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Abstract: Dynamic load identification plays an important role in the field of fault diagnosis and
structural modification design for aircraft. In conventional dynamic load identification approaches,
accurate structural modeling is usually needed, which is difficult to obtain for highly nonlinear or
unknown structures. In this paper, a one-dimensional convolution neural network with multiple
modules is proposed for random dynamic load identification of aircraft. Firstly, the convolution
module is designed for temporal feature extraction. Secondly, the extracted features are linearly
weighted based on the contributions to the final output. The contributions are learned in a data
driven manner via the designed attention module. Lastly, the dynamic load of a certain time stamp is
predicted from the learned and weighted features. The proposed model is trained and tested using
the real data from a GARTEUR aircraft model. Extensive experimental results with qualitative and
quantitative evaluations have demonstrated the identification performance with satisfactory accuracy
of the proposed approach under different strengths of load noises.

Keywords: dynamic load identification; random dynamic loads; one-dimensional convolution neural
network; attention mechanism; deep learning

1. Introduction

With the development of the aviation industry in recent years and the wide application
of civil aircraft in public transportation, the research on the safety of aircraft operation has
also received more and more attention [1–5]. Usually, the aircraft is working in complex
mechanical environments and is subjected to different types of dynamic forces or loads,
e.g., the dynamic loads from engine rotor, and the random dynamic loads from the airflow
disturbance. It is important to analyze the influence of dynamic load on the aircraft body.
The accurate measured external dynamic loads of the aircraft plays an important role
in the overall design of the aircraft structure, the strength check and the environmental
prediction. However, in practice, limited by factors such as shape design and sensor
installation arrangements, it is difficult, if not impossible, to directly measure the external
dynamic loads on the aircraft structures. In some cases, the vibration response at certain
positions can be measured, and it can be utilized for identifying the external dynamic load
information [6]. The load identification can also be used in fault diagnosis. For example,
there might be excessive clearance of the aircraft actuator. As the actuator is usually
connected with the frame of the aircraft structure, the load can be regarded as a load at
some point on the aircraft structure. The identification of such loads would be useful
for fault diagnosis and localization. However, in real situations, there could be multiple
excessive clearances at different positions, the unknown loads would interference each
other, resulting in the increase of the challenge of accurate load identification.
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In early research of dynamic load identification, the direct inversion method is often
adopted [7]. It builds an algebraic equation between the loads and the responses, and then
estimates the dynamic loads from the response by inverting the coefficient matrix in the
algebraic equation. While the direct inversion method is simple in principle and easy to
apply in practice, it is often difficult to build the equation. For unknown or complicated
structures, the problem is often ill-posed, which limits the accuracy of dynamic loads
identification. Regularization-based methods improve the ill-posed problem of direct inver-
sion. By adding reasonable boundary conditions to the ill-posed problem, the regularized
optimal solution of the equation is sought. Jacquelin et al. [8] provides the L-curve and
the general cross-validation (GCV) criterion for determining regularization parameters in
truncated singular value decomposition (TSVD) or Tikhonov regularization approaches.
Wang et al. [9] propose a regularization-based method with different regularization opera-
tors for identification tasks of complex structures. A Bayesian principle-based augmented
Tikhonov regularization method is proposed in [10] to improve the load identification accu-
racy under severe ill-posed conditions. Bianchi et al. [11] proposes a fractional In addition
to the TSVD and Tikhonov regularizations, the L1 norm-based regularization methods
for load identification [12–14] are also proposed. Li et al. [15] propose a Lq norm-based
regularization method, in which the q can be learned from a posteriori knowledge.

For the above-mentioned conventional load identification approaches, an accurate
dynamic model of the structure is also required. For complex structures, the establishment
of an accurate structural dynamic model is often difficult. It can be seen that conventional
methods rely too much on the transfer function of the structures. The measurement
accuracy of the transfer function, the ill-posedness caused by the rank deficiency of transfer
function matrix and the selection of regularization parameters would all affect the accuracy
of the identification results.

With the recent rapid developments in artificial intelligence, neural networks (NNs)
are now applied in the field of load identification. As a data-driven approach, NN-based
methods avoid the need for accurate structural modeling, which could be suitable for
load identification of unknown complex structures. In the literature, approaches with
different types of NNs [16–21] are proposed to identify the static or dynamic load for
different structures. Trivailo et al. [16] address the load identification problem of the
empennage of a F/A-18 fighter aircraft via a shallow NN. Chen et al. [17] develop a neural
network with two hidden layers to solve the impact load conditions for an elastoplastic
hemispherical metal shell. Data generated from the finite element method are utilized
for network training and testing. Wang et al. [18] propose to use a feed-forward NN
to solve the nonlinear identification problem for a one-stage spur gearbox, an extended
Kalman filter based algorithm is applied for NN parameters training. Zhou et al. [19]
propose a long short-term memory (LSTM)-based recurrent NN model for impact load
identification. Hossain et al. [20] compare the performance of radial basis function based
NN and multilayer perceptron (MLP) for impact identification of a rectangular plate.
A comparison between the NN and LSTM-based identification methods on different types
of loads for aircraft is provided in [1].

