Modeling the Soil Response to Rainstorms after Wildfire and Prescribed Fire in Mediterranean Forests
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas
2.1.1. Wildfire-Affected Forest (Liétor)
2.1.2. Forest Subjected to Prescribed Fire (Lezuza)
2.2. Description of Experimental Plots and Measurement of Runoff Volume
2.3. Outlines on the SCS-CN Model
- V = runoff volume (mm);
- Pn = net precipitation (mm);
- W = water volume stored into the soil (mm);
- S = maximum water storage capacity of soil (mm).
- AMCI: dry condition and minimum surface runoff;
- AMCII: average condition and surface runoff;
- AMCIII: wet condition and maximum surface runoff.
2.4. Model Implementation
2.4.1. Linear Regression between Rainfall and Runoff
- V = runoff volume (mm);
- P = total precipitation (mm);
- a = slope (-).
2.4.2. SCS-CN Model
2.5. Evaluation of Model Prediction Accuracy
3. Results and Discussion
3.1. Hydrological Characterization
3.1.1. Wildfire-Affected Forest (Liétor)
3.1.2. Forest Subjected to Prescribed Fire (Lezuza)
3.2. Hydrological Modeling
3.2.1. Linear Regression
3.2.2. SCS-CN Model
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hou, Y.; Zhang, M.; Liu, S.; Sun, P.; Yin, L.; Yang, T.; Yide, L.; Qiang, L.; Wei, X. The hydrological impact of extreme weather-induced forest disturbances in a tropical experimental watershed in south China. Forests 2018, 9, 734. [Google Scholar] [CrossRef] [Green Version]
- Aryal, Y.; Zhu, J. Effect of watershed disturbance on seasonal hydrological drought: An improved double mass curve (IDMC) technique. J. Hydrol. 2020, 585, 124746. [Google Scholar] [CrossRef]
- Lindner, M.; Maroschek, M.; Netherer, S.; Kremer, A.; Barbati, A.; Garcia-Gonzalo, J.; Lexer, M.J. Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For. Ecol. Manag. 2010, 259, 698–709. [Google Scholar] [CrossRef]
- Flanagan, S.A.; Hurtt, G.C.; Fisk, J.P.; Sahajpal, R.; Hansen, M.C.; Dolan, K.A.; Sullivan, J.H.; Zhao, M. Potential Vegetation and Carbon Redistribution in Northern North America from Climate Change. Climate 2016, 4, 2. [Google Scholar] [CrossRef] [Green Version]
- Nunes, L.J.; Meireles, C.I.; Pinto Gomes, C.J.; Almeida Ribeiro, N.M. Forest Contribution to Climate Change Mitigation: Management Oriented to Carbon Capture and Storage. Climate 2020, 8, 21. [Google Scholar] [CrossRef] [Green Version]
- Niemeyer, R.J.; Bladon, K.D.; Woodsmith, R.D. Long term hydrologic recovery after wildfire and post-fire forest management in the interior Pacific Northwest. Hydrol. Process. 2020, 34, 1182–1197. [Google Scholar] [CrossRef]
- Lucas-Borja, M.E.; González-Romero, J.; Plaza-Álvarez, P.A.; Sagra, J.; Gómez, M.E.; Moya, D.; de Las Heras, J. The impact of straw mulching and salvage logging on post-fire runoff and soil erosion generation under Mediterranean climate conditions. Sci. Total Environ. 2019, 654, 441–451. [Google Scholar] [CrossRef]
- Keizer, J.J.; Silva, F.C.; Vieira, D.C.; González-Pelayo, O.; Campos, I.M.A.N.; Vieira, A.M.D.; Prats, S.A. The effectiveness of two contrasting mulch application rates to reduce post-fire erosion in a Portuguese eucalypt plantation. Catena 2018, 169, 21–30. [Google Scholar] [CrossRef]
- Wilson, C.; Kampf, S.K.; Wagenbrenner, J.W.; MacDonald, L.H. Rainfall thresholds for post-fire runoff and sediment delivery from plot to watershed scales. For. Ecol. Manag. 2018, 430, 346–356. [Google Scholar] [CrossRef]
