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Abstract: This study investigated the Water-Energy relationship in the Nile River Basin under
changing climate conditions using an energy and water model. Climate change will likely affect both
water and energy resources, which will create challenges for future planning and decision making,
particularly considering the uncertainty surrounding the direction and magnitude of such effects.
According to the assessment model, when countries depend heavily on hydropower for energy,
power generation is determined by climate variability. For example, Ethiopia, Egypt, and Sudan are
more hydropower-dependent than Burundi or Rwanda. As a result, the trading relationships and
economic gains of these countries shift according to climate variability. Among 18 climate scenarios,
four demonstrate a change in climate and runoff. Under these scenarios, trading partnerships and
economic gains will favor Ethiopia and Egypt instead of Sudan and Egypt. This study examines the
extent of potential climate challenges, their effects on the Nile River Basin, and recommends several
solutions for environmental planners and decision makers. Although the proposed model has the
novel ability of conducting scientific analyses with limited data, this research is still limited by data
accessibility. Finally, the study will contribute to the literature on the climate chamber effects on
regional and international trade.

Keywords: water model; energy model; climate scenario; Nile River Basin

1. Introduction

Water-Energy models are regularly updated to incorporate new developments; thus,
they often vary in their technological requirements, data specifications, and computing
capabilities. Many Water-Energy models cannot be applied to developing countries because
data, high-computational demands, and skill requirements cannot be used to their full extent.
This is because most models are developed in industrial countries and designed to match
their technological development. Moreover, most energy models are not appropriate for
developing countries because of the models’ requirements, functions, and objectives [1,2]. For
example, Nakata [1] examined models related to the energy environment, and Pandey [2]
highlighted the importance of integrating the unique features of developing countries
into the design and development of Water-Energy models. Furthermore, the data gap is
a critical challenge for developing countries because it limits scenario discovery, hinders
technological advances, and derails the impacts of policy analysis [3].

In light of these challenges, we developed a model to assess the Water-Energy relation-
ship in the Nile River Basin that captures its unique riparian characteristics and conditions,
including the informal energy sector, income and consumption, centralized market and
supply options, and changing temporal patterns. As well as an integrative approach, the
proposed accounting framework also emphasizes scenario discovery with limited data and
fosters a data exchange between models until convergence is reached. Thus, the aim of this
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study is to apply this tailored Water-Energy model to the Nile River Basin to investigate
the regional effect of climate change on water and energy resources.

Literature Review

Strong links have long been recognized between water-resource and energy systems
because water is essential to energy production. As of 2016, the energy sector accounted
for approximately 15% of all fresh water use worldwide [4]. For the majority of developing
nations in Africa, where hydropower is the principal source of energy, water and energy
cannot be viewed separately. However, decision makers and policy makers had, until
recently, overlooked the strong interdependence of these sectors, which has often led
to situations where resources were either underused or exploited in a non-sustainable
manner [5]. Thus, with growing demands for water in the food and industry sectors, as
well as ever-increasing energy demands, an integrated assessment of the Water-Energy
nexus has become even more relevant when evaluating alternatives for better decision
making and management.

Climate change will likely affect both water and energy resources, which will create
challenges for future planning, particularly considering the uncertainty surrounding the
direction and magnitude of such effects. Rising temperatures will likely lead to an increased
demand for irrigation due to increased evapotranspiration [6]. This additional need to meet
the potential evapotranspiration (PET) demand or address additional evaporation losses
will affect water allocation, with hydropower particularly vulnerable to a drier future [7].
Thus, a more inclusive analysis is required to evaluate future water and energy risks under
a changing climate and assess the resiliency of a given Water-Energy system to resource
variability and other competing demands.

Energy system models are important tools for analyzing future energy supply and
demand at the national, state, and regional level under certain assumptions, such as de-
velopmental scenarios, electricity prices, availability, and energy-generation capacity [8].
Historically, energy accounting has been one of the key pillars of energy system studies, as
it provides insight into the overall balance of an energy system [9]. Accordingly, Hoffman
and Wood [10] recommended the energy-accounting approach as an essential framework
for energy system research. Long-range Energy Alternative Planning (LEAP) is an ex-
tension of this approach, which addresses the recommendations of subsequent studies.
However, the reference energy system (RES) is a natural outcome of the energy balance
system [11]. RES audits all existing events across an energy supply chain by considering its
technological level, scope, and features. The method developed by Hoffman and Wood [10]
helps incorporate current and future technological options to enable the system to perform
analyses. Following RES development and calibration, linear programming was developed
to expand further and integrate the model. Subsequently, a model known as Brookhaven
Energy System Optimization (BESOM) was developed for the purpose of resource alloca-
tion [12]. After linear programming and the development of BESOM, various models were
developed and human abilities were increased, enabling the analysis of economic linkages
through input–output analysis at national and regional levels. Historically, BESOM has
served as a basis for many other model developments and derivatives [13].

