Flood Risk Assessment under Climate Change: The Petite Nation River Watershed
Abstract
:1. Introduction
- (i).
- To develop frequency analysis of observed average flows measured at the Petite Nation River Basin concerning current and future climate conditions;
- (ii).
- To simulate flood hazard maps under future climate changes scenarios;
- (iii).
- (To estimate damage assessment in terms of monetary losses associated with residential buildings.
- (iv).
- The flood hazard and damage mapping results associated with climate change are not intended to develop detailed floodplain mapping and vulnerabilities for official floodplain designation. The flood modelling and mapping outlined in this case study were undertaken to better understand the effects of climate change on the Petite Nation River. Mapping the extent and depth of flooding associated with current and future flood scenarios was a key component of assessing the vulnerability of people, buildings, infrastructure, and the economy to flood events.
2. Materials and Methods
2.1. Study Area and Datasets
2.2. Description of GARI Tool
3. Methodology
- Step 1.
- Flood projections under the climate change, operate the climate projections from the Hydroclimatic Atlas of Southern Quebec [42] under the scenarios RCP 4.5 and RCP 8.5.
- Step 2.
- Hydrologic modelling, perform flood frequency analysis to extract the flow values for different return periods, i.e., 2, 20, and 100 years (RCP 8.5 and RCP 4.5).
- Step 3.
- Hydraulic modelling, perform the 20-year and 100-year return flood values from Step 2 into the GARI tool to map flood hazard (depth and water extent). We use the worst climate scenario (RCP 8.5) which presents significant changes in terms of hazard and damage maps, unlike the RCP 4.5 scenario.
- Step 4.
- Flood damage, estimate projected monetary damage for the residential buildings from the flood hazard maps provided from the previous step (due to space reasons, the results are only shown for the 20 year period (RCP 8.5)).
3.1. Climate Change Projections
3.2. Projected Flood Frequency
3.3. Flood Hazard Mapping
3.4. Flood Damage Assessment
4. Results and Discussion
4.1. Projected Change in Flood Frequency
4.2. Projected Change in Floodplain Mapping
4.3. Flood Damage Projections
4.4. Limitations and Recommendations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Buttle, J.M.; Allen, D.M.; Caissie, D.; Davison, B.; Hayashi, M.; Peters, D.L.; Pomeroy, J.W.; Simonovic, S.; St-Hilaire, A.; Whitfield, P.H. Flood processes in Canada: Regional and special aspects. Can. Water Resour. J. Rev. Can. Res. Hydr. 2016, 41, 7–30. [Google Scholar] [CrossRef]
- Sandink, D.; Kovacs, P.; Oulahen, G.; McGillivray, G. Making Flood Insurable for Canadian Homeowners: A Discussion Paper; Institute for Catastrophic Loss Reduction: Toronto, ON, Canada; Swiss Reinsurance Company Ltd.: Toronto, ON, Canada, 2010; p. 75. [Google Scholar]
- Sandink, D.; Kovacs, P.; Oulahen, G.; Shrubsole, D. Public relief and insurance for residential flood losses in Canada: Current status and commentary. Can. Water Resour. J. Rev. Can. Ressour. Hydr. 2015, 41, 220–237. [Google Scholar] [CrossRef]
- Bush, E.; Lemmen, D.S. Canada’s Changing Climate Report; Government of Canada: Ottawa, ON, Canada, 2019. [Google Scholar]
- Public Safety Canada (PSC). Canadian Disaster Database (CDD). 2021. Available online: https://www.publicsafety.gc.ca/cnt/rsrcs/cndn-dsstr-dtbs/index-en.aspx (accessed on 11 June 2021).
