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Abstract: The climate crisis is happening globally, and the consequent process has revealed soil
evolution and meteorological interactions. The GNSS reflectometry (GNSS-R) technique recently
encompassed sea surface monitoring, land changes, and snow sensing in addition to position,
navigation, and timing. After the launch of NASA’s eight CYGNSS satellites, spaceborne soil
moisture retrieval has become more opportune in a global and regional investigation. The research
carried out by the CYGNSS DDM SNR with SMAP data to correlate diurnal mean soil moisture
sensing was analyzed in the regional study of Myanmar, which is prone to climatic and weather
conditions. The results showed that spaceborne GNSS-R soil moisture sensitivity was very useful
during seasonal changes in regional observation. The DDM SNR surface reflectivity was strongly
correlated with soil moisture according to surface temperature variations prepared from SMAP
passive reflectometry. Sentinel SAR-1 data included the validation and verification of flood-prone
areas affected by tropical storm surges or weather depressions in the monsoon season. The availability
of surface reflectivity primarily relied on the surface roughness, surface temperature, and vegetation
opacity for soil moisture retrieval.

Keywords: GNSS-R; DDM; CYGNSS; SMAP; Sentinel SAR-1; soil moisture; geophysical parameters

1. Introduction

The GNSS technology’s capability in positioning, navigation, and timing information
is extracted from direct signals. In 1993, Martin Neira initiated the first bistatic radar remote
sensing concept, the Passive Reflectometry and Interferometry System (PARIS) [1]. This
system relies on the L-band of the Global Positioning System (GPS) signal for an ocean
altimetry application. Ground, air, and spaceborne observations triggered by GNSS-R have
progressed to detection of sea surface anomalies, snow, and land characteristics.

GNSS-R observatory satellites such as TDS-1 and the CYGNSS mission primarily serve
sea surface observation purposes. By simultaneously receiving reflected signals, they can
sense soil moisture, vegetation, snow, and environmental characteristics. After the launch
of the eight CYGNSS satellites, the GNSS-R mission extended to retrieving soil moisture
contents from the tropical regions. Despite the advances, spaceborne soil moisture sensing
is still uncertain and preliminary because of the data limitation, collocation, and footprint
heterogeneity [2]. A geophysical parameter such as surface roughness is challenging to
define when dealing with coherent or incoherent surface, and it remains challenging to
retrieve those uncertain parameters from spaceborne soil moisture observations [3].

Two main GNSS-R satellites, TDS-1 (2014) and CYGNSS (2016), have provided scien-
tific observations of features such as ocean and sea surface anomalies, soil moisture and
vegetation, wetlands inundation characterization, and the dynamics of hurricane- and
tsunami-driven flooding [4–9]. In 2015, the Soil Moisture Active Passive (SMAP) satellite
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radar receiver switched to 1227.45 MHz, enabling GPS L2 signals, and became one of the
first GNSS reflectometry missions collecting GPS bistatic radar measurements [10].

Soil moisture observation occurs in the microwave region of the electromagnetic spec-
trum. Soil moisture primarily affects the dielectric constant of the soil medium. Therefore,
the reflectivity or emissivity of the surface must be detected. To reduce atmospheric atten-
uation and to detect more penetrating vegetation with a longer wavelength, microwave
frequencies in the 1–3 GHz range are ideally relevant for observing soil moisture [11].
Microwave sensors measure soil moisture, but new spaceborne GNSS observation is still
being developed [12].

A GNSS-R receiver using a bistatic radar signal is comparable to passive radiome-
ter soil moisture measurements because of the surface dielectric properties and surface
roughness conditions [13]. Spaceborne GNSS-R has a potentially more acceptable spatial
resolution than microwave radiometry because of the highly stable carrier and code modu-
lations with delayed Doppler mapping capabilities. However, these actual measurement
sensitivities to bio-geophysical variables of interest, such as soil moisture content and
vegetation biomass, have not been assessed conclusively [14]. Chew et al. (2020) concluded
that all require soil moisture data on short time scales, and a daily soil moisture reading
may be able to provide complete information on soil moisture dynamics at needed time
scales [15].