Energy models have been categorized into three types based on the model approach:
top-down, bottom-up, and hybrid [14–19]. Each type of model has a different aim. The
bottom-up approach begins by describing the technologies for supply and demand; top-
down models start by explaining the relationship among several components at the macro-
economic level; and hybrid approaches attempt to combine features of these two models.
Various efforts have been made to integrate the bottom-up and top-down approaches into a
hybrid model [16,17]. Typically, the top-down approach is more applicable to econometric,
input–output, and general equilibrium features. The programing techniques (linear, nonlin-
ear, mixed-integer, and neural theories) also describe the top-down approach. Conversely,
bottom-up models are more applicable to optimization and simulation. Previous studies
have also attempted to categorize models based on functionality [16,17].
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Energy models have also been reviewed and evaluated based on their scope: from
individual projects to multifaceted and global systems and from long-term to standalone
projects [20–22]. Long-term models also pursue either a top-down, bottom-up, or hybrid
approach. However, long-term models must adapt to long-term changes and have their
parameters updated accordingly [17,23–25]. To that end, the long-term model embraces
a system-wide approach. Major long-term bottom-up models include the Energy Flow
Optimization Model (EFOM) and MARKAL [26]. EFOM, which was developed under the
authorization of the European Commission, is a bottom-up engineering-oriented model
designed to support regional energy strategies and policies [27]. MARKAL is, along with
TIMES, a successful derivative of BESOM used by the European Commission to simulate
the energy–environment system at the global, European, national, and community levels.
The input data can easily tailor the model, which can capture energy supply-and-demand
evolution for up to 100 years [28,29]. MESSAGE, which was later enhanced into MESSAGE
I and MESSAGE II, is also considered to be an early generation of an optimization model.
Previously, the World Energy Council and the Intergovernmental Panel on Climate Change
used MESSAGE to develop energy transition pathways and greenhouse gas emission
scenarios, respectively [30,31]. The Open-Source Energy Modeling System (OSeMOSYS)
also belongs to the class of early bottom-up models [32].

In the 1990s, bottom-up models flourished, particularly with development of the
Prospective Outlook on Long-term Energy Systems (POLES), World Energy Model (WEM),
PRIMES, and LEAP. PRIMES can be modular [33] and is strongly linked to the generation
of the PROMETHEUS mode. LEAP is essentially a simulation-model framework with
minor input data requirements, and combines a top-down demand with a bottom-up
supply [22,34]. AURORAxmp [35], EPI [36], CYME EATON [37], DER-CAM Distributed
Energy Resources Customer Adoption Model [38], EMPS [39], Enertile [40], ENTIGRIS
(Energy System Models at Fraunhofer ISE0 [41], ETSAP-TIAM [26], and PLEXOS (Energy
Exemplar) [42] are all categorized as bottom-up models. PLEXOS, which was later extended
to MOSEK and Xpress-MP, was developed as a linear and mixed-integer model. PLEXOS
develops scenarios to capture regional markers and prices to perform market design
and analysis with hydrological, thermal, and transmission features. AURORAxmp was
designed to examine hydropower generation and load volatility under uncertain conditions.
Likewise, in the 1980s, an expanded version of a top-down model was developed, called
Phoenix, an extension of the general equilibrium model (GEM). Following its development,
top-down models became prevalent, including the General Equilibrium Environmental
Model (GREEN), MARKAL, GEM-E3, and EPPA [43–49]. Under the approval of the
Secretariat of the Organization for Economic Cooperation and Development (OECD),
GREEN has become a global model to evaluate the impact of economic activities on
abating CO2 emissions [50]. MARKAL was adapted to a top-down model to create both
MARKAL–MACRO [51] and MARKAL–EPPA [45]. Hybrid energy models also include
RETScreen [52], Natural Resources Canada [53], POLES [54], MESSAGE [55], LEAP [56],
GCAM (Joint Global Change Research Institute) [57], and ETM [58].