- Kinoshita, A.M.; Chin, A.; Simon, G.L.; Briles, C.; Hogue, T.S.; O’Dowd, A.P.; Albornoz, A.U. Wildfire, water, and society: Toward integrative research in the “Anthropocene”. Anthropocene 2016, 16, 16–27. [Google Scholar] [CrossRef] [Green Version]
- Smith, H.G.; Sheridan, G.J.; Lane, P.N.; Nyman, P.; Haydon, S. Wildfire effects on water quality in forest catchments: A review with implications for water supply. J. Hydrol. 2011, 396, 170–192. [Google Scholar] [CrossRef]
- Menéndez-Duarte, R.; Fernández, S.; Soto, J. The application of 137Cs to post-fire erosion in north-west Spain. Geoderma 2009, 150, 54–63. [Google Scholar] [CrossRef]
- Lopéz, R.; Batalla, R.J. Análisis del comportamiento hidrológico de la cuenca mediterránea de Arbúbices antes y después de un incendio forestal. III Congreso Forestal, Español, Granada, Spain. 2001. Available online: ile:///C:/Users/MDPI/AppData/Local/Temp/3CFE01-084.pdf (accessed on 16 November 2020).
- Shakesby, R.A. Post-wildfire soil erosion in the Mediterranean: Review and future research directions. Earth Sci. Rev. 2011, 105, 71–100. [Google Scholar] [CrossRef]
- Zavala, L.M.M.; de Celis Silvia, R.; López, A.J. How wildfires affect soil properties. A brief review. Cuad. Investig. geográfica/Geogr. Res. Lett. 2014, 40, 311–331. [Google Scholar] [CrossRef] [Green Version]
- Moody, J.A.; Shakesby, R.A.; Robichaud, P.R.; Cannon, S.H.; Martin, D.A. Current research issues related to post-wildfire runoff and erosion processes. Earth Sci. Rev. 2013, 122, 10–37. [Google Scholar] [CrossRef]
- Nunes, J.P.; BernardJannin, L.; Rodriguez Blanco, M.L.; Santos, J.M.; Coelho, C.D.O.A.; Keizer, J.J. Hydrological and erosion processes in terraced fields: Observations from a humid Mediterranean region in northern Portugal. Land Degrad. Dev. 2018, 29, 596–606. [Google Scholar] [CrossRef]
- Nunes, J.P.; Naranjo Quintanilla, P.; Santos, J.M.; Serpa, D.; Carvalho-Santos, C.; Rocha, J.; Keesstra, S.D. Afforestation, subsequent forest fires and provision of hydrological services: A model-based analysis for a Mediterranean mountainous catchment. Land Degrad. Dev. 2018, 29, 776–788. [Google Scholar] [CrossRef]
- Nunes, J.P.; Doerr, S.H.; Sheridan, G.; Neris, J.; Santín, C.; Emelko, M.B.; Silins, U.; Robichaud, P.R.; Elliot, W.J.; Keizer, J. Assessing water contamination risk from vegetation fires: Challenges, opportunities and a framework for progress. Hydrol. Process. 2018, 32, 687–1684. [Google Scholar] [CrossRef] [Green Version]
- Filianoti, P.; Gurnari, L.; Zema, D.A.; Bombino, G.; Sinagra, M.; Tucciarelli, T. An evaluation matrix to compare computer hydrological models for flood predictions. Hydrology 2020, 7, 42. [Google Scholar] [CrossRef]
- Lucas-Borja, M.E.; Zema, D.A.; Carrà, B.G.; Cerdà, A.; Plaza-Alvarez, P.A.; Cózar, J.S.; de las Heras, J. Short-term changes in infiltration between straw mulched and non-mulched soils after wildfire in Mediterranean forest ecosystems. Ecol. Eng. 2018, 122, 27–31. [Google Scholar] [CrossRef] [Green Version]
- IPCC. IPCC’s 5th Assessment Report for Europe. 2013. Available online: http://www.ipcc.ch/pdf/assessment-report/ar5/wg2/WGIIAR5-Chap23_FINAL.pdf (accessed on 31 August 2018).