Drought is a disaster event and is primarily related to the consequences of soil moisture
and evapotranspiration (ET). Gavahi et al. (2020) evaluated soil moisture predictions by
multivariate data assimilation of ET and SM compared to the univariate method. They
found that ET and SM contributed more to improving drought monitoring than any
univariate assimilation configuration [16]. Humphrey et al. (2021) pointed out that soil
moisture–atmosphere feedback indirectly amplifies temperature and humidity anomalies
and enhances the direct effects of soil water stress. They found that most of the global
variability in modeled land carbon uptake is driven by temperature and vapor pressure
deficit effects that are controlled by soil moisture [17].

The L-band GNSS-R receiver detecting the reflected signal from the Earth’s surface
can simultaneously retrieve coherent and incoherent scattering, relying on the surface
roughness phenomenon. However, a proportion of the incoherent component was di-
rectly ignored in previous research with GNSS-R soil moisture content retrieval owing
to its relatively low significance [18]. Soil moisture retrieval is quite mature and has
largely been investigated by ground and air, and is still applicable from space, whereas
for biomass and freeze/thaw, the project will be more explorative in future missions. Soil
moisture, vegetation biomass, and freeze/thaw processes play an essential role in studying
and understanding the carbon and energy cycle of the Earth and the monitoring of the
environment [19].

The majority of the previous GNSS-R-based SM retrievals also created their models
and enhanced their performances with spaceborne data or point scale in situ observation.
However, this is not adequate, and each research project adopted critically unrelated
inversion methods owing to differences in (1) assumptions regarding gridding, open
water masking, and surface conditions, (2) ancillary data requirements, (3) validation and
reference datasets, (4) time spans, (5) models, and (6) spatial coverage [20].

This study aims to understand the basic concept of GNSS-R to improve the accuracy
and discover the optimal solution for the extraction of Earth’s surface characteristics by
relying on space-based GNSS-R data opportunities. This research highlights achieving a
daily 9-km gridded SM reading within the CYGNSS spatial coverage area (±38◦ latitudes)
and formulating the predictions against the Soil Moisture Active Passive (SMAP) mission-
enhanced SM L3 readings of 9 km× 9 km spatial resolution for soil moisture retrieving. The
spaceborne GNSS-R contribution to the regional study revealed soil moisture sensitivity,
land stability, and influence factors such as surface temperature, roughness, and vegetation
opacity to the soil moisture analysis.
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2. Physiography and Climatic Condition of Myanmar
2.1. Surface Roughness

Myanmar is bordered on the west and northwest by Bangladesh and India, and on the
northeast and east (the Golden Triangle region) by China, Laos, and Thailand. The principal
drainage systems are the extensive Ayeyarwady-Chindwin-Sitaung system, which drains
the west and north regions, and the Thanlwin River system, originating in Tibet, drains
the east part of the country. The topographic features of Myanmar become lower from
north to south, from mountains and plateaus in the north to plains in the south. As shown
in Figure 1, the main geographical features can be categorized into highlands in the east,
mountains and coastal areas in the west, and plains in the central basin.
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Figure 1. Surface roughness map prepared from the SMAP L3 Passive Radiometer.

Surface roughness, which is the h parameter, closely influences soil moisture availabil-
ity. SMAP radiometer sensors operate in the microwave L-band, and the effect of surface
roughness is a key parameter compared to vegetation. In theory, surface roughness is less
sensitive than vegetation biomass in microwave emission and backscatter to soil moisture
variations. The vegetation canopy and seasonal weather conditions are also significant
factors in soil moisture sensing.

In the CYGNSS theoretical prediction of coherent reflectivity as a function of elevation
angle, rough topography contributed to reducing the spreading of the DDM simultaneously;
surface roughness increases the spreading with more significant roughness because more
specular reflection points contribute to the total scattered field [10]. If the GNSS bistatic
radar receivers can quantify dielectric impacts and surface roughness more precisely, the
spaceborne GNSS-R technique will be a promising way to retrieve soil moisture at relatively
better spatial and temporal resolution.

2.2. Climatic Conditions

Myanmar is the largest country in the Mekong region and the second-largest country
in Southeast Asia. Myanmar has three seasons, with a tropical monsoon, hot, wet, and
cold climate every four months. In recent decades, the weather and environmental crisis of
Myanmar has increased remarkably, resulting in soil erosion and fertility loss, shortage in
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water availability, decreased river flows, and inland flooding and storm surges, which are
significant disaster impacts.

