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Abstract: The exhaust gas temperature (EGT) baseline of an aeroengine is key to accurately analyzing
engine health, formulating maintenance decisions and ensuring flight safety. However, due to the
complex performance characteristics of aeroengine and the constraints of many external factors, it
is difficult to obtain accurate non-linear features between various operating factors and EGT. In
order to diagnose and forecast aeroengine performance quickly and accurately, four data-driven
baseline prediction frameworks for EGT are proposed. These baseline frameworks took engine
operating conditions and operating state control parameters as input variables and EGT as predicted
output variables. The original data were collected from CFM56-5B engine ACARS flight data. Four
typical machine learning methods, including Generalized Regression Neural Network (GRNN),
Radial Basis Neural Network (RBF), Support Vector Regression (SVR) and Random Forest (RF) are
trained to develop the models. Four aeroengine EGT baseline models were validated by comparing
the after-flight data of another engine. The results show that the developed GRNN models have
the best accuracy and computational efficiency compared with other models, and their RE and
CPU calculation time on the verification set are 1.132 × 10−3 and 3.512 × 10−3 s, respectively. The
developed baseline prediction frameworks can meet the needs of practical engineering applications
for airlines. The methodologies developed can be employed by airlines to predict the EGT baseline
for the purpose of engine performance monitoring and health management.

Keywords: aeroengine; exhaust gas temperature; baseline modeling; machine learning

1. Introduction

The aeroengine requires safe and reliable operation during the service period. How-
ever, as a complex aerodynamic system, aeroengine performance degradation will in-
evitably occur if it works under harsh conditions of high temperature, high pressure and
high speed for a long time [1]. At the same time, rapid changes in aeroengine operating
conditions accelerate the degradation process and even the risk of fault and invalidity [2].
At present, researchers mainly monitor, track and control the aeroengine status by collecting
airborne sensor data of the aeroengine and analyze the degree of performance degradation
for fault diagnosis to help formulate maintenance plans and improve flight safety [3,4]. The
core content of the aeroengine gas path performance fault diagnosis is used to judge the
performance degradation or fault condition of engine gas path components (compressor,
turbine, etc.) or the overall engine through the deviation between the actual value of engine
state parameters and the standard value under the healthy state [5]. The state parameters
are the parameters used to characterize the engine performance, while the EGT of the
engine is a key indicator to reflect the overall performance of the engine, and it is the key
index of engine maintenance for airlines. The control parameters are relevant parameters
that affect the engine state parameters [6]. The baseline of the aeroengine is characterized
as a nonlinear functional relationship between the state parameters and control parameters
of the same engine fleet and model in a healthy, steady state. The deviation of the engine
EGT depends on the accuracy of the actual measurements and the engine EGT baseline
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model. Accurate prediction of engine EGT is essential to maintain engine operation, and an
accurate engine EGT baseline model is the basis of engine gas path performance monitoring
and fault diagnosis. Therefore, accurate and reliable engine EGT baseline modeling method
is required [7].

Baseline modeling of gas path state parameters of the aeroengine is mainly divided
into two methods: model-based modeling and data-driven modeling. The physical model-
based method builds a high-precision mechanical model based on aero-thermodynamic
theory and engine operating characteristics without historical experience. Haglind and
Elmegaard [8] developed two models for predicting engine part–load performance, which
can well predict exhaust temperatures. Song et al. [9]. developed an engine performance
prediction model and verified the accuracy of the model in predicting engine gas path
state parameters. Sangjo et al. [10]. proposed a modeling method in engine transient mode
for the prediction of engine gas path state parameters. However, these methods require a
complete engine component characteristic map, and complex modeling processes limit the
computational performance and applicability [11].