- Bedia, J.; Herrera, S.; Camia, A.; Moreno, J.M.; Gutiérrez, J.M. Forest fire danger projections in the Mediterranean using ENSEMBLES regional climate change scenarios. Clim. Chang. 2014, 122, 185. [Google Scholar] [CrossRef] [Green Version]
- Zema, D.A.; Lucas-Borja, M.E.; Fotia, L.; Rosaci, D.; Sarnè, G.M.; Zimbone, S.M. Predicting the hydrological response of a forest after wildfire and soil treatments using an Artificial Neural Network. Comput. Electron. Agric. 2020, 170, 105280. [Google Scholar] [CrossRef]
- Zema, D.A.; Nunes, J.P.; Lucas-Borja, M.E. Improvement of seasonal runoff and soil loss predictions by the MMF (Morgan-Morgan-Finney) model after wildfire and soil treatment in Mediterranean forest ecosystems. Catena 2020, 188, 104415. [Google Scholar] [CrossRef]
- Merritt, W.S.; Letcher, R.A.; Jakeman, A.J. A review of erosion and sediment transport models. Environ. Model. Softw. 2003, 18, 761–799. [Google Scholar] [CrossRef]
- Zema, D.A.; Lucas-Borja, M.E.; Carrà, B.G.; Denisi, P.; Rodrigues, V.A.; Ranzini, M.; Soriano, F.C.; de Cicco, V.; Zimbone, S.M. Simulating the hydrological response of a small tropical forest watershed (Mata Atlantica, Brazil) by the AnnAGNPS model. Sci. Total Environ. 2018, 636, 737–750. [Google Scholar] [CrossRef] [Green Version]
- Pereira, P.; Francos, M.; Brevik, E.C.; Ubeda, X.; Bogunovic, I. Post-fire soil management. Curr. Opin. Environ. Sci. Health 2018, 5, 26–32. [Google Scholar] [CrossRef]
- Lucas-Borja, M.E.; Carrà, B.G.; Nunes, J.P.; Bernard-Jannin, L.; Zema, D.A.; Zimbone, S.M. Impacts of land-use and climate changes on surface runoff in a tropical forest watershed (Brazil). Hydrol. Sci. J. 2020, 65, 1956–1973. [Google Scholar] [CrossRef]
- Mishra, S.K.; Singh, V.P. Another look at SCS-CN method. J. Hydrol. Eng. 1999, 4, 257–264. [Google Scholar] [CrossRef]
- Mishra, S.K.; Singh, V.P. Soil Conservation Service Curve NUMBER (SCS-CN) methodology (Vol. 42); Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013; p. 277. [Google Scholar]
- Suresh Babu, P.; Mishra, S.K. Improved SCS-CN–inspired model. J. Hydrol. Eng. 2012, 17, 1164–1172. [Google Scholar] [CrossRef]
- Michel, C.; Andreassian, V.; Perrin, C. Soil conservation service curve number method: How to mend a wrong soil moisture accounting procedure. Water Resour. Res. 2005, 41, W02011. [Google Scholar] [CrossRef]
- Jain, M.K.; Mishra, S.K.; Suresh Babu, P.; Venugopal, K. On the Ia–S relation of the SCS-CN method. Hydrol. Res. 2006, 37, 261–275. [Google Scholar] [CrossRef]
- Garen, D.; Moore, D.S. Curve number hydrology in water quality modeling: Uses, abuses, and future directions. J. Am. Water Resour. Assoc. 2005, 41, 377–388. [Google Scholar] [CrossRef]
- Ponce, V.M.; Hawkins, R.H. Runoff curve number: Has it reached maturity? J. Hydrol. Eng. 1996, 1, 11–19. [Google Scholar] [CrossRef]
- Soulis, K.X. Estimation of SCS Curve Number variation following forest fires. Hydrol. Sci. J. 2018, 63, 1332–1346. [Google Scholar] [CrossRef]