The main problem of the above-mentioned feed-forward NN or the MLP is that the
amount of parameters in the NN is relatively large. To reduce the number of parameters
in the NN model, the convolutional neural network (CNN) can be applied. The CNN
would process only part of the input data via convolution with a kernel. The parameters of
CNN, or the weight of the kernel, are less in quantity compared to those of the full connect
feed-forward NNs or the MLP, in which the entire input data are processed. In the literature,
CNNs [22] are applied for fault diagnosis [23,24], damage detection [25] based on vibration
data in both the time domain [23,25] and the frequency domain [24]. The problems of fault
diagnosis or damage detection are to classify the vibration in time or frequency domain
into a certain number of classes, e.g., different types of faults. As for the problem of load
identification, the goal is to estimate the continuous, time-varying load signal based on
the vibration data. Therefore, these problem are different. Xia et al. [26] applied a time
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delay neural network (TDNN) for dynamic load identification for an aircraft rudder model.
The TDNN can be regarded as a special CNN with one layer. Yang et al. [27] proposes to
use a two-layer CNN and two-layer MLP to regress the dynamic loads. Yang et al. [28]
utilize the hand-crafted wavelet features of signals as an input of a LSTM network and
identify the dynamic on a three-degrees-of-freedom vibration system. Models in [26,27]
do share some similarities with the proposed model. However, on one hand, Ref. [26]
tends to use one layer but large kernels (size of 50) while multiple, small kernels (size
of 2) in a multiple layer fashion are utilized in the proposed model. On the other hand,
in the proposed model, we tend to further obtain the contributions for the CNN learned
features, i.e., the outputs of the convolutions, to the final prediction via a designed attention
mechanism and to fuse the output from small convolutions with the learned contributions.
These would be the main differences of the proposed approach with methods in [26,27].

To address the load identification problem for unknown structures, especially for
random dynamic loads identification problem on the aircraft structure with the existence
of the interference of another noise load, in this paper, a novel one-dimensional convolu-
tion neural network (1D-CNN) with attention mechanism based approach is proposed.
The network would make use of the convolution to extract high-level temporal features
of the input multiple synchronized vibration response signals. Considering the fact that
different features would contribute differently to the final load prediction, an attention
module is designed to learn the contributions for the features from the training data. The di-
mensions of the input(s) and the output(s) of the proposed approach can be flexible to fit
single input single out (SISO), multiple inputs single output (MISO) and multiple inputs
multiple outputs (MIMO) load identification problems. Data obtained from a real self-build
GARTEUR aircraft model is used for model parameters training and testing. Extensive
experimental results show that the proposed approach can accurately identify the random
dynamic loads in the presence of noises. Quantitative comparisons shows that the pro-
posed approach outperforms conventional regularization-based approaches and shallow
NN based-approaches.

The rest of the paper is structured as follows. In Section 2, we describe the problem
of load identification, as well as the proposed deep learning model. Section 3 presents
the details of the experimental results. We give the limitations and conclude the paper in
Section 4.

2. Proposed Method

In this section, we describe the proposed approach for random dynamic load identifi-
cation via attention-based 1D-CNN. The problem of load identification is first analyzed.
The proposed 1D-CNN model is then described, as well as the implementation details for
the network.

2.1. Load Identification Problem

Considering a linear vibration system with p dynamic loads, the corresponding accel-
eration response ÿ(t) in time domain at a certain measuring point can be calculated from
the dynamic loads according to the principle of linear superposition,

ÿ(t) =
p

∑
i=1

∫ t

0
hi(t− τ) fi(τ)dτ, (1)

where hi(·) is the unknown response function for the i-th dynamic load at the measur-
ing point, fi the i-th dynamic load. The measurements for acceleration obtained in real
experiments are in discrete form. Equation (1) can be discretized by

ÿ(t) =
p

∑
i=1

Nload

∑
n=0

hi(n∆t) fi(t− n∆t), (2)
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where ∆t is a time interval for discretization, Nload = t
∆t and Nload ∈ N.

As for the problem of load identification, it is to estimate the dynamic load fi in
Equation (2) in time domain from the acceleration measurements ÿ at different times. From
Equation (2), it can be seen that the dynamic load at a certain time t, would affect the
response ÿ of one measuring point at time t, t + ∆t, t + 2∆t, · · · . If the vibration system is
not linear, the integral equation of Equation (1) would be invalid. The loads can be seen as
a function of responses at time t, t + ∆t, t + 2∆t, · · · . More generally, if there are K different
measuring points in the system, the dynamic load fi(t) can be represented by a function
g(·) of acceleration measurements from K measuring points,

fi(t) = g(ÿ1(t), ÿ1(t + ∆t), · · · , ÿ2(t), ÿ2(t + ∆t), · · · , ÿK(t), ÿK(t + ∆t), · · · ), (3)

where ÿk(t + n∆t), k ∈ [1, K], n ∈ [0, N] is the response of measuring point k at time
t + n∆t, respectively. The problem of load identification is therefore to estimate the value
for fi(t) given the response measurements of ÿ1(t), ÿ1(t + ∆t), · · · , ÿ2(t), ÿ2(t + ∆t), · · · ,
ÿK(t), ÿK(t + ∆t), · · · .

2.2. The Proposed 1D-CNN-Based Model

Usually, it is difficult to explicitly model the function of g(·) in Equation (3) for
unknown or complicated structures. Therefore, in this paper, we would utilize the deep
NN to model g(·) in an implicit and data-driven manner. More specifically, an attention-
based 1D-CNN is proposed. Figure 1 shows the framework of the propose approach.
The network consists of the convolution modules (blue dotted box in Figure 1), the attention
modules (purple dotted box color in Figure 1), a prediction module for final load prediction.
The network is designed in an end-to-end manner, the inputs of the network are the
vibration signals from K measuring points, and the outputs are the estimated dynamic load.
Details of network modules are given below.

Conv1D
#1

BN

Input Conv 1D #1 Attention #1

GLUE

MaxPool

AvgPool

MLP

MLP

Conv1D
#2

BN

Conv 1D #2

GLUE

…
…

Attention #2

MaxPool

AvgPool

MLP

MLP
Adaptive
Avgpool

FC

Output

Prediction

Figure 1. The network architecture of the propose approach. The inputs are K measurements in the
time domain. The convolution modules are utilized for feature extraction, while the attention module
are used for feature weighting. The final prediction module would map the learned features to the
dynamic load for a certain time stamp.

