected,
the less densely developed sites demonstrated lower average temperatures (also influenced by greater
elevation). The variability among LCZs was observed to be relatively stable for daytime and nighttime
estimates. Figure 16 gives the spatial distribution of the modeled near-surface, considering only the
urban tile (Tas,urb). Similar to the surface temperature variability in Figures 8 and 13, the closely packed
LCZs of the broader center of Athens (LCZ 21 and LCZ 2) had a lower temperature in the order of 0.5 K
than the adjacent LCZ 8 by day. At night, a difference of similar magnitude was observed, however,
this time with higher Tas,urb for LCZ 21 and LCZ 2.

Table 11. Average observed and modeled near-surface air temperature for the urban tile of the grid cell
(Tas,urb) in Athens per LCZ (degrees Celsius) (7–11 August 2017).

Daytime Nighttime

Station Model Station Model

LCZ 21 34.1 33.8 31.3 30.8
LCZ 2 33.7 33.5 30.5 30.4
LCZ 3 34.5 34.0 31.6 31.1
LCZ 5 33.1 33.0 30.0 29.9
LCZ 6 31.8 31.8 28.5 28.8
LCZ 9 29.9 29.8 27.5 27.3
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4. Discussion

Using statistical techniques, we assessed the relation between MODIS–LST and the surface
parameters λimp, λb, and H for a total number of 25 European cities. Results revealed that λimp presented
a clear and consistent positive influence on LST, as expected by previous studies [18–20]. This positive
association was widespread across study areas also for the regression models. The main process
responsible for the higher temperatures in the more heavily developed parts of a given city—controlling
for further structure characteristics—can be attributed to decreased evapotranspirative losses.

By day, an exception to the general λimp–LST correlation was the lower-latitude
cities—characterized by a particularly warm and dry summer climate, where λimp exhibited a
weak positive or a negative bivariate relation to LST. This finding is consistent with the results of
Imhoff et al. [19] for the arid and semi-arid cities in the United States, where part of inner-city areas
were cooler than surrounding natural regions of lower λimp. This particular λimp–LST connection is
considered to be a result of: (a) The properties of vegetation and soils in xeric biomes—lower moisture
availability and subsequently decreased cooling effect and thermal admittance—and (b) the compact
built-up structure and high thermal mass of the cities under consideration that leads to slower warming
rates. When adjusting for λb and H with multiple regression models, there was also a positive effect of
λimp on LST for the southern cities. This suggests that even when overall a negative daytime SUHI
might be present, extended, open-set impervious areas (e.g., roads, parking lots) within the cities will
typically be warmer than natural surfaces.

For λb and H, there was a large variability across cities with regard to their daytime relationship
to LST. This is considered to be shaped by the various and contrasting effects that compact, high-rise
urban design exerts on daytime microclimates. On the one hand, higher λb and H lead to increased
absorption of short-wave radiation due to multiple reflections between canyon facets and to the
stagnation of warm air within the urban canopy layer. On the other hand, closely spaced high-rise
buildings increase the shading inside the canyon and especially on roads; as a result, solar radiation is
reflected primarily at the rooftops, which generally have a higher albedo than canyon floors. Moreover,
the increased size and number of active surfaces result in more heat being stored within the urban
fabric. The prevailing characteristics and the range of values for λb and H of a given city result in a
unique relationship for λb and H with LST as presented in Figures 5–7 and Table 6.

The observed discrepancies between cities in this work are expected to be also influenced by
the distinct ventilation potential that different districts have within a given city. Ventilation channels
have been found to provide strong control over the thermal climate of a city, potentially alleviating
the excess heat of urban form and function [107,108]. A more detailed analysis of the aerodynamic
features [109,110] would be the goal of a future study in order to examine the importance of the
proximity to wind corridors as a further determining parameter of the thermal environment.

Despite the differences across cities obtained in the current study, some general conclusions
may be drawn from the statistical analysis: Regarding the bivariate correlation of λb and H with
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LST, a generally positive linkage was obtained, in agreement with previous works [37,43]. However,
part of the above association is considered to be indirectly driven by the strong correlation that λb
and H have with the impervious fraction (λimp). Adjusting for the influence of λimp using multiple
linear regression, it was demonstrated that at a neighborhood scale (1000 m), closely spaced and tall
buildings are not the driving factor of high daytime LST. In addition, it can be inferred that when wind
shelter and canyon trapping are more than outweighed by increased shading and thermal admittance,
densely urban areas tend to exhibit lower daytime LST than districts of similar λimp. In contrast, during
nighttime, higher λb and H were generally associated—often strongly—with increasing LST, which
can be attributed to reduced long-wave radiation loss. These findings were also consistent for the
statistically significant results of the spatial regression models (SLM) (Table 8), giving further general
support for the conclusions in this study.