In dealing with uncertainties, a stochastic approach is more desirable compared to a
deterministic approach, which must be calibrated several times by changing input similar
to that of Monte Carlo. This approach works like MARKAL’s version of stochastic [59]
and MESSAGE’s stochastic [60]. Rigorous stochastic models for Water-Energy nexus
systems have recently been developed, and they are considered vital for their meticulous
results [61]. Concerning deterministic model studies, the supply side of the water nexus
gets less attention given its optimization uncertainties [62]. One model was employed in a
study of a transboundary water nexus (Albrecht et al., 2018) and more recently one was
used in an analysis of the nexus in the Mekong river basin [63].

Some previous energy models have been developed and refined from case studies
and experiments. For example, Welsch [20] further refined the open-source OSeMOSYS
toolkit and TIMES—PLEXOS model to investigate the Irish energy system; Poncelet [64]
employed TIMES to investigate the Belgium energy system; Haydt [65] also employed
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LEAP, MARKAL/TIMES, and EnergyPLAN to investigate the Atlantic Ocean energy
system in the Atlantic Ocean for the Azores; and Jaehnert and Doorman [66] combined
EMPS and IRIE to understand the energy balance between input-out energy systems.

Furthermore, numerous tools have been suggested to improve decision making related
to water resource management. For example, Mysiak et al. [67] proposed the integration of
hydrological tools, and Rees et al. [68] developed a water balance model that calculates
the balance between water supply and demand. Moreover, Li et al. [69] proposed a water
resource management model that, under uncertain conditions, is expected to help decision
makers identify and develop a response system for uncertain resource challenges. Another
model developed by Van Cauwenbergh et al. [70] prioritizes water resource planning and
management according to the requirements of environment and socioeconomic develop-
ment. A fuzzy-set mathematical theory has also been proposed and recommended by
researchers to address water resource management challenges through a robust decision-
making process [71,72]. The Water Evaluation and Planning (WEAP) model developed
by the Stockholm Environmental Institute (SEI) has been used to evaluate various water
resource planning and management alternatives [73,74]. WEAP allocates water according
to user-developed criteria, and the primary use of this model is for scenario development,
through which it answers various “what if” questions pertaining to the demand and supply
of water [75,76].

Most importantly, the stochastic models have shown superiority in providing long-
term analysis of uncertainty and in helping grasp natural behaviors [77]. Harold Edwin
Hurst, who studied the Nile River for about 60 years, observed that the time series of
the river’s annual flow displays statistical behaviors that do not fit into a series of simply
random variation; instead, their tendency to occur in natural events are higher, of which
these characteristics are known as Hurst Phenomena or Long–term Persistence (LTP) [78,79].
Scientists have used these extended time horizon research methods to study ensembles
of synthetic hydrologic conditions that take annual, seasonal and decadal variability into
consideration, including studies of the Boeoticos Kephisos Basin in Greece [80], the Nile
River Basin in Africa [81], and documented the presence of LTP in precipitation [82],
runoff [83], temperature [84] and in the hydrological cycle [85].

In conclusion, different energy models are applied according to their approach and tech-
niques. Among the bottom-up energy models, OSeMOSYS [20,86] the Integrated MARKAL–
EFOM System (TIMES) [26,27], and LEAP [21,74] have all been widely applied. Equally,
water planners commonly employ the WEAP system [48,51,75], and RiverWare [87,88] as
water system analysis modeling tools. In most cases, these two categories of models are
applied separately using the energy model’s output as the input to the water model and
vice versa. Presently, the development of comprehensive models that consider both energy
and water and model their systemic interactions is very limited. Of the few studies that
have demonstrated this interaction, one describes an integrated approach using a water
system in WEAP and an energy model in LEAP in Sacramento, California, [89] and one that
took a climate, land use, energy, and water systems (CLEWs) approach, which involved a
more comprehensive module-based approach where data were exchanged between the
sectoral models in an iterative fashion [90].