In Myanmar, we observed the effects of climate change, which are increasingly in-
consistent rainfall patterns, higher temperatures that reduce agricultural productivity in
the central dry zone, sea-level rise, and soil salinization that erodes human settlements
and infrastructure, driving many to seek alternative livelihoods, affecting the society and
economy of Myanmar [21].

This research utilized spaceborne GNSS-R technology to analyze soil moisture sensi-
tivity correlation between CYGNSS and SMAP in a regional study of Myanmar. Environ-
mental impacts drive climate effect, and soil moisture changes were emphasized to study
their correlations with the reflective signal, surface reflectivity, and soil moisture referenced
data received by the SMAP passive reflectometry receiver. Figure 2 shows the different
zonations according to the climatic condition of Myanmar.
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3. Data Preparation
3.1. CYGNSS L1 Data

The CYGNSS level 1 bistatic radar cross-section of the Earth’s surface provided a
two-dimensional DDM grid of floating-point numbers. The CYGNSS satellite constellation
uses the onboard Delay Doppler Mapping Instrument (DDMI) and delay Doppler maps
(DDMs) calibrated into received power and bistatic radar cross-sections (brcs). Each of the
CYGNSS satellites has a corresponding NetCDF (.nc format) data file provided each day.
There are typically six–eight spacecrafts retrieving data under nominal conditions each day,
but this can maximize to eight spacecrafts under particular circumstances. Higher than
normal retrieval frequency is needed, for example, in tropical cyclone tracking cases. The
Delay Doppler Map consists of the time delay function and Doppler frequency shift.

The GNSS-R-based soil moisture retrieval approach relies on an inversion of the DDM
SNR bistatic radar equation to acquire the surface reflectivity. The surface reflectivity
corrects the vegetation cover and surface roughness effects to obtain a Fresnel reflection
coefficient. This coefficient is then related to soil moisture estimation by applying Fresnel
reflection equations [22]:

Γlr(θ) = |Rlr(θ)|2x(z), (1)

where Rlr is the Fresnel reflection coefficient and x(z) is the probability density function
of the surface height z. The Fresnel reflection coefficient Rlr can be expressed as linearly
polarization modes:

Rlr = Rrl =
1
2
(Rvv − Rhh), (2)

where Rvv and Rhh are Fresnel reflection coefficients for horizontal and vertical polarization.
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The bistatic received power is for the coherent component where specular reflec-
tions are thoroughly dominant and robust; the bistatic received power is for the coherent
component according to the Z-V model [23].

Pcoh
RL = (

λ

4π
)

2 PtGtGr

(rst + rsr )
2 ΓRL(θi), (3)

where Pcoh
RL. is the coherently received SNR power, R and L stand for the right-hand circularly

polarized (RHCP) GNSS transmit antenna and the LHCP downward-looking GNSS-R
antenna, λ is the free space wavelength, Pt is the transmitted GNSS signals peak power,
Gt is the gain of the transmitter antenna, Gr is the gain of the receiver antenna, rst is the
distance between the GNSS transmitter and the specular reflection point, rsr is the distance
between the GNSS-R receiver and the specular reflection point, and ΓRL(θi) denotes the
specular reflectivity at a local incidence angle of θi. λ is the GPS wavelength (19 cm) and Γrl
is the reflectivity of the surface. The reflectivity of the surface Γrl is affected by near-surface
soil moisture, as soil moisture affects the surface dielectric constant, which affects surface
reflectivity. Surface reflectivity is affected by soil surface roughness, small surface height
irregularities on the scale of λ. Since this analysis was only concerned with changes in
surface reflectivity, we omitted the ‘4π’ and ‘λ2’ terms. Solving for reflectivity and making
an additional correction for background noise (N), the surface reflectivity of Pr,eff (in dB) [3]
is then:

Pr,eff = 10 log Γrl ∝ 10 log Pc
rl − 10 log N− 10 log Gr − 10 logGt − 10 logPt

r + 20 log(Rts + Rsr), (4)