2.2.1. Convolution Module

This module would utilize the convolution to extract temporal features of the in-
puts and generate feature maps for further processing. Considering the inputs of the
network are signals of acceleration measurements from K measurement points in the time
domain, the 1D convolution is adopted, which is frequently used in signal processing
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problems. The module includes a 1D convolution layer, a batch normalization layer and an
activation function.

1D convolution layer. This layer would take the vibration signals (for the first mod-
ule) or the feature maps (for the second module) as input. For a discrete input signal f ,
the output of the 1D convolution is given by

o(n) =
M

∑
i=1

k(i) ∗ f (n + i), (4)

where k is the convolution kernel, M the size of k. The operator ∗ is the cross-correlation.
In the network, there would be multiple corresponding kernels for a single 1D input.
The number of the kernels is the filter number N f n. The parameters of all kernels would be
learned from data. Details for the input and output dimensions are discussed in Section 2.3.
To enlarge the receptive field of the convolution, the dilated convolution, which is also
called the convolution with holes [29–31], is used. The spacing between the values in a
kernel is the dilation rate d.

Batch normalization. Considering the data of load identification is in small quantity,
to reduce the possible over-fitting, the batch normalization (BN) is applied in this module.
In this layer, the output of the dilated convolution layer would be normalized to a standard
Gaussian distribution. Given the mean and variance estimated of the output x from the
previous layer, i.e., mean(x) and var(x), respectively, the output for the BN is given by

y = BN(x) =
x−mean(x)√

var(x) + ε
, (5)

where ε is a pre-defined small constant.
The Activation function. The output of the BN layer is then processed via the activation

function. In the proposed approach, the Gaussian error linear unit (GELU) function [32] is
used. Suppose x is the input, the GELU is given by [32],

GELU(x) = xΦ(x), (6)

where Φ(x) = P(X ≤ x), X ∼ N (0, 1) is the standard Gaussian cumulative distribution
function. The GELU is a modified rectified linear unit (ReLU) activation function with
nonlinearity for the inputs, and show good performances in speech and vision tasks [32].
The outputs of the activation function are passed to the next module.

2.2.2. Attention Module

The attention mechanism is a special designed module in the NN models to learn
and compute the contribution of input data to output data. Inspired by the SE-Net [33],
an attention module is designed in the proposed approach. Figure 2 shows the sketch of
this module.

Suppose that the input for the attention module is a feature map with the dimension
of H × C. The feature maps can be regarded as C different H × 1 features (see Figure 2
left). The attention module tends to weigh the C features using a learned weight, or,
the contributions. The contributions of all C features are learnt in a data-driven manner.
First, the feature map H × C is down-sampled to 1× C via two pooling operation. In the
“MaxPool” branch, the maximum value of each H × 1 features is selected, while in the
“AvgPool” branch, the mean value of each H × 1 features is stored. Secondly, the two
1× C vector are transposed to C× 1 and connected to two separate fully connected NNs,
i.e., the MLPs. The MLP can be regraded as an implicit function. Here, the MLPs are
used to map the input into two contribution vectors. The outputs of the two MLPs are
summed. The summed vector, which is shown in Figure 2 as a colored vector, is the
learned contribution of each H × 1 vector. The vector is called the attention and is used
for weighting each H × 1 vector. The weighted H × C feature map is passed to the next
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module. By weighting the 1D-CNN features using the 1× C attention vectors, the features
could be better fused.

MaxPool

AvgPool

H × C H × C

C × 1

1 × C

C × 1

C × 1 C × 1

Figure 2. The attention module in the proposed approach. The H × C feature map is firstly reduced
to one dimension via two pooling. The two pooling 1D vectors are then inputted to two separate
fully connected NNs, respectively. The NNs are used for contribution learning. The outputs of the
two NNs are summed to obtained the attention vectors, and are used for feature map weighting.

2.2.3. Prediction Module

In this module, the learned feature maps are projected to a scalar, which is the predicted
load at a certain time stamp. Suppose that the dimension of the input feature map is H× C.
The input is first pooled to 1× C by average pooling. The 1× C features are then weighted
and summed to 1× 1 via a fully connected (FC) network, which would be flattened to a
scalar. Additionally, the weights in the FC layer are learnable.

2.3. Model Implementation Details

We discuss the details for model implementation in this subsection, including the
dimensions of input and output, hyper-parameters of each modules and layers. Suppose
that there are K measurement points in the system. The discrete sampled accelerations from
a time window, e.g., from t to t + N∆t, are inputted to the network. We regard the input as
N different 1D vectors of K× 1 dimensions. In practice, we set N = 256, and K = 6. For the
two 1D convolution layers in the network, the size of kernel M, the number of kernels (or
the filter number) N f n , the dilation rate d are given in Table 1. The stride s defines the
step size of the kernel when traversing the inputs. Considering K is small in our system,
we choose to use a small kernel size M. As for the activation function used in the two
1D convolution layers, although we choose the GELU function, the choice for activation
function is not limited. The ReLU or Sigmoid function can also be utilized. It is noteworthy
that the impact on algorithm performances and metrics with the three activation functions
is limited.

Table 1. Details for the 1D convolutions in the two convolution modules. In the table, “Conv1D #1”
means the first 1d convolution module, and “Conv1D #2” the second.

Module Kernel Size M Filter Number N f n Dilation Rate d Stride s

Conv1D #1 2 32 2 1
Conv1D #2 2 64 2 1

As for the attention module, recall that two branches are designed, in which the MLPs
are used for learning the attention, respectively. The MLP is a fully connected NN with
one hidden layer. The number of nodes, which are also known as the neurons, in the
hidden layer are set to be identical for the two branches. Table 2 shows the number of the
neurons in the input, hidden, and output layer of the MLPs in both attention modules in
the network. The ReLU function is used for activation function in the MLPs.
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Table 2. Details on the amount of neurons for the MLPs in the two-attention module.