Data-driven methods do not require complex theory models but make full use of expe-
rience and knowledge in relevant fields to build state parameters and control parameters-
related models based on actual measured data. Data-driven methods need to extract
features from non-linear, high-dimensional sample data firstly. However, in practice,
engine performance is affected by many parameters, which present complex non-linear
relationships. Establishing an engine baseline model is a typical regression prediction
problem which extracts non-linear characteristics from high-dimensional data. In recent
years, with the development of machine learning and the progress of sensor technology,
the data-driven baseline prediction of engine state parameters has attracted wide atten-
tion from academia and industry [12]. Artificial neural network (ANN), as a powerful
proxy model, has been widely used in engine state parameter baseline prediction [13].
Nikpey et al. [14,15] developed an ANN model for micro-engines that can predict engine
state parameters with high accuracy. Rua et al. [16] developed a state parameter prediction
model for an external combustion engine with ANN for thermal diagnosis of the engine.
Yildirim et al. [17] used polynomial regression to determine the input parameters of the
model and used them as ANN inputs to establish the baseline model of engine state pa-
rameters. Yu Y et al. [18] established the aeroengine EGT baseline model by combining the
kernel principal component analysis (KPCA) with the deep trust network (DBN). Omer
Osman Dursun et al. [19] predicted EGT of the conceptual turboprop engine (C-TPE) by
using artificial neural networks (ANN) and short and long-term memory (LSTM) methods.
Although the neural network has a strong nonlinear fitting ability, it is prone to prob-
lems of divergence and low accuracy when the training sample set is small. In addition,
other machine learning algorithms, such as support vector regression (SVR) [20], extreme
learning machine [21,22], regression tree [23], and multivariate linear regression [24,25],
have received extensive attention in the data-driven field. However, any machine learning
algorithm has its limitations, and no algorithm can be perfectly applied to all tasks. Due to
the diversity of engine flight data, on which the machine learning model has the highest
prediction accuracy, the best calculation efficiency and strong applicability still need to be
analyzed in detail.

Accurate monitoring and prediction of aeroengine performance is the core content of
the aeroengine health management system. Aeroengine EGT is the key index for airlines
to maintain engines. In order to obtain an accurate and reliable engine EGT baseline
model, four aeroengine EGT baseline prediction frameworks based on machine learning
are developed in this paper. Due to intense varying operating conditions of the aeroengine,
noise exists in the data collected by sensors. Previous studies rarely considered the impact
of measurement noise on baseline prediction, which may affect the accuracy of the baseline
model. In order to eliminate the effect of noise on the accuracy of the baseline model
as much as possible, the unscented Kalman filter (UKF) is used for data noise reduction.
The original data was pre-processed, the correlation between each variable and EGT was
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analyzed, the engine EGTOEM value in ACARS flight data was taken as the target output
and the extracted data features were input into the baseline models for forecasting. Four
different machine learning algorithms were used to develop the engine baseline model in
this paper, including the Generalized Regression Neural Network (GRNN), Radial Basis
Function Neural Network (RBF), Support Vector Regression (SVR) and Random Forest (RF).
At the same time, the performance of the four machine learning models was evaluated
from the three aspects of training accuracy, prediction stability and calculation time. In
this paper, the methodologies are designed not only to obtain high-precision EGT baseline
models but also to ensure applicability of prediction frameworks.

2. Methodology

As the core of artificial intelligence, machine learning is specialized in studying how
computers simulate or realize human learning behavior. It mainly uses induction and
synthesis to obtain new knowledge or skills and reorganizes existing knowledge structures
to continuously improve its own performance. Its applications cover all fields. Machine
learning includes basic concepts such as instances, features, labels, feature vectors and
datasets—where an instance is a data sample that describes an item or object, a feature
represents the attribute of an instance, a label represents the required value or category
of an instance, a feature vector represents a collection of all features associated with an
instance and a data set is a collection of instances. The feature vector is usually represented
as follows:

X = (x1, x1, · · · xd)
T (1)

In the formula, X represents the feature vector value, d is the dimension of the eigen-
vector and Y represents the label of the instance. The dataset containing n instances can be
represented as:

D = {(X1,Y1), (X2,Y2), · · · (Xn,Yn)} (2)

Baseline exhaust gas temperature prediction for the aeroengine based on data-driven
methods belongs to supervised learning in machine learning. The task of supervised
learning is to learn a model from the dataset of multiple instances and use the model
to predict the Y of all unknown instances. Supervised learning relies on a large number
of instance datasets and optimizes some super parameters by minimizing the objective
function to obtain the required accuracy in the iterative process. The dataset is usually
divided into the training set and the test set, namely, the training sample and the test
sample. The instance samples in the training set are used to train the model, and the
instance samples in the test set are used to evaluate the generalization performance of the
model. These machine learning methods are briefly described in the following sections.