The CYGNSS L1 DDM SNR was prepared for the data used. Data were collected in
May, August, and October 2019 from the data product site, the Physical Oceanography
Distributed Active Archive Centre (PODAAC), freely available at https://podaac.jpl.nasa.
gov/dataset/CYGNSS_L1_V2.1, accessed on 9 April 2020 [24]. Figure 2a shows CYGNSS
L1 data availability and Figure 2b shows the DDM SNR soil moisture contents prepared
from the August 2019 monthly data. For Figure 3, we prepared DDM SNR and surface
reflectivity Pr,eff. We collected data for May, August, and October 2019 to illustrate seasonal
changes in the soil moisture study. We used the Equal-Area Scalable Earth (EASE 2.0)
9 km × 9 km grid cell in a global cylindrical projection with the same projection of SMAP.
The EASE-Grid is based on a philosophy of digital mapping and gridding definitions
developed at the University of Colorado at Boulder. It was intended to be a versatile
scheme for global-scale gridded data users, especially those who use remotely sensed data,
although it has been gaining popularity as a common gridding format for data from other
sources as well [25].

Surface reflectivity Pr,eff was higher in the delta and lower part of Myanmar in August
because the surface was almost wet. In August 2019, the region had flash floods and trig-
gering land instabilities, owing to tropical cyclones and weather depressions, particularly
in the lower part of the country [26]. Most parts of the country have moist soil, and the
surface temperature decreased because of the increasing surface reflectivity. Myanmar has
a tropical monsoon climate, where 75–90% of the annual rainfall occurs in the monsoon
season from June to September [27]. While monsoonal rains are essential for agriculture,
supplying water for irrigation and alluvial sediments, these events can frequently lead to
severe flooding, significantly impacting people, homes, and ecosystems.

3.2. SMAPL3 P Enhanced Data
3.2.1. Soil Moisture

The SMAP L3 Passive Reflectometry product was a daily global composite containing
gridded data from 6:00 a.m. (descending) and 6:00 p.m. (ascending). SMAP passive
radiometer-based soil moisture retrieval, ancillary data, and quality assessment flags on the
global 9 km Equal-Area Scalable Earth (EASE 2.0) grid designed by the National Snow and
Ice Data Center (NSIDC) [28]. The data were also collected for May, August, and October

https://podaac.jpl.nasa.gov/dataset/CYGNSS_L1_V2.1
https://podaac.jpl.nasa.gov/dataset/CYGNSS_L1_V2.1
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2019 in the Myanmar regional study. SMAP L3 data are available on the NSIDC site and
can be freely downloaded at https://nsidc.org/data/SPL3SMP_E/versions/3, accessed
on 9 April 2020 [29].
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Figure 3. CYGNSS L1 DDM SNR and surface reflectivity of May, August, and October 2019.

SMAP used the L-band radiometer as a highly sensitive indicator of surface soil mois-
ture. The radiometric brightness temperature represents emission determined mainly by
the physical temperature and dielectric constant of the existing scene (soil moisture in the
top ~5 cm). The sensitivity to soil moisture decreased significantly for surfaces with a
vegetation water content (VWC) above ~5 kg m–2. The SMAP radiometer instrument pro-
vided brightness temperature measurements with better than 1.3 K uncertainty (1-sigma),
given that the brightness temperature difference across the dynamic range of surface soil
moisture can be many tens of K (up to ~70 K and higher) [30]. Table 1 shows the SMAP
Enhanced L3 Radiometer system overview of global daily 9 km EASE gridded soil moisture
L3 data.

Table 1. Soil Moisture Active Passive (SMAP) system overview (source: O’Neill et al. 2019).

Parameter(s) Microwave > Brightness Temperature
Soils > Soil Moisture/Water Contents > Soil Moisture

Spatial Coverage N: 85.044, S: −85.044, E: 180, W: −180
Spatial Resolution 9 km × 9 km
Temporal Coverage 31 March 2015 to 27 August 2020
Temporal Resolution 1 Day
Data Format(s) HDF5
Platform(s) SMAP
Sensor(s) SMAP L-Band Radiometer
Version(s) V3
Data Contributor(s) O’Neill, P. E., S. Chan, E. G. Njoku, T. Jackson, R. Bindlish, and J. Chaubell.