Module Input Layer Hidden Layer Output Layer Activation

ATT #1 512 1024 512 ReLU
ATT #2 1024 2048 1024 ReLU

With the above-mentioned input and hyper-parameters of the network layers, the di-
mensions of the feature maps of all layers can be determined, which is shown in Table 3.
The output of the network would be a scalar, which is the predicted load at time t. It
can be seen from Table 3 that two-convolution and two-attention modules are used in the
proposed network. It is noteworthy that more copies of the two modules could be added
subsequently between the input layer and prediction module, and the total amount of
parameters, computational resources for model training and inference are thus increased.

Table 3. The structure of the proposed network. The dimensions of the input and the output feature
map of each layer are listed.

Module Layer Input Shape Output Shape

INPUT Input (6.256) −

CONV1D #1
Conv1D (6.256) (4.32)
BN (4.32) (4.32)
GELU (4.32) (4.32)

ATT #1 Attention (4.32) (4.32)

CONV1D #2
Conv1D (4.32) (2.64)
BN (2.64) (2.64)
GELU (2.64) (2.64)

ATT #2 Attention (2.64) (2.64)

PREDICTION
AvgPooling (2.64) (1.64)
FC (1.64) (1.1)
Flatten (1.1) 1

OUTPUT Output − 1

It is noteworthy that the dimension of input and output is not strictly limited. By chang-
ing the channels, i.e., K, of inputs, the proposed method can also be utilized for load
identification problems with less or more than six channels. As well, the dimensions of the
output can also be altered, which can be used in MIMO identification problems. The flexi-
bility of the proposed method in terms of input and output dimensions is verified in the
experimental results.

3. Experimental Results

In this section, we describe the details of the experimental results for the proposed
approach. The equipment and procedure for data collection are given in Section 3.1.
Details of model training are described in Section 3.2. The quantitative evaluations and
comparisons are presented in Section 3.3. An ablation study of the proposed approach is
also presented in Section 3.4.

3.1. Data Collection

To obtain the data for model training and evaluation, in this paper, a self-built GAR-
TEUR aircraft model is utilized for data collection. The GARTEUR aircraft model is a
typical and widely used [34–37] standard aircraft model with high compliance, low fre-
quency, and dense frequency characteristics. It is designed to evaluate the accuracy and
validity for modal testing methods. The GARTEUR aircraft model consists of six aluminum
beams with rectangular section, which are the fuselage, wings, vertical tail, horizontal tail,
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and wing end counterweight plates. The fuselage is 1.5 m long and the wingspan is 2.0 m.
The GARTEUR model is made of 2024-T3 aluminum alloy, with the elastic modulus of
73 GPa, the density of 2780 kg/m3 and the Poisson’s ratio of 0.33. The total weight of the
model is 43.34 kg. Each component is connected by screw connection, and an adapter plate
is added to connect the fuselage and the wing. Figure 3 shows the self-built GARTEUR
aircraft model when collecting experimental data. During all experiments, deformation of
the GARTEUR aircraft model is within the range of elastic deformation. The system would
be a elastic system satisfying Hooke’s law.

(a) (b)

Figure 3. The self-built GARTEUR aircraft model and equipment for data collection. In the system,
two exciters with two force sensors, six response accelerometers are used. The system is synchronized
by the data acquisition hardware. The positions of two exciter and six acceleration measurement
points are also given. (a) The self-built GARTEUR aircraft model used for data collection. (b) The
positions of exciters and measurements points (R in blue).

To capture the dynamic load and the corresponding response signals, a testing system
is built. The entire system is shown in Figure 3a, which includes the vibration exciters,
the power amplifiers, the accelerometers, the force sensors, the data acquisition hardware
and software. The data acquisition hardware is LMS SCADAS III from Siemens, which is
also utilized for signal synchronization.

For the dynamic load signals, the amplified electrical signals are sent to the exciters
to excite the GARTEUR aircraft model and vibrate through the exciter rod. In the system,
two exciters are used. Exciter A (Figure 3a) provides the random dynamic loads. Random
dynamic loads from exciter B (Figure 3a) are considered as the noise load signals for the
system. Two high-precision force sensors are placed at the location of the two exciter
rods for measuring the loads, respectively. For the corresponding response signals, six
high-precision accelerometers are attached to the GARTEUR aircraft model at different
locations. Figure 3b shows the locations of sensors for the dynamic loads, the noise loads,
and the responses. The accelerometers are placed at the blue points, which are the nose (R
#1), the left wing (R #2), the right wing (R #3), the middle of the fuselage (R #4), the rear of
the fuselage ((R #5)), and the horizontal tail (R #6). Acceleration measurements from the
sensors are captured and stored via data acquisition hardware. The dynamic load signals,
the noise load signals, and the six response signals are temporally synchronized via the
data acquisition hardware. The exciters, the power amplifier, the force sensors, and the
accelerometers utilized in the system are shown in Figure 4.
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(a) (b)

(c) (d)

Figure 4. Equipment used in the data collection system. The dynamic loads are from the vibration
exciter and amplified using the power amplifier. The dynamic loads are measured by the force sensor.
Responses from each measurement points are measured by the accelerometers. (a) The vibration
exciter. (b) The power amplifier. (c) The force sensor. (d) The accelerometer.

Throughout the experiment, the random signals of both exciters are white noise.
The signal generation module of “LMS Test.lab” from Siemens [38] is utilized to generate
the random excitation. The maximum excitation voltage is 0.4 V.

To verify the performance of the proposed method under different noise strengths,
the amplitude of load from the exciter B is set to be 0%, 5%, 10%, 20%, 40%, 60%, 80%,
100% of that from the exciter A, respectively. For each configuration of noise strength,
16 s of vibration signals is captured. Since the sampling frequency is 2048 Hz, there
would be 32,768 data points for each device (exciter or accelerometer) in one noise strength
configuration. Figure 5 shows an example for the dynamic loads, the noise loads, and the
responses, with the noise strength of 40%.