2.1. The GRNN

The network structure of the generalized regression neural network (GRNN) is shown
in Figure 1. The whole network consists of four layers of neurons: the first layer is the input
layer of the GRNN; the number of neurons in the input layer is the same as the dimension
of the input vector in the learning sample and the second layer is the pattern layer of the
GRNN. The number of neurons in the pattern layer is equal to the number of learning
samples n. Each neuron corresponds to different samples. The third layer is the summation
layer of the GRNN, in which two types of neurons are used for summation. The fourth
layer is the output layer of the GRNN. The number of neurons in the output layer is equal
to the dimension of the output vector in the learning sample [26].

In the research of this paper, the GRNN is based on nonparametric nuclear regression,
takes sample data as the verification condition of the posterior probability and carries out
nonparametric estimation. Finally, the correlation density function between the dependent
variable and independent variable in the GRNN is calculated from training samples, and
the relative independent variable’s return value of the dependent variable is calculated.
The parameter setting of the GRNN is convenient. The whole neural network can adjust
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the performance of the GRNN only by setting the smoothing factor in the GRNN’s core
function [27]. Where the joint probability density function of two random variables x and y
in GRNN is assumed to be f (x,y) and the observed sample of x is X, then the conditional
mean is:

Y = E(y|X) =

∫ + ∞
− ∞ y f (X, y)dy∫ + ∞
− ∞ f (X, y)dy

(3)
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The unknown probability density function f (x,y) can be obtained from the nonpara-
metric estimates of the observed samples of x and y:

f (X, Y) =
1

(2π)(
d + 1

2 )δ(d + 1)n

n

∑
i = 1

exp

[
− (X − Xi)

T(X − Xi)

2δ2

]
exp
[
− (Y − Yi)

2δ2

]
(4)

where Xi and Yi represent the observed values of x and y, respectively. δ represents the
smoothing factor; n represents the number of samples, and d represents the dimension of x.
From Equations (3) and (4):

Y =
∑n

i = 1 Yiexp
[
− (X − Xi)

T(X − Xi)
2δ2

]
∑n

i = 1 exp
[
− (X − Xi)

T(X − Xi)
2δ2

] (5)

Formula (5) represents the output of the network. The errors of the GRNN’s output
data and training samples are mainly determined by the smoothing factor. By adjusting
the smoothing factor, better performance can be obtained without iterative training, such
as the traditional neural network. Compared with the traditional neural network, The
GRNN has higher approximation accuracy and faster training speed and is not prone to
local minimal problems.

2.2. The RBF

Radial Basis Function (RBF) network is a network with a simple structure and fast
convergence speed that can approximate any nonlinear function. The RBF network has a
good performance of uniform approximation to a nonlinear network and has been widely
used in different industries and fields. The network structure of the RBF is shown in
Figure 2, which is a forward network composed of three layers: the first layer is the input
layer, and the number of nodes is equal to the dimension of the input; the second layer is
the hidden layer, and the number of nodes depends on the complexity of the problem; and
the third layer is the output layer, and the number of nodes is equal to the dimension of the
output data [28].
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Assuming that the input is a d-dimensional vector x and the output is a real value, the
RBF network can be expressed as:

ϕ(x) =
q

∑
i = 1

wiρ(x, ci) (6)

where q is the number of hidden layer neurons, ci and wi are the corresponding centers
and weights of the i-th hidden layer neurons, respectively, and ρ is the radial basis function.
In this paper, the basis function is defined as the Gaussian function, so the basis function
can be rewritten as follows:

ρ(x, ci) = e − βi‖x − ci‖2
(7)

The training of the RBF is divided into two steps: the first step is to determine the
central ci of neurons by clustering, and the second step is to determine the parameters wi
and βi. The error between the predicted value and the real value of the output neuron
reaches the minimum [29].