Most existing energy system models are in an early stage of integrating energy and
water, and lack temporal representation. Therefore, this study presents an integrated water
and energy system model that captures the links between these sectors. A regional power
integration energy model and a basin-wide water resource system model are coupled and
simulated together to investigate how future climate change might impact the generating
capacity of existing and future planned hydropower plants in the Nile River Basin, as well
as the dynamics of trade between plants in the region. The main feature of this framework
is the use of an iterative approach to exchange data between the models until convergence
is established in the linked components. The model is applied to regional trade in the
countries of the Nile River Basin under the Eastern Africa Power Pool (EAPP) and the
future development scenario of the Program for Infrastructure Development in Africa
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(PIDA) [91]. The impact of climate change is categorized and evaluated for scenarios of
an unconstrained scenario, with unrestricted emissions of greenhouse gases and a future
scenario, in which a restriction policy is imposed to limit emissions to a certain level,
referred to as level one stabilization. These two scenarios reveal the possible advantages
that could be achieved under a policy of adaptation.

2. Methods

A key element of the coupled Water-Energy modeling approach presented in this
study involves simulating both the water system (to estimate hydropower generation
constrained by water availability) and the energy system, applying feedback loops between
the two models until equilibrium is achieved between hydropower generated from the
water model and hydroelectric energy used in the energy model on a national level. To
analyze the impact of climate change, the hydrologic model was simulated to estimate
runoff corresponding to different climate scenarios (characterized by different changes in
temperature and precipitation) to establish water availability for the water system model.
Then, the coupled Water-Energy system was simulated for each climate change scenario.
This configuration considers energy demands according to both water availability and
energy cost after the energy mix is identified.

2.1. Energy and Water System Models
2.1.1. Energy Model

The energy system was modeled using the Regional Integration and Planning Assess-
ment (RIPA) tool [8,24], configured in the General Algebraic Modeling System (GAMS)
mathematical programming language [92,93]. RIPA is a bottom-up, dynamic, multiyear
optimization program that makes use of mixed-integer programming (MIP) techniques
to solve the optimal mix of generation and transmission by minimizing all discounted
investment and operating costs while meeting the demands for different specified energy
sources over the planning period. One of the inputs of RIPA is the generation technology
and corresponding monthly available capacity over the simulation period. Monthly hy-
dropower generation is one of the renewable energy inputs to the model that serves as
the upper boundary of the maximum available resource from hydropower when solving
for the country-level energy balance. After the optimal mix of generation is solved, the
amount of energy not utilized in any of the technologies is reported as a “spill”, together
with the shadow prices obtained for the bounding constraints in the MIP optimization.

2.1.2. Water Model

The water resource system model simulates water allocation and hydropower genera-
tion from available resources by solving different Linear Programming (LP) problems that
are defined iteratively at each time step in monthly intervals [94,95]. These problems are
determined based on the priorities and nature of water and power demand and stream
flow requirements. Hydropower generation is calculated from the flow passing through
the turbine having a maximum capacity to fulfill the specified monthly energy demand.
Hydropower generation is constrained by the available water in the system and the priority
assigned to the demand. The model reports the total energy generation from each plant
and the power deficit, i.e., the difference between the specified monthly energy demand
and generation.

2.2. Formulation of Model Coupling

Although water and energy production/use can be interlinked in several ways, this
study explored only hydropower generation and demand. The primary objective was
to minimize spillage from the energy model and shift excess energy to other months in
the same year by storing water. Initially, hydropower estimation was based on estimates
of the country-level target demand. For storage hydropower plants, the initial estimates
were taken from the average generation, whereas for existing hydropower plants, a rough
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approximation was calculated as a percentage of the planned installed capacity for future
infrastructure. For run-of-river hydropower plants, the maximum generating capacity was
taken as the power target for each month. As their storage capacity is small or nonexistent,
they are configured for maximum potential generation based on the available water in
the system. However, the generation capacity for storage reservoirs can be constrained
by water availability, priority demands for water that are higher than the level of energy
generation, and reservoir rule curves used in addition to the specified demand. The
information exchange between the water and energy system models and an example of
model interaction are shown in Figure 1.
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An initial simulation of the water system was conducted to estimate the monthly
energy demand at the plant level, which produces a time series of the monthly generated
power. This power generation is then aggregated by country and used as an input in the en-
ergy system model to determine the optimum mix of energy for each sector and the unused
energy “spill”. From the energy mix, the hydropower outputs are then disaggregated back
to the plant-level generation based on the ratio of the total generated energy determined
from the water model to the energy demand determined for each plant, which is used for
the next iteration, given in Equation (1). This ensures that the amount of generation from
the water model is fully used in the energy mix.