More specifically with regard to the H–LST daytime relationship, it was found that for several
cities, LST was decreasing with H (Tables 6 and 7) and/or its maximum value was not obtained at the
high-rise districts—especially for the heavily developed cities (e.g., Athens, London, Madrid, Paris,
and Rome) (Figure 6). In this regard, previous statistical studies of the effect of H on daytime LST
were conflicting: In some cities, H was considered to exert a positive control [37,39,43], whereas in
other urban areas the control was negative [41,44,45,111]. The intercomparison of multiple cities in
this work suggests that a single direction of influence cannot be generalized; however, generally,
H resulted in a weak or negative contribution to high daytime LST. This study also supports previous
qualitative findings observing that the high-rise urban core was not the warmer part of the city by day:
In Vancouver [112], Paris [113], Shanghai [20], Phoenix [114], London [115], and Los Angeles [116].
Finally, in [117], it was demonstrated that in several cases worldwide, LCZ 1—corresponding to
neighborhoods with the higher building heights—had lower LST compared to other LCZ classes with
similar building density but lower height.

The discussion above highlights the importance of taking into account the diurnal course of
surface temperature when evaluating the thermal environment of a city. Intra-urban differences in
urban form provide control on the warming and cooling rates of different LCZs. However, as it has
been noted in the literature [118], more than half of SUHI studies are limited to daytime thermal
observations. As shown here, this can lead to a misidentification of the most thermally vulnerable
locations of a city, in view of designing and implementing climate-sensitive mitigation responses of the
urban heat island effect.

The accuracy of the LST retrieval in an urban environment using space-borne observations is
affected by (a) the effects of atmospheric absorption, (b) the assignment of surface emissivity, and (c)
the influence of thermal anisotropy. With regard to uncertainties in the atmospheric correction, it is
considered that they have a negligible effect on the derived intra-urban variations since the study
area extents under consideration were rather limited, therefore, atmospheric absorption between the
surface and the sensor was more or less equally distributed across a given urban area.

Emissivity uncertainties in the MODIS–LST product (MOD/MYD11) are controlled by the accuracy
of the land cover classification and the assumption that the assigned emissivity values of a given class
are adequately representative [80]. Accuracy of MODIS emissivity is likely to affect primarily the
λimp–LST relation, as MODIS classification does not consider urban structure differences. Conversely,
the connection of H and LST is considered to be influenced by the urban geometry effect on the
effective emissivity [119]. However, the consistent shift of regression coefficients for H obtained during
daytime—weak positive or weak negative—and in nighttime—moderate/strong positive—suggest that
the main part of urban structure control on LST is obtained independently of the emissivity retrieval.

As noted previously, one of the major findings in this work was the relatively lower LST in the
daytime for the pixels (at 1000 m spatial resolution) with high H. The observed thermal radiation from
satellite sensors is derived mostly by the rooftops and the road surface, as a result of the observing angle
of the instrument. Adjusting the urban surface temperature for thermal anisotropy—i.e., considering in
an indirect way the wall temperatures and using weights according to the relative fractions of canyon
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facets—would have potentially increased the resulting negative effect of H to LST by day, as thermal
anisotropy increases with daytime H/W [120].

The connection between urban surface parameters and LST was further analyzed and interpreted
in the urban area of Athens within the context of the LCZ scheme. As expected, the local climate
zones with high vegetation density (LCZ 6 and LCZ 9) (i.e., low λimp values) tended to have the
lower temperatures of the study area. By day, the large low-rise class (LCZ 8) yielded the higher
LSTs, as a result of the increased impervious ground fraction (λi) (related to lower albedo and thermal
admittance). The converse situation was observed at night, when the closely-spaced urban central
areas (LCZ 21, LCZ 2, and LCZ 3) were warmer than LCZ 8, as for the latter, low H/W assists radiative
cooling. Overall, the LCZ scheme was found to be valuable in assessing the major thermal patterns
inside the urban area. Surface temperature differences among LCZs was consistent with previous
related studies [111,117,121]. The more obvious distinction of LCZ 8 here during daytime is attributed
to the extensive fractional coverage of this zone within the urban core of Athens, whereas the previously
examined industrial sites in the literature have been mostly fragmented and/or on the outskirts of
the city.

Using the meteorological model WRF together with a modified version of the urban
parameterization scheme SLUCM, yielded an adequate agreement of the urban form controls on the
thermal patterns in Athens. The systematic errors for LST were similar in magnitude with those reported
in previous studies [55,63,97]. A part of the positive bias may be attributed to the slight underestimation
of the reference MODIS product in Athens, as reported in [92]. The model to observation comparison
of air temperatures showed a relatively low prediction error (RMSE = 1.7 K). However, a significant
underestimation of nocturnal Ta was found for the stations in well-vegetated urban districts. Using
only the modeled temperature for the impervious (urban) tile of the cells, the above systematic error
reduced significantly. In addition to issues in relation to the location of the weather stations, the
above discrepancies are considered to be associated with the tile approach of the default SLUCM
scheme, whereby vegetation-buildings interactions are not incorporated. In future research it will be
investigated how WRF modelled temperatures may be altered when vegetation-related processes can
be directly included in the urban canyon (e.g., as in [97]), which is a key research focus for various
currently developed urban parameterization schemes (e.g., [122]).