https://nsidc.org/data/SPL3SMP_E/versions/3
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SMAP-R received GPS L2 C-band (frequency = 1227.45 MHz, wavelength = 24.42 cm).
The bistatic radar cross-section, which was the same equation used in CYGNSS calibrations
but slightly modified to the SMAP-R characteristics, for the coherent assumptions [10] is as
follows:

σ0coh =
(4π)3Pcoh(τ, fd)

(
Rrxsp + Rtxsp

)2

T2
i PtxGtxλ

2Grxsp B (τ, fd)
, (5)

where σ0coh is the bistatic radar cross-section of coherence surface, Pincoh, Pcoh is the power
received from the incoherence and coherence surfaces, Ptx is the GPS transmitted power,
Gtx is the GPS transmitter antenna gain, λ is the GPS signal wavelength (at GPS-L2C
is 24.42 cm), Rrxsp is the distance from the receiver to a particular surface pixel, Rtxsp is
distance from the transmitter to a particular surface pixel, Ti is the integration time, and
B (τ, fd) denotes the filtered scattering surfaces.

Coherent scattering is a surface dominated by any area containing mirror-like surfaces
such as rivers, lakes, wetlands, flooded surfaces, or sea ice surfaces [10]. The Irrawaddy
River begins in the upper highland area of Myanmar and flows to the lower parts of the
delta area, then to the Adman Sea. Thus, both Myanmar and other parts of the Mekong
region have the same experiences with flash water extending, flooding caused by storm
surges, and other meteorological problems [31]. The following imagery was prepared with
the enhanced soil moisture data from the SMAP L3 radiometer.

In Figure 4, the area is almost dry and has less soil moisture owing to the evapotranspi-
ration process in May. In August, the regions were almost wet, and the soil was saturated
in the monsoon season, then returned to a decrease at the beginning of the winter season
in October.
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3.2.2. Surface Temperature

SMAP L3 surface temperature was obtained from L2 SM_P algorithms with ancillary
datasets of AVHRR NDVI. The sufficient soil surface temperature was at 9 km grid spacing
for the global daily composite data. According to surface temperature, the algorithms based
on SMAP identified emissivity of the soil surface from brightness temperature (TB). This
emissivity was used to sense soil moisture content. Figure 5 shows surface temperature
monthly data prepared for May, August, and October 2019 in the Myanmar region. May
was the hot and dry season in this region. The surface temperature was high owing to
increased surface emissivity and brightness temperature (TB). The surface temperature
dropped in the wet season of August and rose slightly again in October, turning into the
winter (cold). In August, the country had moist soil and the surface temperature decreased
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because of the surface reflectivity. The surface emissivity decreased, and the brightness
temperature (TB) dropped.
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3.2.3. Vegetation Opacity

According to scattering related the Wang’s “tau omega” model (where τ is the optical
thickness and ω the single scattering albedo of the vegetation canopy) [32], a daily global
composite of the estimated vegetation opacity in the 9 km grid used the same “tau”
parameter normalized by the cosine of the incidence angle:

τ =
b ∗VWC

cos θ
(6)

where b is a landcover-based parameter described in the SMAP Level 2/3 Passive Soil
Moisture Product ATBD, VWC is vegetation water content in kg/m2 derived from NDVI
climatology, and θ is the incidence angle (= 40◦) for SMAP.

According to the tau omega model, accounting for vegetation effects is essential for
soil moisture retrieval. The presence of vegetation attenuates the soil emission. In addi-
tion, SMAP L3 reflectometry received soil moisture information influenced by brightness
temperature and vegetation opacity [8].

If soil moisture content increased, surface brightness temperature increased accord-
ingly. Surface roughness (h) was high, so soil moisture decreased because of the combined
and incoherent scattering effect. Vegetation opacity was directly related to its water content,
and it became higher in the monsoon season (wet) than in the dry and cold season [33].
Figure 6 shows that SMAP Radiometer vegetation opacity maps were prepared in May,
August, and October 2019.

3.3. Processing Flows

In this research, we applied a GNSS-R bistatic radar cross-section technique based
on the Z-V Model with the Cyclone Global Navigation Satellite System (CYGNSS) and
SMAP observation dataset based on the tau omega (τ−ω) scattering model. Instead
of a single instrument, CYGNSS comprises eight GNSS-R satellites in low Earth orbit
around the tropical region. For this reason, we used the proposed technique with CYGNSS
data because it provided more observation data and had a significant opportunity for soil
moisture observation in the regional study.
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Figure 6. SMAP Radiometer vegetation opacity maps in May, August, and October 2019.