Energy Demand plant,year =

HydroSharecountry ∗
Hydro Generation plant

∑country Hydropower Share in Energy mix
(1)

The spills represent an extra level of generation capacity in the water system but which
cannot be used in the energy mix at a particular time step due to other constraints and costs
in the energy system. This excess capacity is distributed back to the hydropower plants and
annually added to the existing required demand from plants based on the proportion of
the deficit, given in Equation (2). This is a simplification that assumes a linear relationship
between total country-level generation and generation from each hydropower plant in
all time steps. In an actual case, where hydropower is highly nonlinear, this assumption
in particular might be less efficient for a cascading hydropower system sharing the same
river system. Then, this annual capacity is disaggregated to the monthly level based on the
shadow prices. The idea behind this assumption is to give priority to months based on the
relative value they will add to minimizing the cost while determining the energy mix. The
shadow prices corresponding to maximum hydropower constraints in the energy model
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are given by Equation (3). The reason for distributing the excess demand on an annual
basis is the assumption that the reservoir storage exhibits annual cycles.

Demand AdditionalAnnual,plant = SpillAnnual,country ∗
1 − de f icitplant

∑c Annual De f icit Plant
(2)

∑
l

vProductionhsc,c,y,m,l,h ∗ pYearSplitl,m ≤ pHydroUpperLimitc,h,hsc,m (3)

The newly identified energy demands present a different water allocation scenario,
which changes the water distribution and energy generation in the water system model
and in extreme cases may affect generation in all plants. Therefore, the above step is
executed iteratively to achieve equilibrium until either the total spill is zero or the amount
of hydroelectricity utilized in the energy model converges to hydropower generation in the
water system model.

The new established equilibrium does not necessarily represent an optimal configu-
ration of hydropower generation for the water resource model. The distribution of spill
based on shadow prices assures the optimal allocation of the spilled portion of demand;
however, as the water model only explores the optimal allocation of resources for a time
step, this does not guarantee optimal allocation over an entire year. However, given the
limitation of the water model, a partial optimal point can be achieved that considers both
the water availability and energy cost.

2.3. Climate Scenarios

The projections of changes in precipitation and temperature were derived from the
hybrid frequency distributions (HFDs) of Schlosser et al. [96]. These are regionally down-
scaled model scenarios in the form of numerical hybridizations of 400 policy ensembles
from the Massachusetts Institute of Technology (MIT) Integrated Global System Model
(IGSM) [97,98] that correspond to 17 IPCC AR4 climate model results. The result is a
meta-ensemble of climate change projections containing 6800 distinct members for possible
adaptation. The MIT IGSM framework uses emission predictions and economic outputs
from the MIT emission prediction and policy analysis model and earth system modeling
predictions from the IGSM to drive a land system component, a crop model (CliCrop), and
a water resource system model.

The HFD datasets characterize possible future climate outcomes, incorporating uncer-
tainties in the structural differences of climate models, downscaling, and possible emission
scenarios, as represented by different adopted policies. The two adopted policy scenarios
corresponding to a restriction of global emissions of greenhouse gases to a concentration of
560 ppm CO2 equivalent are referred to as level 1 stabilization (L1S) and unconstrained
emissions. The scenario where no policy is adopted to constrain greenhouse gas emissions
was considered in this assessment to compare the reduced level of impact as a result of
policy adoption. The climate shocks were superimposed over historical reference case pre-
cipitation and temperature data obtained from the Climatic Research Unit (CRU) [99–102]
to form climate scenarios.

Catchment runoff was simulated and hydrologic responses were characterized corre-
sponding to the precipitation and temperature changes in each scenario using a conceptual
hydrologic model called NAM (from the Danish Nedbør-Afstrømnings model). NAM is
a deterministic, lumped, and conceptual rainfall–runoff model originally developed by
the Institute of Hydrodynamics and Hydraulic Engineering at the Technical University of
Denmark [103]. Climate change also affects irrigation water demand; thus, changes in the
irrigation demand as a result of rising temperature were estimated for the scenarios.

3. Application of the Model to the Nile River Basin

We applied the integrated Water-Energy model to study the interactions between
water and energy in the Nile River Basin, to assess the potential impact of climate change
on the existing and future energy supply of countries within the basin, and to determine
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how the electricity trade between countries might be affected by these changes over the
period of 2010–2035, in monthly time intervals.