- Robichaud, S.; Maltais, D.; Lalande, G.; Simard, A.; Moffat, G. Les inondations de Juillet 1996: Une série d’événements stressants. Serv. Soc. 2001, 48, 16–33. [Google Scholar] [CrossRef] [Green Version]
- Burn, D.H. Perceptions of flood risk: A case study of the Red River Flood of 1997. Water Resour. Res. 1999, 35, 3451–3458. [Google Scholar] [CrossRef]
- Tanner, A.; Árvai, J. Perceptions of risk and vulnerability following exposure to a major natural disaster: The Calgary flood of 2013. Risk Anal. 2018, 38, 548–561. [Google Scholar] [CrossRef] [PubMed]
- Nirupama, N.; Armenakis, C.; Montpetit, M. Is flooding in Toronto a concern? Nat. Hazards 2014, 72, 1259–1264. [Google Scholar] [CrossRef]
- Teufel, B.; Sushama, L.; Huziy, O.; Diro, G.T.; Jeong, D.I.; Winger, K.; Garnaud, C.; De Elia, R.; Zwiers, F.W.; Matthews, H.D.; et al. Investigation of the mechanisms leading to the 2017 Montreal flood. Clim. Dyn. 2018, 52, 4193–4206. [Google Scholar] [CrossRef]
- Hirabayashi, Y.; Mahendran, R.; Koirala, S.; Konoshima, L.; Yamazaki, D.; Watanabe, S.; Kim, H.; Kanae, S. Global flood risk under climate change. Nat. Clim. Chang. 2013, 3, 816–821. [Google Scholar] [CrossRef]
- Gouldby, B.J.T. Uncertainty and Sensitvity Analysis Method for Flood Risk Analysis. 2009. Available online: https://eprints.hrwallingford.com/1360/ (accessed on 11 June 2021).
- Apel, H.; Aronica, G.T.; Kreibich, H.; Thieken, A. Flood risk analyses—How detailed do we need to be? Nat. Hazards 2009, 49, 79–98. [Google Scholar] [CrossRef]
- Burn, D.H.; Whitfield, P.H. Changes in floods and flood regimes in Canada. Can. Water Resour. J. Rev. Can. Ressour. Hydr. 2016, 41, 139–150. [Google Scholar] [CrossRef]
- Cunderlik, J.M.; Ouarda, T.B. Trends in the timing and magnitude of floods in Canada. J. Hydrol. 2009, 375, 471–480. [Google Scholar] [CrossRef]
- Henstra, D.; Thistlethwaite, J. Climate Change, Floods, and Municipal Risk Sharing in Canada; Institute on Municipal Finance and Governance: Toronto, ON, Canada, 2017. [Google Scholar]
- Roy, L.; Leconte, R.; Marche, C. The impact of climate change on seasonal floods of a southern Quebec River Basin. Hydrol. Process. 2001, 15, 3167–3179. [Google Scholar] [CrossRef]
- Mareuil, A.; Leconte, R.; Brissette, F.; Minville, M. Impacts of climate change on the frequency and severity of floods in the Châteauguay River basin, Canada. Can. J. Civ. Eng. 2007, 34, 1048–1060. [Google Scholar] [CrossRef]
- LaForce, S.; Simard, M.; Leconte, R.; Brissette, F. Climate Change and Floodplain Delineation in Two Southern Quebec River Basins1. JAWRA J. Am. Water Resour. Assoc. 2011, 47, 785–799. [Google Scholar] [CrossRef]
- Riboust, P.; Brissette, F. Climate change impacts and uncertainties on spring flooding of Lake Champlain and the Richelieu River. JAWRA J. Am. Water Resour. Assoc. 2015, 51, 776–793. [Google Scholar] [CrossRef]
- Zadeh, S.M.; Burn, D.H.; O’Brien, N. Detection of trends in flood magnitude and frequency in Canada. J. Hydrol. Reg. Stud. 2020, 28, 100673. [Google Scholar] [CrossRef]
- Huang, Y.; Zou, Y.; Huang, G.; Maqsood, I.; Chakma, A. Flood vulnerability to climate change through hydrological modeling: A case study of the Swift Current Creek watershed in western Canada. Water Int. 2005, 30, 31–39. [Google Scholar] [CrossRef]
- McLeman, R.; Smit, B. Vulnerability to climate change hazards and risks: Crop and flood insurance. Can. Geogr. 2006, 50, 217–226. [Google Scholar] [CrossRef]
- Thistlethwaite, J.; Minano, A.; Blake, J.A.; Henstra, D.; Scott, D. Application of re/insurance models to estimate increases in flood risk due to climate change. Geoenviron. Disasters 2018, 5, 8. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Brissette, F.P.; Leconte, R. Uncertainty of downscaling method in quantifying the impact of climate change on hydrology. J. Hydrol. 2011, 401, 190–202. [Google Scholar] [CrossRef]