The theoretical footprint of a reflected CYGNSS signal is ~0.5 × 0.5 km (spatial resolu-
tion) in the case of a smooth surface (coherence) and a receiver at the altitude of CYGNSS,
with slight dependence on the incidence angle [34]. The mean temporal resolution of
CYGNSS is less than 12 h. SMAP reflectometry data were received at 36 km × 36 km
(spatial) every day (temporal). In this research, we used the EASE 2.0 grid on the global
9 km × 9 km both for space and time collocation reference. For each grid cell, we calculated
the daily average of the surface reflectivity ∆Pr,eff concerning the mean value for that grid
cell for the entire period of interest (May, August, and October 2019). We calculated average
mean soil moisture ∆SM in the same way: differences from the mean SM value for each
grid cell in the seasonal observation period. We then compared the surface reflectivity
∆Pr,eff to the mean soil moisture ∆SM for each grid cell and calculated the correlation
coefficient.

Figure 7 data processing flows diagram shows that spaceborne CYGNSS L1 initially
received monthly data from May, August, and October 2019. Reflected received SNR power
was extracted from the L1 radar cross-section of the Earth’s surface products from all eight
satellites of the CYGNSS mission. The received signal power was delivered as a function of
the time delay (sampled according to the GNSS signal bandwidth) and Doppler frequency
owing to platform and Earth motion (sampled according to the coherent integration time);
the resulting Delay Doppler Map (DDM) represents the main observable.
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Then, DDM SNR converted to the surface reflectivity according to the bistatic scatter-
ing Z-V model. In the second step, we prepared soil moisture data and surface temperature,
surface roughness, and vegetation opacity, which influenced the received signals of SMAP
L3-enhanced radiometric data. Thirdly, the soil moisture retrieval process was carried out
by CYGNSS DDM SNR and surface reflectivity was correlated with SMAP SM data. Finally,
Sentinel SAR-1 data were validated to the land instability sensing for flood extended into
monsoon season.

4. Results

This section discusses the correlation between CYGNSS DDM SNR and SMAP SM
regarding the surface reflectivity response to soil moisture for diurnal changes in three
different seasons of Myanmar.

4.1. Soil Moisture Correlation of CYGNSS DDM SNR and SMAP SM

In orbit, CYGNSS microsatellite observatories receive direct and reflected signals
from GPS (Global Positioning System) satellites. The direct signal pinpoints CYGNSS
observatory positions, velocity, and timing information, while the reflected signals respond
to terrain characteristics [35]. Figure 8 shows that the CYGNSS receiver received reflected
peak DDM SNR signal monthly in May, August, and October for seasonal changes (hot,
wet, and cold) analysis. SMAP passive radiometer received monthly soil moisture data in
the same collocation and time referenced.
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The DDM SNR received signal was sensitive to change according to correlation values.
Soil moisture coefficient values were r = 0.2260 for May, r = 0.534 for August, and r = 0.418
for October. Significant changes and soil moisture retrieval were high in August 2019 owing
to several weather conditions, i.e., flash floods from heavy rain and storm surges triggered
in lower parts of Myanmar [36,37]. DDM SNR changed very significantly from dry to
wet season. In the following Figure 8, the monthly mean soil moisture graph reflects that
the obtained DDM SNR, and SMAP correlation was high and consistent in August. The
surface was wet and greatly depended on other geophysical parameters such as vegetation
canopy, brightness temperature, the dielectric constant of medium and terrain conditions,
and scattering conditions for the coherent and incoherent phenomenon [11].

In Figure 9, Myanmar has three different seasonal changes, and the hot season ended
in May. August was a wet (rainy) season. In October, the weather condition was temperate
almost everywhere in the country. Thus, CYGNSS DDM SNR and SMAP were very
sensitive to soil moisture over 3 months of different daily changes. the GNSS-R DDM SNR
and soil moisture correlation was lower in the dry season, was higher in the wet season
and saw a slight drop in the winter season. In August, the mean soil moisture value was
highest at 0.40 cm3/cm3, which was a consistent and good agreement between CYGNSS
and SMAP for spaceborne soil moisture sensing.
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4.2. Soil Moisture Correlation of CYGNSS Surface Reflectivity and SMAP SM

Figure 10 shows CYGNSS surface reflectivity and correlates it with the soil moisture
data received by the SMAP L3 passive sensor. In the delta and lower part of Myanmar,
severe flood conditions occurred from July to October owing to weather depression, causing
a disaster crisis [38].