Hydropower is one of the principal sources of renewable energy in the Nile River
Basin, where there is enormous opportunity for future development due to its highly
underdeveloped nature. Climate-induced changes in the hydropower generating capacity
will affect the existing and future dynamics of power trade among countries in the Nile
River Basin. Although there is currently very limited cross-border electricity trading,
several projects are in the pipeline, such as the Ethiopia Power Trade Project, the Nile
Equatorial Lakes Interconnector Project, and the Regional Rusumo Falls Hydroelectric
and Multipurpose Project (Figure 2); thus, hydropower generation will soon represent the
dominant energy share in the basin, with increased levels of regional trade [104,105].
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Hydropower generation was modeled on a monthly time step for existing and future
hydropower facilities in the basin for a given level of initial estimates of the country-level
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target demand. The energy demand for future plans was estimated as rough approxima-
tions obtained from either the project document or a percentage of the planned installed
capacity of the plant. For run-of-river hydropower plants, the maximum generating capac-
ity was taken as the power target for each month.

Hydropower plants that are located outside the Nile River Basin but contribute to
country generation were considered to have a fixed generating capacity that did not vary
with climate change. Although this was only an approximation used to simplify our
analysis by limiting the hydrologic and water resource system analysis within the basin,
the contribution from outside basins was proportionally small; thus, this simplification is
unlikely to incur considerable error.

The existing capacity expansions and additional infrastructure expected to be built in
the Nile River system were adopted from the PIDA development plan [91]. The level of
capacity for all countries at five-year intervals is summarized [106,107] in Table 1. Djibouti
is not within the Nile River system but it will be in the power grid; therefore, it was
included in the energy model. The total installed capacity for the water model by the end of
2035 is approximately 24 TW, and the distribution is shown in Table 1. A study conducted
by the Nile Basin Initiative (NBI) [108] indicated basin-wide power development options
and trade opportunities. According to that study, the total energy demand in the Nile
River Basin countries is expected to increase from 184 TWh in 2010 to 1170 TWh by 2035,
representing an increase of 300% or more from current demand.

Table 1. Hydropower installed capacity for Nile River Basin countries (both within and outside the geographical extent of
the Nile River Basin).

Year Burundi Djibouti Egypt Ethiopia Kenya Rwanda Sudan Tanzania Uganda

2010–2015 37 0 2250 1070 733 77 1727 561 830
2015–2020 103 0 2275 6182 733 148 1841 598 1660
2021–2025 103 0 2282 9677 733 225 2665 623 2444
2025–2030 103 0 2282 13,862 733 278 3301 623 2501
2030–2035 97 0 2282 13,862 733 278 3597 623 2501

4. Results

The results of hydropower contributions over the simulation period are shown for
each country in Figure 3. We can see significant changes in hydropower penetration across
different climate scenarios for Ethiopia, Egypt, and Sudan. For Burundi and Rwanda,
hydropower generation comes from outside the basin; therefore, it is assumed to be fixed
across climate scenarios. For the remaining countries, hydropower comes from run-of- river
plants and generally increases as a result of the higher runoff expected in the majority of
climate scenarios; however, the slight fluctuations caused by climate change are smoothed
out in the energy model, indicating that all generated power will be used to the highest
potential. The mix of energy results indicates that hydropower will continue to dominate
the system power supply; examples for three selected countries are shown in Figure 4. The
differences between observed and simulated value from 2015 to 2020 are negligible; the
observed hydropower generation for each country resembled the corresponding simulated
pattern as demonstrated in Figure 3.
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The electricity trade results for the reference scenarios of the current (average for
2010–2014) and future (average for 2031–2035) conditions are shown in Figure 5. The
results indicate that regional trade will grow stronger. Given the scenario assumption in
the model, the highest degree of hydropower trade under conditions of no climate change
is expected between Sudan and Egypt, and additional dams planned for the lower part
of the Nile in Sudan will help meet Egypt’s electricity demand and take preference over
upstream dams (also see Figure 3).
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Figure 5. Total energy trade in Terawatt hours (TWh) among countries for the (a) current (2010–2014) and (b) future
(2031–2035) reference case scenarios with no climate change.