- Cloke, H.L.; Wetterhall, F.; He, Y.; Freer, J.; Pappenberger, F. Modelling climate impact on floods with ensemble climate projections. Q. J. R. Meteorol. Soc. 2012, 139, 282–297. [Google Scholar] [CrossRef] [Green Version]
- Chaumont, D. A Guidebook on Climate Scenarios: Using Climate Information to Guide Adaptation Research and Decisions; Ouranos: Montréal, QC, Canada, 2014. [Google Scholar]
- Gaur, A.; Gaur, A.; Simonovic, S.P. Future changes in flood hazards across Canada under a changing climate. Water 2018, 10, 1441. [Google Scholar] [CrossRef] [Green Version]
- Huziy, O.; Sushama, L.; Khaliq, M.N.; Laprise, R.; Lehner, B.; Roy, R. Analysis of streamflow characteristics over Northeastern Canada in a changing climate. Clim. Dyn. 2012, 40, 1879–1901. [Google Scholar] [CrossRef] [Green Version]
- Edenhofer, O.; Seyboth, K. Intergovernmental Panel on Climate Change (IPCC). Encycl. Energy Nat. Resour. Environ. Econ. 2013, 48–56. [Google Scholar] [CrossRef]
- Meinshausen, M.; Smith, S.J.; Calvin, K.; Daniel, J.S.; Kainuma, M.L.T.; Lamarque, J.F.; Matsumoto, K.; Montzka, S.; Raper, S.C.B.; Riahi, K.; et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim. Chang. 2011, 109, 213–241. [Google Scholar] [CrossRef] [Green Version]
- Nakicenovic, N.; Alcamo, J.; Davis, G.; Vries, B.D.; Fenhann, J.; Gaffin, S.; Gregory, K.; Grubler, A.; Jung, T.Y.; Kram, T.; et al. Special Report on Emissions Scenarios (SRES), a Special Report of Working Group III of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Solomon, S.; Manning, M.; Marquis, M.; Qin, D. Climate Change, the Physical Science Basis: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2007; p. 996. [Google Scholar]
- Ficklin, D.; Luo, Y.; Luedeling, E.; Zhang, M. Climate change sensitivity assessment of a highly agricultural watershed using SWAT. J. Hydrol. 2009, 374, 16–29. [Google Scholar] [CrossRef]
- Moradkhani, H.; Meier, M. Long-lead water supply forecast using large-scale climate predictors and independent component analysis. J. Hydrol. Eng. 2010, 15, 744–762. [Google Scholar] [CrossRef]
- Praskievicz, S.; Chang, H. Impacts of climate change and urban development on water resources in the Tualatin River Basin, Oregon. Ann. Assoc. Am. Geogr. 2011, 101, 249–271. [Google Scholar] [CrossRef]
- Centre d’Expertise Hydrique du Québec; Ministère du Développement Durable, de l’Environnement et de la Lutte Contre les Changements Climatiques. Hydroclimatic Atlas of Southern Québec; Government of Québec: Quebec City, QC, Canada, 2015.
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An Overview of CMIP5 and the Experiment Design. Bull. Am. Meteorol. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef] [Green Version]
- Ouranos. Fiche Avis d’Ouranos Sur les Inondations Dans un Contexte de Changements Climatiques; Ouranos: Montréal, QC, Canada, 2018. [Google Scholar]
- Lin, H.; Mo, R.; Vitart, F.; Stan, C. Eastern Canada flooding 2017 and its subseasonal predictions. Atmos. Ocean 2019, 57, 195–207. [Google Scholar] [CrossRef] [Green Version]
- Chokmani, K.; Oubennaceur, K.; Tanguy, M.; Poulin, J.; Gauthier, Y.; Latapie, R.; Bernier, M. The Use of Remotely Sensed Information within a Flood Risk Management and Analysis Tool (GARI). In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 4636–4639. [Google Scholar]
- Guay, C.; Minville, M.; Braun, M. A global portrait of hydrological changes at the 2050 horizon for the province of Québec. Can. Water Resour. J. Rev. Can. Ressour. Hydr. 2015, 40, 285–302. [Google Scholar] [CrossRef]