Correlation coefficient values of DDM SNR and its surface reflectivity were higher in
August. CYGNSS surface reflectivity and SMAP SM correlation values were r = 0.2262 for
May, r = 0.560 for August, and r = 0.461 for October. Myanmar had several disaster crises,
such as flash floods due to weather depression. Flash floods caused landslides in some
parts, and land instability occurred in the lower parts of Myanmar [39]. Monthly mean soil
moisture was higher in August because the surface was almost always wet.
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The correlation calculation was completed using EASE 2.0 gridded to a 9 km × 9 km
scale for CYGNSS and SMAP for the regional SM analysis. The correlation result was
very different during the seasonal changes of May and August 2019. This meant a strong
correlation (r = 0.560) between surface reflectivity Pr,eff and SMAP SM in May and August.

Figure 11 shows daily mean soil moisture changes from May, August, and October
2019. As stated, earlier, the correlation coefficient value was higher in August, which meant
daily soil moisture was significantly increased compared to other months. Myanmar had
frequent meteorological depressions and tropical cyclones in the monsoon season until
October. As a result, the surface area was more saturated, which influenced soil moisture
content.

The research compared Chew et al.’s (2018) prediction for regional soil moisture
observation on the medium vegetated area. However, they counted soil moisture variation
from the surface reflectivity of CYGNSS DDM SNR data and SMAP; the soil moisture
retrieving value was still low and not high enough to provide for heavily vegetated and
rough terrain [3]. This research added the diurnal study with seasonal changes in soil
moisture correlation to the regional analysis from NASA spaceborne observations of the
CYGNSS and SMAP missions. There were consistent and linear relationships between
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CYGNSS observations and SMAP SM retrievals, which were most easily quantified in the
range where SM was highest.
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4.3. Data Validation and Verification with SENTINEL SAR-1

ESA, the Copernicus program, is being developed to launch the Sentinel-1 constella-
tion of two polar-orbiting satellites. Sentinel-1 satellites operate all the time with C-band
synthetic aperture radar imaging, enabling them to receive imagery regardless of the
weather, day and night. Sentinel-1, a constellation of two (A and B) satellites with C-band
SAR, provides backscatter (σ◦) observations at 5 × 20 m2 resolution. Synthetic Aperture
Radar (SAR) can penetrate clouds, regardless of weather conditions, and has day and night
capability; many studies have focused on monitoring efficient and high-quality methods
for surface water mapping.

Depending on the region, the SAR-based flood detection algorithms can detect floods
with an accuracy ranging from 80 to 95%. Uddin et al. (2019) determined that Sentinel-
1 SAR observation data have great potential in producing flood information with high
accuracy and high spatial resolution over a 6-day interval, despite the predominance of
severe weather conditions during flooding time in Bangladesh [40].

The Sentinel SAR-1 (A and B) constellation offers a 6-day exact repeat cycle. However,
a single SENTINEL-1 satellite can trap the entire world once every 12 days. Accordingly,
Sentinel SAR data cannot provide high temporal resolution for continuous flood detection
purposes. Because of the dynamic nature of floods or flash floods, SAR images are not
used operationally during floods [41]. Thus, no single standard dataset can satisfy all the
conditions that fulfill the temporal evolution of flood inundation extent with reasonable
accuracy [42].

In Sentinel SAR-1 imagery, each pixel value is directly related to the backscatter energy
from the surface and terrain conditions. The Copernicus Sentinel SAR-1 images in Figure 12
were obtained after correcting the radiometric and geometric calibrations. In Figure 12b,
Sentinel-1 SAR-1 data recorded flood-prone areas extending into the Mon State, in the
southern part of Myanmar in August 2019. Monsoon rains affected Myanmar and other
areas of Southeast Asia, submerging homes, displacing residents, and triggering landslides.
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5. Discussions

In this analysis, CYGNSS reflectometry SNR data correlated with SMAP reflectom-
etry soil moisture data. Moreover, CYGNSS reflectivity was compared to SMAP SM for
monthly and daily observations in the study area. Image interpretation presented surface
temperature, vegetation opacity, and surface roughness prepared from SMAP. Flood and
land information analysis extracted data for validation and verification processes from
Microwave Sentinel SAR-1. In the following Table 2, we compared correlation coefficient
results of CYGNSS and SMAP SM.