One notable result of this study is that climate change is predicted to alter trade
relationships. In some climate change scenarios, trade dynamics exhibit a complete shift,
whereas other scenarios lead to either a reduced or increased level of trade. The manner in
which trade evolves under the selected 18 climate change scenarios is shown in Figure 6
for the five major regional trade relationships. Four of the 18 scenarios exhibit a change
from the reference case with the highest level of trade shifting from Egypt–Sudan to Egypt–
Ethiopia. Furthermore, in five of the 18 scenarios, trade between Ethiopia and Sudan will
no longer have an economic advantage. Four of the 18 scenarios represent a stringent
change in climate, which translates into a change in runoff. Under these conditions, Sudan
may not build the planned dam adjacent to Egypt; instead, the Ethiopian highland may
be preferable for large storage and dam construction due to its high altitude and low
evaporation [109]. As a result, the electricity/energy-trading partnership is predicted
to shift from Egypt–Sudan to Egypt–Ethiopia. In summary, trading relationships and
economic gains will change under climate variability, and these must be considered to
ensure an integrated and comprehensive regional response to mitigating the risk of future
climate impacts.
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5. Conclusions

This study proposed a framework for the integrated assessment of energy and water
that captures the links among these sectors. This framework was applied to countries in
the Nile River Basin to evaluate how energy will evolve under various climate change
scenarios. The results indicated that, for selected scenarios, both the generating capacity
and energy trade among countries could be significantly altered. Moreover, due to rapid
economic growth in these countries, the demand for energy and water will continue to rise,
stressing the shared river basin even more. Hydropower will continue to represent a major
proportion of the energy supply in the Nile River Basin region; therefore, the integrated
assessment of the energy and water nexus will be an essential component of planning for
future development interventions and policy formulation.

The effects of climate change on the river system are critical and far-reaching. Coun-
tries where power generation depends heavily on hydroelectricity are highly vulnerable
to climate variability. For example, the power generation capabilities of Egypt, Ethiopia,
and Sudan fluctuate under climate variability; hence, their development is less sustainable.
Moreover, energy trading plays a critical role in fostering cooperation and partnerships
among the Nile basin countries. A change in climate could hamper trading relationships
unless the countries develop a common framework to mitigate the adverse effects of climate
change. A shift in trading partners and economic advantages from one country to another
caused by climate change on shared water resources could also derail cooperation and lead
to conflict and violence.

Water-Energy resources are an integrated part of sustainable development worldwide;
however, growing climate variability on interannual to longer timescales will have an
enormous effect on socioeconomic development, requiring adaptation on an individual,
community, and national scale [110]. Energy is a crucial driving force for economic de-
velopment as it fosters growth and transformation. Due to climate change uncertainties,
governance of the Water-Energy system for greater economic benefits and regional cooper-
ation becomes complicated and is compound by data limitations, which can impede robust
analysis and assessment. The simple tailored model presented in this study provides a
novel explanation for the Water-Energy governance strategy for a situation with limited
data, thereby assisting policymakers and water resource planners in making decisions for
the benefit of society and the economy. The proposed model is applicable to cases where
the availability of complete and comprehensive data is inadequate.

A Water-Energy governance system that addresses climate variability and improved
climate resilience are essential steps for reducing and managing future climate impacts.
The proposed framework, which uses limited data through a tailored approach, can be
used to undertake comprehensive and scientific analysis to inform policymakers about
the dynamics of the Water-Energy governance system, including hydropower generation
and allocation and future climate conditions to help water resource planners design and
implement the necessary adaptations. Incorporating the findings of this assessment frame-
work into both national and regional strategies can enhance the sustainable development
of water and energy resources and foster trading partners and economic advantages. The
Water-Energy analysis employed in this study can serve as a governance system for climate
variability and risk management in cases with limited data to foster regional socioeconomic
growth, increase resilience to climate vulnerability and variability, and enhance economic
growth and cooperation at the policy and technical level.

Limitations were attributed to incomplete and inadequate data for verification and
calibrations of the model to satisfy its minimum data requirements. The challenges were
addressed through proxies and approximation techniques. The mode’s flexibility is its core
chrematistics of strength, and in terms of testing the model for a wide range of alternative
scenarios is its limitation.

This analysis is carried out on foresight hydrological conditions. However, to account
for different scales of variability, future studies should consider a wide range of synthetic
hydrologic conditions that examine scenarios of annual, seasonal and decadal variability
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over a more extended time to project the future climate of the Nile River basin and elucidate
variations in water resources.
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