In order to determine the sampling frequency, we conducted a modal experiment.
By utilizing PolyMAX [39], the modal data between 6.062 Hz (mode 1) to 140.024 Hz (mode
14) of the GARTEUR aircraft model are obtained, which is consistent with that of [40].
Figure 6 shows the modal assurance criterion plot. We choose to set the sampling frequency
to 2048 Hz, which is more than 10 times that of the mode 14.
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Figure 5. An example of the dynamic loads from exciter A and B, and the corresponding responses
from 6 measurement points. Loads from exciter B are considered as the noises, in this example,
the noise strength, which is the ratio between the amplitudes of loads from exciter A and those from
exciter B, is 40%. (a) Dynamic loads from exciter A. (b) Dynamic loads from exciter B. (c) Response
from measurements R #1. (d) Response from measurements R #2. (e) Response from measurements R
#3. (f) Response from measurements R #4. (g) Response from measurements R #5. (h) Response from
measurements R #6.
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Figure 6. The modal assurance criterion plot of 14 modes of the GARTEUR model in our modal
experiment. Modal data between 6.062 Hz (mode 1) to 140.024 Hz (mode 14) of the GARTEUR aircraft
model are obtained. The sampling frequency is set to 2048 Hz, which is more than 10 times that of
mode 14.

3.2. Model Training

For network training, the mean square error (MSE) between the ground truth loads A
and identified loads B is used for the loss function, which is defined as

MSE =
1
N

N

∑
i=1

(Ai − Bi)
2, (7)

where N is the amount of data used for training.
We split each 16-second vibration data point into training and testing sets with a

proportion of 70% for training and that of 30% for testing. The training and testing is done
on a platform of a CPU (Intel i5-10500), and a single GPU (Nvidia RTX 3060 Ti with 8 GB
memory). For each experiment, the model is trained with 10 epochs, and the total time
for model training on the above mentioned platform is about 4 min. The batch size for
training is 1024. The Adam optimization is used for network training with a learning rate
of 1.0× 10−4.

3.3. Experimental Results

To quantitatively evaluate the accuracy and effectiveness of proposed approach, sev-
eral different metrics are utilized for evaluation. The square root of MSE, i.e., the RMSE,
the correlation coefficient (R), the relative error (RE), the mean absolute error (MAE), and
the mean absolute percentage error (MAPE) are used. Suppose that A denotes the ground
truth of the dynamic load, and B is the identified dynamic load. N denotes the length of
vectors A and B. The definitions of the above metrics are given below.

R =
1

N − 1

N

∑
i=1

(
Ai − µA

σA

)(
Bi − µB

σB

)
, (8)
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where µA and σA are the mean and standard deviation for the ground truth of the dynamic
load, respectively, µB and σB those of the identified dynamic load.

RE =
‖A− B‖2

‖A‖2
, (9)

where ‖ · ‖ denotes the L2 norm of a vector.

MAE =
1
N

N

∑
i=1
| Ai − Bi |, (10)

MAPE =
1
N

N

∑
i=1
| Ai − Bi

Ai
| . (11)

where | · | denotes the absolute value.
The experiments are designed as follows. Firstly, the proposed approaches is quanti-

tatively analyzed for inputs with different strength of load noise. Secondly, inputs with
different time windows are quantitatively analyzed. Finally, we compare the propose
method with conventional regularization-based methods and NN-based approach with
quantitative evaluations.

Experiment 1. Different strengths of load noises.
In this experiment, we verify the performance of the proposed approach for different

strengths of noises. Recall that the dynamic loads from exciter B would be regarded as
noises. The amplitude of loads from exciter B would thus be the strength of the noise.
In this experiment, the noise strengths range varies from 0% to 100%. Table 4 presents the
quantitative evaluations on testing data (30% of 16-second data) on the above mentioned
metrics. In the table, the ↑ sign next to the metric indicates that the larger the metric,
the better the performance of the method, while the ↓ sign means the opposite. From Table 4,
it can be seen that an increase of noise strength would result in a decrease in algorithm
performance. However, the correlation coefficient (R) is relatively high in all rows in Table 4,
which means the identified loads are consistent with those of the ground truth.

Table 4. Quantitative analysis on different strengths of load noises.

Noise Strength RMSE ↓ RE ↓ R ↑ MAE ↓ MAPE ↓
0% 0.7517 0.3867 0.9232 0.5939 2.4077
5% 0.7037 0.3763 0.9272 0.5544 3.2146
10% 0.7637 0.3876 0.9223 0.5935 2.1172
20% 0.8950 0.4235 0.9074 0.7028 1.9737
40% 1.0261 0.5144 0.8599 0.8027 2.2846
60% 1.2355 0.5974 0.8029 0.9550 3.0470
80% 1.3087 0.5982 0.8022 1.0155 2.0965

100% 1.2517 0.6479 0.7628 0.9774 3.3292

Figure 7 gives the comparisons between the identified dynamic loads and the ground
truth values under 0% and 40% noise strengths for 0.5 s (from 1.5 s to 2 s). Since the noise
strengths are different, the ground truth values in the two sub-figures are different. It can
be seen from Table 4 and Figure 7 that the proposed approach can accurately identify the
dynamic loads when the noise strengths are low. When the noises are strong, the proposed
approach can estimate a reasonable identification results, e.g., R = 0.7628 when 100% noise
is added. The accuracy of the results in Table 4 would show the potential application of the
proposed approach in real aircraft fault diagnoses.
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Figure 7. Comparisons between the identified random loads and the ground truths under different
noise strengths. (a) Comparisons with respect to the ground truths (blue) at noise strength of 0%
for the proposed method (red). (b) Comparisons with respect to the ground truths (blue) at noise
strength of 40% for the proposed method (red).

Experiment 2. Different time windows of input signals.
Recall that the load signals and measurements signals are all captured at 2048 Hz.