5. Conclusions

In this study, we assessed the influence of key urban surface parameters at the neighborhood scale
(1000 m) thermal climate. The major conclusions for 25 European cities can be summarized as follows:
The impervious urban fraction (λimp) had the most consistent and statistically significant relation to LST
with a positive effect for the vast majority of the cities. By day, λb and H showed—after adjusting for
λimp using regression analysis—either a weak positive or a negative influence on LST. Tall buildings, in
particular, were commonly observed to contribute to a slight decrease in daytime surface temperature.
The picture was altered during nighttime, where LST was mainly increasing for increasing λb and H
(considering the statistically significant regression coefficients) with a similar magnitude to that of
λimp. Moreover, the statistically significant results of spatial regression (SLM) were consistent with the
multiple regression models. A more detailed investigation of the connection between urban structure
and LST was conducted for Athens, using the LCZ scheme and additional surface parameters. For the
urban core of the city a notable negative relation of LST with H/W and λc was estimated in the daytime
(rho = −0.68 and −0.70, respectively), and in contrast, a positive association during nighttime (rho = 0.45
and 0.59, respectively). Results of a WRF numerical simulation for a 5-day period of high heat in
Athens suggest that the model can reproduce the main spatial patterns of the urban area with an RMSE
equal to 2.4 K for Ts and to 1.7 K for Ta; however, systematic underestimations were also present,
especially for the heavily vegetated LCZs.
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Appendix A

Table A1. Pairwise Spearman’s rho linear correlations among λimp, λb, and H.

λimp λb H λimp λb H

Amsterdam λimp 1.00 0.83 0.53 London λimp 1.00 0.83 0.48
λb 0.83 1.00 0.40 λb 0.83 1.00 0.38
H 0.53 0.40 1.00 H 0.48 0.38 1.00

Athens λimp 1.00 0.82 0.46 Madrid λimp 1.00 0.77 0.51
λb 0.82 1.00 0.66 λb 0.77 1.00 0.47
H 0.46 0.66 1.00 H 0.51 0.47 1.00

Berlin λimp 1.00 0.83 0.59 Nicosia λimp 1.00 0.94 0.49
λb 0.83 1.00 0.55 λb 0.94 1.00 0.43
H 0.59 0.55 1.00 H 0.49 0.43 1.00

Bratislava λimp 1.00 0.91 0.46 Paris λimp 1.00 0.83 0.53
λb 0.91 1.00 0.45 λb 0.83 1.00 0.34
H 0.46 0.45 1.00 H 0.53 0.34 1.00

Brussels λimp 1.00 0.69 0.63 Prague λimp 1.00 0.93 0.63
λb 0.69 1.00 0.50 λb 0.93 1.00 0.66
H 0.63 0.50 1.00 H 0.63 0.66 1.00

Bucharest λimp 1.00 0.83 0.33 Riga λimp 1.00 0.86 0.24
λb 0.83 1.00 0.34 λb 0.86 1.00 0.13
H 0.33 0.34 1.00 H 0.24 0.13 1.00

Budapest λimp 1.00 0.74 0.56 Rome λimp 1.00 0.88 0.58
λb 0.74 1.00 0.27 λb 0.88 1.00 0.51
H 0.56 0.27 1.00 H 0.58 0.51 1.00

Copenhagen λimp 1.00 0.85 0.48 Sofia λimp 1.00 0.89 0.57
λb 0.85 1.00 0.34 λb 0.89 1.00 0.61
H 0.48 0.34 1.00 H 0.57 0.61 1.00

Dublin λimp 1.00 0.89 0.22 Stockholmλimp 1.00 0.56 0.61
λb 0.89 1.00 0.05 λb 0.56 1.00 0.15
H 0.22 0.05 1.00 H 0.61 0.15 1.00

Helsinki λimp 1.00 0.79 0.58 Vienna λimp 1.00 0.85 0.77
λb 0.79 1.00 0.27 λb 0.85 1.00 0.58
H 0.58 0.27 1.00 H 0.77 0.58 1.00

Lisbon λimp 1.00 0.89 0.59 Vilnius λimp 1.00 0.86 0.61
λb 0.89 1.00 0.52 λb 0.86 1.00 0.47
H 0.59 0.52 1.00 H 0.61 0.47 1.00

Ljubljana λimp 1.00 0.93 0.70 Warsaw λimp 1.00 0.76 0.61
λb 0.93 1.00 0.64 λb 0.76 1.00 0.45
H 0.70 0.64 1.00 H 0.61 0.45 1.00

Zagreb λimp 1.00 0.91 0.66
λb 0.91 1.00 0.52
H 0.66 0.52 1.00
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