- Hawkins, R.H.; Greenberg, R.J. WILDCAT4 Flow Model; University of Arizona, School of Renewable Natural Resources: Tucson, AZ, USA, 1990. [Google Scholar]
- Cerrelli, G.A. Fire hydro, a simplified method for predicting peak discharges to assist in the design of flood protection measures for western wildfires. In Proceedings of the 2005 Watershed Management Conference—Managing Watersheds for Human and Natural Impacts: Engineering, Ecological, and Economic Challenges, Williamsburg, VA, USA, 19–22 July 2005; Moglen, G.E., Ed.; American Society of Civil Engineers: Alexandria, VA, USA, 2005; pp. 935–941. [Google Scholar]
- Candela, A.; Aronica, G.; Santoro, M. Effects of Forest Fires on Flood Frequency Curves in a Mediterranean Catchment/Effets d’incendies de forêt sur les courbes de fréquence de crue dans un bassin versant Méditerranéen. Hydrol. Sci. J. 2005, 50, 1–206. [Google Scholar] [CrossRef]
- Nunes, J.P.; Catarina Simões Vieira, D.; Keizer, J.J. Comparing simple and complex approaches to simulate the impacts of soil water repellency on runoff and erosion in burnt Mediterranean forest slopes. In Proceedings of the European Geosciences Union, General Assembly, EGUGA, Vienna, Austria, 23 April 2017; p. 10815. [Google Scholar]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Soil Survey Staff. Soil Taxonomy. Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys. Agricultural Handbook 436, 2nd ed.; Natural Resources Conservation Service, USDA: Washington, DC, USA, 1999; p. 869. [Google Scholar]
- Vega, J.A.; Fontúrbel, T.; Merino, A.; Fernández, C.; Ferreiro, A.; Jiménez, E. Testing the ability of visual indicators of soil burn severity to reflect changes in soil chemical and microbial properties in pine forests and shrubland. Plant Soil. 2013, 369, 73–91. [Google Scholar] [CrossRef]
- Vega, J.A.; Fernández, C.; Fonturbel, T.; González-Prieto, S.; Jiménez, E. Testing the effects of straw mulching and herb seeding on soil erosion after fire in a gorse shrubland. Geoderma 2014, 223, 79–87. [Google Scholar] [CrossRef]
- Zema, D.A.; Labate, A.; Martino, D.; Zimbone, S.M. Comparing different infiltration methods of the HEC-HMS model: The case study of the Mésima Torrent (Southern Italy). Land Degrad. Dev. 2017, 28, 294–308. [Google Scholar] [CrossRef]
- Wischmeier, W.H.; Smith, D.D. Prediction Rainfall Erosion Losses; Handbook, No. 537; USDA: Washington, DC, USA, 1978. [Google Scholar]
- Willmott, C.J. Some comments on the evaluation of model performance. Bull. Am. Meteorol. Soc. 1982, 63, 1309–1313. [Google Scholar] [CrossRef] [Green Version]
- Legates, D.R.; McCabe, G.J. Evaluating the use of “goodness of fit” measures in hydrologic and hydroclimatic model validation. Water Resour. Res. 1999, 35, 233–241. [Google Scholar] [CrossRef]