For the proposed method, measurements from a N = 256 time window are inputted to
the network, which would correspond to 0.125 seconds. In this experiment, we verify
the performances of the proposed approach under different input time windows, ranging
from N = 64 to N = 384. Table 5 gives the quantitative results on different metrics under
the noise strengths of 0%, 40%, and 100%, representing three cases of no noise, medium
strength of noise, and high strength of noise.

Table 5. Quantitative analysis on different time windows as inputs.

Noise Strength N RMSE ↓ RE ↓ R ↑ MAE ↓ MAPE ↓

0%

64 1.2266 0.6352 0.7739 0.9422 2.6046
128 0.9709 0.5028 0.8647 0.7573 2.9802
256 0.7517 0.3867 0.9232 0.5939 2.4077
384 0.7599 0.3918 0.9202 0.5954 2.4893

40%

64 1.3207 0.6736 0.7412 1.0090 2.6030
128 1.2408 0.6334 0.7745 0.9623 2.8295
256 1.0261 0.5144 0.8599 0.8027 2.2846
384 1.0295 0.5160 0.8571 0.8013 2.8821

100%

64 1.4945 0.7570 0.6557 1.1597 3.6410
128 1.4390 0.7335 0.6859 1.1182 3.4713
256 1.2517 0.6479 0.7628 0.9774 3.3292
384 1.2838 0.6698 0.7503 1.0014 3.4256

It can be seen from Table 5 that, the size of time window is important to the perfor-
mances of the algorithm. A larger input time window, which contains more temporal
information for the responses, would improve the performances for load identification.
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However, when the time window is larger than 256, the improvements would be limited.
Therefore, in the other experiments, we choose N = 256 as the network input. The results
of the experiment would show that, for the proposed algorithm and the experimental setup
in the paper, information from an input time window of 0.125 second would be enough for
estimating the load for one time stamp.

Experiment 3. Quantitative comparisons of different approaches.
In this experiment, we quantitatively compare the proposed approach with other

methods. We choose conventional load identification method and a data driven method for
the comparisons.

For the conventional methods, we adopt the TSVD based and Tikhonov regularization
approaches. The two methods are both regularization based methods. The TSVD method
would truncate small singular values in the transfer function matrix, avoiding disturbance
terms generated from small singular values. The Tikhonov regularization method regards
the load identification problem as a minimization problem with a residual term and a
weighted L2-norm regularization term, which can be explicitly solved. The regularization
parameters for both the two approaches are obtained from the GCV method [41]. The two
methods are implemented by Matlab.

For the data driven method, the TDNN [26] and a wavelet-LSTM [28] based method
are adopted. The TDNN would take the response signals of six measurement points in a
time window [t, t + N∆t] as the input. The data is processed by a MLP with one hidden
layer. The output would be the dynamic load at time t. The TDNN is applied for dynamic
load identification for aircraft vertical tail model [26]. In [26], a 3-layer NN is designed
with the input of time window of [t, t + 50∆t], the hidden layer includes 64 neurons. For a
reasonable comparison, N is set to be 256, which is the same as that of the proposed method.
The learning rate (1.0× 10−4) and the number of epochs (10) are also the same with those of
the proposed method. The TDNN is implemented by Pytorch. For the wavelet-LSTM [28],
the input of the network and the output is the eighth-order Meyer wavelet of the signals.
The network is with 2 LSTM layer with 128 neurons and 1 FC layer.

Table 6 gives the quantitative comparisons among the four methods. It can be seen
that, our methods would outperform in most of the metrics. A higher correlation coefficient
(R) from the propose method shows that a more consistent identified load with the ground
truths. From the comparisons with the TDNN method, it can be seen that the designed
network architecture with small but deep convolutional kernel and attention modules in
the paper would make more use and fuse better the information of the multiple channel
inputs. The proposed method can also outperform LSTM based method. In the meantime,
our method avoids the explicit estimation of transferring function and manually tuning
of the regularization parameters in the two traditional methods, but resulting in a better
identification result. Figure 8 gives the comparisons for different methods with respect to
the ground truth values under noise strengths of 100% for 0.5 s (from 1.5 s to 2 s). In all
sub-figures of Figure 8, the blue curves are the ground truth values for the random loads,
where the identified loads using the TSVD method, those of the Tikhonov method, those
of the TDNN method and those of the proposed methods, are shown in magenta, green,
yellow, and red, respectively. Figure 8 shows visually that the identified load from the
propose method is more consistent with the ground truths, which would be useful for
identification problems in real situations.
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Table 6. Quantitative comparisons on different methods.

Noise Strength Method RMSE ↓ RE ↓ R ↑ MAE ↓ MAPE ↓

0%

TSVD 1.9392 1.0088 0.6385 1.5373 5.2440
Tikhonov 1.6975 0.8832 0.6436 1.3345 4.1897

TDNN 1.5566 0.8007 0.6547 1.2264 2.5463
wavelet-LSTM 0.8643 0.4476 0.8967 0.6867 2.4251

ours 0.7517 0.3867 0.9232 0.5939 2.4077

40%

TSVD 2.4233 1.2330 0.4788 1.9186 7.4397
Tikhonov 2.4487 1.2458 0.4695 1.9434 7.0369

TDNN 1.7796 0.8922 0.4880 1.3969 2.1664
wavelet-LSTM 1.1061 0.5647 0.8301 0.8790 2.2342

ours 1.0261 0.5144 0.8599 0.8027 2.2846

100%

TSVD 2.7951 1.4172 0.3582 2.2450 9.1424
Tikhonov 2.6019 1.3230 0.3585 2.0703 8.4509

TDNN 1.8333 0.9495 0.3233 1.4649 2.5837
wavelet-LSTM 1.4504 0.7393 0.7211 1.1689 4.0700

ours 1.2517 0.6479 0.7628 0.9774 3.3292

1.5 1.55 1.6 1.65 1.7 1.75 1.8 1.85 1.9 1.95 2

Time (s)