- Fortin, J.; Moussa, R.; Bocquillon, C.; Villeneuve, J. Hydrotel, un modèle hydrologique distribué pouvant bénéficier des données fournies par la télédétection et les systèmes d’information géographique. Rev. Sci. Eau J. Water Sci. 1995, 8, 97–124. [Google Scholar] [CrossRef] [Green Version]
- Han, D. Flood Risk Assessment and Management; Bentham Science Publishers: Sharjah, United Arab Emirates, 2011. [Google Scholar]
- Schwarz, G. Estimating the dimension of a model. Ann. Statist. 1978, 6, 461–464. [Google Scholar] [CrossRef]
- Tanguy, M.; Chokmani, K.; Bernier, M.; Poulin, J. CADYRI, a dynamic mapping tool of human risk associated with flooding in urban areas. AGU Fall Meet. Abstr. 2013, 2013, NH43B-1756. [Google Scholar]
- Brunner, G.W. Hec-Ras (River Analysis System). In North American Water and Environment Congress & Destructive Water; ASCE: New York, NY, USA, 2002. [Google Scholar]
- Tanguy, M.; Chokmani, K.; Bernier, M.; Poulin, J.; Raymond, S. River flood mapping in urban areas combining Radarsat-2 data and flood return period data. Remote Sens. Environ. 2017, 198, 442–459. [Google Scholar] [CrossRef] [Green Version]
- Tanguy, M. Cartographie du Risque D’inondation en Milieu Urbain Adaptée à la Gestion de Crise: Analyse Préliminaire; INRS-Eau, Terre et Environnement: Quebec City, QC, Canada, 2012. [Google Scholar]
- Bonnifait, L.; Leclerc, M. Construction de Courbes Niveau-Dommages Pour l’Habitat Québécois; INRS-Eau, Terre et Environnement: Quebec City, QC, Canada, 2004. [Google Scholar]
- Mailhot, A.; Talbot, G.; Ricard, S.; Turcotte, R.; Guinard, K. Assessing the potential impacts of dam operation on daily flow at ungauged river reaches. J. Hydrol. Reg. Stud. 2018, 18, 156–167. [Google Scholar] [CrossRef]
- MRC de Papineau. Schéma d’Aménagement et de Développement; Municipalité Régionale de Comté de Papineau: Papineauville, QC, Canada, 1987. [Google Scholar]
Baseline (m3/s) | Flow (m3/s) 2050 | Flow (m3/s) 2080 | |||
---|---|---|---|---|---|
RCP 4.5 | RCP 8.5 | RCP 4.5 | RCP 8.5 | ||
2 years | 92 | 89 | 88 | 90 | 83 |
20 years | 139 | 139 | 132 | 140 | 127 |
100 years | 153 | 153 | 147 | 151 | 142 |
9 | Flooded Area (m2) | |||||
---|---|---|---|---|---|---|
20-Year Return Period | 100-Year Return Period | |||||
Period | Current | 2050 | 2080 | Current | 2050 | 2080 |
St-Andre-Avellin | 90,114 | 89,058 | 88,388 | 92,394 | 91,358 | 90,568 |
Ripon | 271,653 | 268,194 | 266,201 | 279,213 | 276,277 | 273,002 |
20-Year Return Period | 100-Year Return Period | |||||
---|---|---|---|---|---|---|
Period | Current | 2050 | 2080 | Current | 2050 | 2080 |
St-Andre-Avellin | 3.77% | 3.58% | 3.25% | 4.39% | 4.19% | 3.94% |
Ripon | 0.75% | 0.71% | 0.68% | 0.93% | 0.86% | 0.79% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oubennaceur, K.; Chokmani, K.; Gauthier, Y.; Ratte-Fortin, C.; Homayouni, S.; Toussaint, J.-P. Flood Risk Assessment under Climate Change: The Petite Nation River Watershed. Climate 2021, 9, 125. https://doi.org/10.3390/cli9080125
Oubennaceur K, Chokmani K, Gauthier Y, Ratte-Fortin C, Homayouni S, Toussaint J-P. Flood Risk Assessment under Climate Change: The Petite Nation River Watershed. Climate. 2021; 9(8):125. https://doi.org/10.3390/cli9080125
Chicago/Turabian StyleOubennaceur, Khalid, Karem Chokmani, Yves Gauthier, Claudie Ratte-Fortin, Saeid Homayouni, and Jean-Patrick Toussaint. 2021. "Flood Risk Assessment under Climate Change: The Petite Nation River Watershed" Climate 9, no. 8: 125. https://doi.org/10.3390/cli9080125
APA StyleOubennaceur, K., Chokmani, K., Gauthier, Y., Ratte-Fortin, C., Homayouni, S., & Toussaint, J. -P. (2021). Flood Risk Assessment under Climate Change: The Petite Nation River Watershed. Climate, 9(8), 125. https://doi.org/10.3390/cli9080125