- Loague, K.; Green, R.E. Statistical and graphical methods for evaluating solute transport models: Overview and application. J. Contam. Hydrol. 1991, 7, 51–73. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models: Part I. A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Zema, D.A.; Bingner, R.L.; Govers, G.; Licciardello, F.; Denisi, P.; Zimbone, S.M. Evaluation of runoff, peak flow and sediment yield for events simulated by the AnnAGNPS model in a Belgian agricultural watershed. Land Degrad. Dev. 2012, 23, 205–215. [Google Scholar] [CrossRef]
- Krause, P.; Boyle, D.P.; Base, F. Comparison of different efficiency criteria for hydrological model assessment. Adv. Geosci. 2005, 5, 89–97. [Google Scholar] [CrossRef] [Green Version]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Van Liew, M.W.; Garbrecht, J. Hydrologic simulation of the Little Washita River experimental watershed using SWAT. J. Am. Water Resour. Assoc. 2003, 39, 413–426. [Google Scholar] [CrossRef]
- Santhi, C.; Arnold, J.G.; Williams, J.R.; Dugas, W.A.; Srinivasan, R.; Hauck, L.M. Validation of the SWAT model on a large river basin with point and nonpoint sources. J. Am. Water Resour. Assoc. 2001, 37, 1169–1188. [Google Scholar] [CrossRef]
- Van Liew, M.W.; Arnold, J.G.; Garbrecht, J.D. Hydrologic simulation on agri- cultural watersheds: Choosing between two models. Trans. ASABE 2003, 46, 1539–1551. [Google Scholar] [CrossRef]
- Vieira, D.C.S.; Prats, S.A.; Nunes, J.P.; Shakesby, R.A.; Coelho, C.O.A.; Keizer, J.J. Modelling runoff and erosion, and their mitigation, in burned Portuguese forest using the revised Morgan-Morgan-Finney model. For. Ecol. Manag. 2014, 314, 150–165. [Google Scholar] [CrossRef]
- Singh, J.; Knapp, H.V.; Demissie, M. Hydrologic modeling of the Iroquois River watershed using HSPF and SWAT. ISWS CR 2004-08. Champaign, Ill.: Illinois State Water Survey. 2004. Available online: http://www.sws.uiuc.edu/pubdoc/CR/ISWSCR2004-08.pdf (accessed on 14 February 2018).
- Gupta, H.V.; Sorooshian, S.; Yapo, P.O. Status of automatic calibration for hydrologic models: Comparison with multilevel expert calibration. J. Hydrol. Eng. 1999, 4, 135–143. [Google Scholar] [CrossRef]
- Neary, D.G.; Ryan, K.C.; DeBano, L.F. Wildland fire in ecosystems: Effects of fire on soils and water. Gen. Tech. Rep. RMRS-GTR-42-vol. 4. Ogden, UT: US Department of Agriculture, Forest Service, Rocky Mountain Research Station. 250 p. 42. 2005. Available online: https://www.fs.fed.us/rm/pubs/rmrs_gtr042_4.pdf (accessed on 16 November 2020).
- Lucas-Borja, M.E.; Plaza-Álvarez, P.A.; Gonzalez-Romero, J.; Sagra, J.; Alfaro-Sánchez, R.; Zema, D.A.; de Las Heras, J. Short-term effects of prescribed burning in Mediterranean pine plantations on surface runoff, soil erosion and water quality of runoff. Sci. Total Environ. 2019, 674, 615–622. [Google Scholar] [CrossRef]
- Prats, S.A.; González-Pelayo, Ó.; Silva, F.C.; Bokhorst, K.J.; Baartman, J.E.; Keizer, J.J. Post-fire soil erosion mitigation at the scale of swales using forest logging residues at a reduced application rate. Earth Surf. Process. Landf. 2019, 44, 2837–2848. [Google Scholar] [CrossRef]