-8

-6

-4

-2

0

2

4

6

8

Im
p
ac

t 
L

o
ad

 (
N

)

Ground Truth
TSVD

(a)

1.5 1.55 1.6 1.65 1.7 1.75 1.8 1.85 1.9 1.95 2

Time (s)

-8

-6

-4

-2

0

2

4

6

8

Im
p
ac

t 
L

o
ad

 (
N

)

Ground Truth
Tikhonov

(b)

1.5 1.55 1.6 1.65 1.7 1.75 1.8 1.85 1.9 1.95 2

Time (s)

-8

-6

-4

-2

0

2

4

6

8

Im
p
ac

t 
L

o
ad

 (
N

)

Ground Truth
TDNN

(c)

1.5 1.55 1.6 1.65 1.7 1.75 1.8 1.85 1.9 1.95 2

Time (s)

-8

-6

-4

-2

0

2

4

6

8

Im
p
ac

t 
L

o
ad

 (
N

)

Ground Truth
Ours

(d)

Figure 8. The identified dynamic loads and the ground truth values for different input time windows.
Four different time windows are utilized in this experiment. The noise strength is 100% in this ex-
ample. (a) Comparisons of the estimated loads using TSVD method (magenta) with respect to the
ground truths (blue). (b) Comparisons of the estimated loads using Tikhonov method (green) with
respect to the ground truths (blue). (c) Comparisons of the estimated loads using TDNN method
(yellow) with respect to the ground truths (blue). (d) Comparisons of the estimated loads using the
proposed method (red) with respect to the ground truths (blue).

Experiment 4. Further MISO and MIMO identification performance verification.
In this experiment, we plan to further show the flexibility of the proposed method in

terms of dimensions of inputs and outputs. First, by changing the dimensions of input,
the proposed method can be used for different MISO configurations. To verify this, we use
the 0% noise data for experiment. Table 7 shows the quantitative evaluation results.
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Table 7. Quantitative comparisons on different numbers of input channels. By changing the dimen-
sion of the inputs of the network, the proposed method can fit different MISO configuration.

Noise Strength Channel Number RMSE ↓ RE ↓ R ↑ MAE ↓ MAPE ↓

0%

1 1.5033 0.7733 0.6450 1.1685 3.7730
2 1.5052 0.7743 0.6447 1.1684 3.8007
3 1.2481 0.6420 0.7796 0.9814 3.6928
4 1.1995 0.6171 0.8001 0.9293 3.4354
5 0.7719 0.3971 0.9187 0.6116 2.3188
6 0.7517 0.3867 0.9232 0.5939 2.4077

From Table 7, it can be seen that the increase of input channels can improve the perfor-
mances, since more information is provide. Moreover, the designed convolutional modules
and attention modules in the proposed network can learns the additional information from
extra input channels, resulting in an increase of quantitative metrics.

By comparing the first row of Table 7 with the performance of conventional methods,
i.e., the first and second rows of Table 6, it can be seen that the proposed network with
one-channel input would perform similar with the conventional methods. However,
the explicitly estimation of transfer function matrix can be avoided in our method.

Second, by changing the dimensions of the network output, the proposed method
can be used for MIMO load identification. To verify the flexibility, the six accelerometers’
signals are used for multiple inputs and the load of both Exciter A and B are estimated.
Three sets of data are utilized for evaluation, in which the ratios between the amplitude
of Exciter A and that of B are 60%, 80%, and 100%, respectively. Table 8 presents the
quantitative analysis results in this experiment. By comparing results in Table 8 with those
in Table 4, a performance drop is noticed in estimation of load from Exciter A.

The results in this experiment showed that the proposed method would have the flexi-
bility to fit different configuration of SISO, MISO and MIMO load identification problems.
Once again, the explicit modeling of the transferring function from the input to the output
can be avoided, while a reasonable identification results can be obtained, which would be
meaningful in real-situation applications.

Table 8. Quantitative analysis on the MIMO identification performances. By changing the output
dimensions in the network, the load of Exciter A and B can be simultaneously estimated.

Amplitude Ratio Exciter RMSE ↓ RE ↓ R ↑ MAE ↓ MAPE ↓

60% A 1.2112 0.5857 0.8122 0.9411 2.9255
B 1.2135 0.7742 0.6402 0.9595 3.6395

80% A 1.3496 0.6168 0.7873 1.0493 2.1058
B 1.4671 0.7292 0.6844 1.1695 6.3053

100% A 1.3031 0.6745 0.7382 1.0134 3.1291
B 1.7538 0.7199 0.6953 1.9758 2.8092

Experiment 5. Experiments on additional sensor measurement noise.
In addition to the interference from another load, another potential factor that might

affect the performance of the algorithm would be the measurement noise from the ac-
celerometers. It should be noted that the data used in all experiments in the paper are from
real sensors, therefore, there are already measurement noises in the accelerometers output.
The goal of this experiment is to further analyze the algorithm performance under sensor
measurement noise.

The data when only Exciter A is working are used for evaluation to avoid other
interferences. A time series Gaussian noise with the mean value of 0 to is added to each of
the accelerometer measurements. The standard deviation is set to be p% of the amplitude
of the accelerometer measurement. In the experiment, p% varies from 0% to 10%. Table 9
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show the performances of the proposed method on different additional sensor noises.
The quantitative results in Table 9 shows that the performances of the algorithm would
decrease with the increase of the additional sensor noise.

Table 9. Quantitative analysis on different strengths of additional sensor noises.