Table 2. CYGNSS and SMAP SM correlation in the Myanmar region.

Observed Date (2019)
(Monthly)

DDM SNR vs. SMAP SM
(Coefficient Value)

Surface Reflectivity vs.
SMAP SM

(Coefficient Value)

May 0.2260 0.2262
August 0.534 0.560
October 0.418 0.461

A good agreement was observed between CYGNSS reflectometry and referenced
soil moisture measurements from SMAP. The table shows the soil moisture correlation
coefficient values for DDM SNR, and the surface reflectivity ∆Pr,eff was the highest in
August (r = 0.534 and r = 0.560) and lowest in May (r = 0.2260 and r = 0.2262). It was
expected that the region would be almost wet in August. The wet surface produced a
stronger reflection than dry surfaces. The surface reflectivity ∆Pr,eff was mainly influenced
by topography, surface water, and land cover, not only SM [6,43]. Moist surfaces have
higher dielectric constants, which results in higher reflectivity than drier surfaces [13,44].

The soil moisture correlation results were generally consistent based on ancillary data
interpreted from geophysical key parameters. CYGNSS received DDM SNR soil moisture
sensitivity data on seasonal weather changes, land instabilities from flood intrusion, and
tropical storm surge in the study area. The study demonstrated soil moisture from the
CYGNSS mission on a regional scale for Myanmar, along with ancillary information about
the overlying vegetation opacity and the surface roughness from SMAP passive reflectome-
try data. These results showed that the influences of other geophysical parameters, such as
vegetation opacity, surface temperature, and surface roughness, were potential key issues
for spaceborne GNSS-R sensing over land.
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6. Conclusions

Satellite Navigation Technology principally pioneered its services to detect position,
navigation, and time. After enhancement with GNSS reflectometry, it now helps the public
in disaster mitigation, climate, hydro-meteorology forecasting, land information, and sea
surface anomalies observation. Remote sensing reflectometry has emerged to detect abrupt
changes in sea surface conditions, wind speed, and direction due to cyclone intrusions.
GNSS reflectometry can also aid by using sea and ocean data and contemporarily apply
them to land applications such as soil moisture, snow, time-series weather forecasting, and
climatic observation. Up to the present, spaceborne observation for soil moisture sensing
has been an uncertain process. The system, parameters, retrieving model, and algorithms
remain a challenge to better understanding soil moisture observation. In addition, other
geophysical parameters, such as surface roughness, vegetation biomass, and dielectric, are
very complex issues.

The spaceborne NASA CYGNSS mission was initially intended to track tropical
cyclones and well-observed land-based sensing. For this analysis, GNSS-R techniques
retrieved several models such as the Z-V model of the bistatic cross-section, the tau omega
(τω) scattering model, and the surface reflectivity model geophysical parameters. Al-
though GNSS-R technology still has technical challenges, the eight CYGNSS satellites have
improved system capabilities, and spatial and temporal resolution.

This research included a comprehensive analysis, including geophysical parameters
such as reflectivity and surface roughness upon different incidence angles, vegetation
optical depth (VOD), brightness temperature variations with coherent and incoherent scat-
tering, and accurate information to deliver regional climatic and environmental concerns.
A dielectric constant and soil moisture observation proved the data from CYGNSS and
SMAP.

Finally, our research goal was to investigate spaceborne GNSS-R soil moisture observa-
tion and its influence by geophysical parameters. For a better understanding, soil-moisture-
retrieving algorithms and all-inclusive models will need to guide uncertain spaceborne
soil moisture sensing presenting challenging technical issues. New GNSS-R spaceborne
missions will also be comparatively challenging to an existing system. As a result, mul-
tidisciplinary science can meet human needs in one way or another to sustain the planet
inhabited by human beings.
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