- Prats, S.A.; Malvar, M.C.; Coelho, C.O.A.; Wagenbrenner, J.W. Hydrologic and erosion responses to compaction and added surface cover in post-fire logged areas: Isolating splash, interrill and rill erosion. J. Hydrol. 2019, 575, 408–419. [Google Scholar] [CrossRef]
- Lopes, A.R.; Prats, S.A.; Silva, F.C.; Keizer, J.J. Effects of ploughing and mulching on soil and organic matter losses after a wildfire in Central Portugal. Cuad. Investig. Geográfica 2020, 46, 303–318. [Google Scholar] [CrossRef] [Green Version]
- Robichaud, P.R.; Lewis, S.A.; Brown, R.E.; Bone, E.D.; Brooks, E.S. Evaluating post-wildfire logging-slash cover treatment to reduce hillslope erosion after salvage logging using ground measurements and remote sensing. Hydrol. Process. 2020, 34, 4431–4445. [Google Scholar] [CrossRef]
- Keesstra, S.; Wittenberg, L.; Maroulis, J.; Sambalino, F.; Malkinson, D.; Cerdà, A.; Pereira, P. The influence of fire history, plant species and post-fire management on soil water repellency in a Mediterranean catchment: The Mount Carmel range, Israel. Catena 2017, 149, 857–866. [Google Scholar] [CrossRef]
- de Dios Benavides-Solorio, J.; MacDonald, L.H. Measurement and prediction of post-fire erosion at the hillslope scale, Colorado Front Range. Int. J. Wildland Fire 2005, 14, 457–474. [Google Scholar] [CrossRef] [Green Version]
- DeBano, L.F.; Debano, L.F.; Neary, D.G.; Ffolliott, P.F. Fire Effects on Ecosystems; John Wiley & Sons: Hoboken, NJ, USA, 1998. [Google Scholar]
- MacDonald, L.H.; Sampson, R.; Brady, D.; Juarros, L.; Martin, D. Chapter 4. Predicting post-fire erosion and sedimentation risk on a landscape scale: A case study from Colorado. J. Sustain. For. 2000, 11, 57–87. [Google Scholar] [CrossRef]
- DeBano, L.F.; Mann, L.D.; Hamilton, D.A. Translocation of hydrophobic substances into soil by burning organic litter 1. Soil. Sci. Soc. Am. J. 1970, 34, 130–133. [Google Scholar] [CrossRef]
- Shakesby, R.A.; Doerr, S.H.; Walsh, R.P.D. The erosional impact of soil hydrophobicity: Current problems and future research directions. J. Hydrol. 2000, 231, 178–191. [Google Scholar] [CrossRef]
- Díaz-Delgado, R.; Pons, X. Spatial patterns of forest fires in Catalonia (NE of Spain) along the period 1975–1995: Analysis of vegetation recovery after fire. For. Ecol. Manag. 2001, 147, 67–74. [Google Scholar] [CrossRef]
- Keeley, J.E. Fire intensity, fire severity and burn severity: A brief review and suggested usage. Int. J. Wildland Fire 2009, 18, 116–126. [Google Scholar] [CrossRef]
- Prosser, I.P.; Williams, L. The effect of wildfire on runoff and erosion in native Eucalyptus forest. Hydrol. Process. 1998, 12, 251–265. [Google Scholar] [CrossRef]
Characteristics | Prescribed Fire (Lezuza) | Wildfire (Liétor) | ||||
---|---|---|---|---|---|---|
Soil Condition | ||||||
Control | Burned | Control | Burned | Burned and Mulched | ||
Number of plots | 6 | 6 | 6 | 6 | 6 | |
Plot area (m2) | 8 | 200 | ||||
Elevation (m) | 1010–1040 | 520–770 | ||||
Slope (%) | 15 (±4.4) | 14.5 (±2.6) | 15–20 | |||
Aspect | N | N-NE | W-SW and N | |||