Sensor Noise Strength RMSE ↓ RE ↓ R ↑ MAE ↓ MAPE ↓
0% 0.7517 0.3867 0.9232 0.5939 2.4077
2% 0.9506 0.4890 0.8742 0.7434 3.0471
4% 1.1763 0.6051 0.8000 0.9099 3.4878
6% 1.3305 0.6844 0.7356 1.0447 3.4711
8% 1.5692 0.8072 0.6153 1.2275 3.6680

10% 1.5608 0.8029 0.6070 1.2234 4.1296

To further the evaluate the performances of the proposed method under sensor noise,
the above metrics are compared with the conventional methods, namely, the TSVD method
and Tikhonov regularization method. Table 10 shows the quantitative comparison. It can
be seen that the drop rate in metric R is larger for our method than for the conventional
methods. The proposed method could outperform at a low noise strength. It should be
noted that the main motivation of the proposed method is not to suppress the sensor noise.
A further design of the network and fine-tuning of the parameters would be useful for a
better performance under high sensor noise.

Table 10. Quantitative comparisons on different strengths of additional sensor noises.

Sensor Noise Strength Method RMSE ↓ RE ↓ R ↑ MAE ↓ MAPE ↓

0%
TSVD 1.5094 0.7853 0.6192 1.1615 2.9040

Tikhonov 1.5448 0.8037 0.6223 1.2041 3.4852
ours 0.7517 0.3867 0.9232 0.5939 2.4077

6%
TSVD 1.5730 0.8183 0.5749 1.2047 3.0625

Tikhonov 1.5920 0.8282 0.6050 1.2413 3.6896
ours 1.3305 0.6844 0.7356 1.0447 3.4711

10%
TSVD 1.5960 0.8303 0.5575 1.2265 2.9476

Tikhonov 1.7099 0.8896 0.5658 1.3276 4.1587
ours 1.5608 0.8029 0.6070 1.2234 4.1296

Experiment 6. Sensibility experiment on different sensor positions.
As the responses of the load would differ at different positions on the aircraft struc-

ture, the performance of the proposed method may be affected by the positions of the
sensors. In this experiment, our goal is to test the potential sensibility of the algorithm in
different sensor positions. To avoid other potential interferences, only one exciter is used
in the experiment. Figure 9 shows the sensor positions in symmetrical and asymmetrical
distributions in the experiment.

Table 11 shows the comparisons of the algorithm performance with inputs from
different positions of accelerometers. It can be seen that the performance is different.
The case of symmetrical distribution would outperform. From the comparisons, it can be
seen that the proposed algorithm is sensitive to the sensor position. Since the complexity of
the transfer functions for different positions on the aircraft model is different, the accuracy
of the implicit estimation from the neural networks of such “transfer functions” would
be different given the same amount of input signals. The differences would make the
sensibility of the proposed method.
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(a) (b)

Figure 9. Symmetrically and asymmetrically distributed accelerometers in the experiment. In to-
tal, 4 accelerometers are used. To avoid other interferences, only 1 exciter is used in exepriment.
(a) Symmetrically distributed 4 accelerometers and 1 exciter on the aircraft model. (b) Asymmetrically
distributed 4 accelerometers and one exciter on the aircraft model.

Table 11. Quantitative comparisons on different distribution of sensors.

Accelerometers Distribution RMSE ↓ RE ↓ R ↑ MAE ↓ MAPE ↓
Symmetrical 1.1995 0.6171 0.8001 0.9293 3.4354

Asymmetrical 2.0609 0.7090 0.7079 1.6535 2.7237

3.4. Ablation Study

We perform ablations on the proposed approach to determine the quantitative con-
tribution for load identification of the feature weighting mechanism. The ablations are
performed as follows. For the case of “no-att” (no-attention), no attention module would be
used in the network, while the dimensions of input, convolution modules, prediction mod-
ules would remain. The ablation is performed on the data with 0%, 40%, and 100% noise
strength, representing low, mid, and high levels of noises. Table 12 shows the quantitative
comparisons on the metrics.

Table 12. Ablations on different noise strengths.

Noise Strength Method RMSE ↓ RE ↓ R ↑ MAE ↓ MAPE ↓

0% no-att 0.7827 0.4026 0.9161 0.6222 2.5564
ours 0.7517 0.3867 0.9232 0.5939 2.4077

40% no-att 1.0660 0.5344 0.8531 0.8384 2.2758
ours 1.0261 0.5144 0.8599 0.8027 2.2846

100% no-att 1.3040 0.6750 0.7380 1.0202 2.8646
ours 1.2517 0.6479 0.7628 0.9774 3.3292

From Table 12, it can be seen that, with the designed feature weighting mechanism,
the performance on all metrics would be better than those of the “no-attention” situation.
Additionally, the improvement of the metrics would be larger when the noise strengths are
larger. The learned attention would help to increase the contribution of more important
learned high level features. As for the time for training and testing, for the case of “no-
attention”, the time for training is 190 s, and the testing would cost 10 s. For the proposed
approach, the time for training is 260 s, and the testing time is 20 s.
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4. Conclusions

In this paper, we have presented a novel attention based 1D-CNN model to identify
the dynamic loads for aircraft models. As a data-driven approach, the proposed model
would avoid the accurate structure modeling. The proposed approach takes advantage of
the 1D-CNN to extract temporal features. The learned features are then weighted using
learned attentions. The main limitations for the proposed approach is that response data of
a certain period of time are needed for model training. In the future, we plan to further
analyze the sensibility of sensor positions, while suppressing the potential high sensor
measurement noise. A test of the proposed model on real civil aircrafts, while performing a
further exploration on the attention mechanism would be other future directions.
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Abbreviations
The following abbreviations are used in this manuscript:

GCV general cross-validation
TSVD truncated singular value decomposition
NN neural network
LSTM long short term memory
MLP multilayer perceptron
CNN conventional neural network
TDNN time delay neural network
1D-CNN one-dimensional convolution neural network
BN batch normalization
GELU Gaussian error linear unit
ReLU rectified linear unit
FC fully connected
MSE mean square error
RMSE root of mean square error
RE relative error
MAE mean absolute error
MAPE mean absolute percentage error
SISO single input single out
MISO multiple inputs single output
MIMO multiple inputs multiple outputs
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