Tree density (n ha−1) | 477 (±33) | 529 (±60) | 500–650 | |||
Tree height (m) | 8–13 | 7–14 | ||||
Tree diameter (cm) | 27 (±7) | 32 (±6) | 25–35 | |||
Tree canopy cover (%) | 75–85 | 60–70 | ||||
Tree species composition | P. pinaster Ait., P. halepensis M. | P. pinaster Ait., P. halepensis M., Q. ilex L. | Pinus halepensis Mill | |||
Shrub/herb species | Quercus coccifera L., Brachypodium retusum P., Thymus vulgaris L., Dactylis glomerata L. | Quercus coccifera L., Brachypodium retusum P., Thymus vulgaris L., Sanguisorba minor S. | Rosmarinus officinalis L., Brachypodium retusum (Pers.) Beauv., Cistus clusii Dunal, Lavandula latifolia Medik., Thymus vulgaris L., Helichrysum stoechas (L.) Moench, Macrochloa tenacissima (L.) Kunth, Quercus coccifera L. and Plantago albicans L. | |||
Canopy consumed by fire (%) | - | 18 (±5) | - | 90 (±15) | ||
Shrub/herb cover (%) | Pre-fire | 56 (±9) | 51 (±7) | 65 (±9) | ||
Post-fire | 59 (±5) | 10 (±3) | 0 (±0) | |||
Litter (%) | Pre-fire | 40 (±8) | 44 (±7) | 10 (±5) | ||
Post-fire | 38 (±9) | 79 (±6) | 5 (±2) | |||
Bare soil (%) | Pre-fire | 4 (±1) | 5 (±1) | 25 (±8) | ||
Post-fire | 3 (±1) | 11 (±3) | 90 (±12) |
Event | Date | Days after Fire | Rainfall Height (mm) | Maximum Intensity (mm h−1) |
---|---|---|---|---|
Prescribed fire (Lezuza) | ||||
1 | 4 Apr 2016 | 5 | 20.0 | 8.8 |
2 | 6 May 2016 | 37 | 20.1 | 8.4 |
3 | 18 May 2016 | 49 | 10.2 | 4.3 |
4 | 12 Oct 2016 | 196 | 21.1 | 8.8 |
5 | 19 Oct 2016 | 203 | 27.4 | 5.3 |
6 | 8 Nov 2016 | 223 | 17.0 | 5.6 |
7 | 2 Dec 2016 | 247 | 52.4 | 4.2 |
8 | 23 Dec 2016 | 268 | 59.6 | 11.6 |
9 | 11 Feb 2017 | 318 | 38.2 | 6.3 |
10 | 4 Apr 2017 | 377 | 20.2 | 5.7 |
11 | 28 Apr 2017 | 394 | 28.2 | 6.8 |
Wildfire (Liétor) | ||||
1 | 21 Oct 2016 | 98 | 40.0 | 3.99 |
2 | 24 Nov 2016 | 129 | 41.0 | 1.48 |
3 | 8 Dec 2016 | 146 | 59.0 | 0.98 |
4 | 21 Dec 2016 | 159 | 93.8 | 2.1 |
5 | 30 Jan 2017 | 199 | 28.0 | 0.84 |
6 | 22 Feb 2017 | 222 | 16.8 | 1.14 |
7 | 8 Mar 2017 | 236 | 11.6 | 1.78 |
8 | 20 Mar 2017 | 248 | 102.6 | 16.2 |
9 | 12 May 2017 | 301 | 20.7 | 3.77 |
Input Parameter | Soil Condition | ||||
---|---|---|---|---|---|
Prescribed Fire (Lezuza) | Wildfire (Liétor) | ||||
Unburned | Burned | Unburned | Burned | Burned and Mulched | |
Soil hydrologic class | A | ||||
λ | 0.0001 | ||||
CN | 15 | 16 | 0.25 | 3 (27) * | 3 (22) * |
AMC | I |
Index | Equation | Range of Variability | Acceptance Limit and Notes |
---|---|---|---|
Coefficient of determination (r2) | 0 to 1 | >0.5 [56,57,58] | |
Coefficient of efficiency (E, Nash and Sutcliffe [51]) | −∞ to 1 | “Good” model accuracy if E ≥ 0.75, “satisfactory” if 0.36 ≤ E ≤ 0.75 and “unsatisfactory” if E ≤ 0.36 [55] | |
Root mean square error (RMSE) | 0 to ∞ | <0.5 of observed standard deviation [59] | |
Coefficient of residual mass (CRM or PBIAS, Loague and Green [50]) | −∞ to ∞ | <0.25 [54] CRM < 0 indicates model underestimation CRM > 0 indicates model overestimation [60] |
Runoff Volume | Mean | Standard | Minimum | Maximum | r2 | E | CRM | RMSE |
---|---|---|---|---|---|---|---|---|
Prescribed fire (Lezuza) | ||||||||
Control | ||||||||
Observed | 0.39 | 0.25 | 0.14 | 0.69 | - | - | - | - |
Simulated | 0.42 | 0.31 | 0.08 | 0.61 | 0.62 | 0.73 | -0.08 | 0.07 |
Burned | ||||||||
Observed | 0.40 | 0.16 | 0.19 | 0.75 | - | - | - | - |
Simulated | 0.40 | 0.30 | 0.08 | 0.58 | 0.75 | 0.60 | 0.01 | 0.12 |
Wildfire (Liétor) | ||||||||
Control | ||||||||
Observed | 0.03 | 0.00 | 0.03 | 0.08 | - | - | - | - |
Simulated | 0.03 | 0.01 | 0.02 | 0.07 | 0.90 | 0.89 | -0.07 | 0.01 |
Burned | ||||||||
Observed | 0.60 | 0.04 | 0.72 | 2.20 | - | - | - | - |
Simulated | 0.59 | 0.15 | 0.43 | 1.32 | 0.22 | 0.52 | 0.02 | 0.62 |
Burned and mulched | ||||||||
Observed | 0.49 | 0.01 | 0.62 | 1.66 | - | - | - | - |
Simulated | 0.55 | 0.14 | 0.40 | 1.23 | 0.39 | 0.62 | -0.11 | 0.46 |
Runoff Volume | Mean | Standard | Minimum | Maximum | r2 | E | CRM | RMSE |
---|---|---|---|---|---|---|---|---|
Prescribed fire (Lezuza) | ||||||||
Control | ||||||||
Observed | 0.39 | 0.14 | 0.25 | 0.69 | - | - | - | - |
Simulated | 0.37 | 0.15 | 0.20 | 0.73 | 0.92 | 0.87 | 0.06 | 0.05 |
Burned | ||||||||
Observed | 0.39 | 0.14 | 0.25 | 0.69 | - | - | - | - |
Simulated | 0.41 | 0.18 | 0.21 | 0.79 | 0.95 | 0.81 | -0.03 | 0.06 |
Wildfire (Liétor) | ||||||||
Control | ||||||||
Observed | 0.03 | 0.03 | 0.003 | 0.08 | - | - | - | - |
Simulated | 0.02 | 0.03 | 0.000 | 0.08 | 0.95 | 0.88 | 0.26 | 0.01 |
Burned | ||||||||
Observed | 0.60 | 0.72 | 0.04 | 2.20 | - | - | - | - |
Simulated | 0.47 | 0.70 | 0.00 | 2.06 | 0.98 | 0.97 | 0.22 | 0.16 |
Burned and mulched | ||||||||
Observed | 0.49 | 0.62 | 0.01 | 1.66 | - | - | - | - |
Simulated | 0.53 | 0.61 | 0.02 | 1.65 | 0.94 | 0.96 | -0.07 | 0.15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lucas-Borja, M.E.; Bombino, G.; Carrà, B.G.; D’Agostino, D.; Denisi, P.; Labate, A.; Plaza-Alvarez, P.A.; Zema, D.A. Modeling the Soil Response to Rainstorms after Wildfire and Prescribed Fire in Mediterranean Forests. Climate 2020, 8, 150. https://doi.org/10.3390/cli8120150
Lucas-Borja ME, Bombino G, Carrà BG, D’Agostino D, Denisi P, Labate A, Plaza-Alvarez PA, Zema DA. Modeling the Soil Response to Rainstorms after Wildfire and Prescribed Fire in Mediterranean Forests. Climate. 2020; 8(12):150. https://doi.org/10.3390/cli8120150
Chicago/Turabian StyleLucas-Borja, Manuel Esteban, Giuseppe Bombino, Bruno Gianmarco Carrà, Daniela D’Agostino, Pietro Denisi, Antonino Labate, Pedro Antonio Plaza-Alvarez, and Demetrio Antonio Zema. 2020. "Modeling the Soil Response to Rainstorms after Wildfire and Prescribed Fire in Mediterranean Forests" Climate 8, no. 12: 150. https://doi.org/10.3390/cli8120150
APA StyleLucas-Borja, M. E., Bombino, G., Carrà, B. G., D’Agostino, D., Denisi, P., Labate, A., Plaza-Alvarez, P. A., & Zema, D. A. (2020). Modeling the Soil Response to Rainstorms after Wildfire and Prescribed Fire in Mediterranean Forests. Climate, 8(12), 150. https://doi.org/10.3390/cli8120150