2.3. The SVR

Support Vector Regression (SVR) is a nonparametric machine learning representative
algorithm based on the kernel function, which has strong generalization ability. The
computational objective is to find an optimal segregated hyperplane in the feature space and
to use the minimization of structural risk to find the optimal regression hyperplane in the
high-dimensional feature space. The basic principle is to map the low-dimensional feature
space data to the high-dimensional feature space by introducing a kernel function [30]. The
formula for the SVR is as follows:

f (x) = wTφ(x) + b (8)

where f (x) represents the SVR model; Φ(x) represents the eigenvector after mapping x and
w and b are model parameters. In this study, the kernel function used is the Gaussian
kernel, which can be expressed as follows:

κ
(
xi, xj

)
= exp

(
−
‖xi − xj‖2

2σ2

)
(9)

where κ represents the Gaussian kernel and σ Represents the bandwidth of the Gaussian
kernel. The training of the SVR model can be regarded as optimizing the model parameters
to minimize the structural risk function. Different from the traditional regression model,



Aerospace 2023, 10, 17 6 of 19

SVR assumes that there is a maximum deviation of ε between f (x) and the target value
y—that is, only when the absolute value of the difference between f (x) and y is greater than
ε—as shown in Figure 3.
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The formula can be formalized as follows:

minw,b
1
2
‖w‖2 + C

m

∑
i = 1

lε( f (xi) − yi) (10)

where C is the regularization constant, lε is the insensitive loss function, ε is the tolerable
deviation of SVR between f (x) and target value y and lε can be expressed as the following:

lε(z) =

{
0, i f |z| ≤ ε

|z| − ε, otherwise
(11)

The SVR model fits the known data well and predicts the unknown data accurately, so
it is used to predict the complex aeroengine exhaust gas temperature nonlinear problem.

2.4. The RF

The RF is a supervised machine learning algorithm based on integrated learning.
Integrated learning is a type of learning in which different types of algorithms are used
or the same algorithms can be added multiple times to form stronger prediction models.
The RF combines multiple algorithms of the same type, that is, trees for multiple decisions,
so it is called ‘RF’. The decision tree is the building block of the RF, which is composed
of many decision trees. Just as forests are collections of trees, the RF model predicts the
final result by averaging the predicted results for each decision tree and is also considered
collections of decision tree models. Each tree in the RF trains a subset of data, making the
RF a powerful modeling technology that is much more powerful than a single decision tree.
For regression problems, the final output is the average of all decision tree outputs. The
basic idea behind the RF is to combine multiple decision trees to determine the final output,
rather than relying on individual decision trees. When all decision trees are grouped
in parallel, the error results are low because each decision tree is perfectly trained for a
particular sample data [31].

The process of the RF is shown in Figure 4. In this study, the RF works as follows:

1. Randomly select N subsets of samples from the dataset.
2. Build a decision tree based on these N sample subsets.
3. Select the number of trees you want in the algorithm and repeat steps 1 and 2.
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4. Each tree in the forest predicts the y value (output) and calculates the final value by
averaging the predicted values of all decision trees in the forest.
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Since the RF is insensitive to noise in the training set and uses an unrelated set of
decision trees more robustly than a single set, which can avoid fitting problems, the RF
algorithm has attracted much attention in the field of machine learning. This paper also
chooses the RF as one of the models to build the exhaust gas temperature baseline of
the aeroengine.

3. Prediction Process Framework
3.1. Data Preprocessing

The dataset for the EGT baseline model were derived from the ACARS (Aircraft Ratio
Addressing and Reporting System) message data provided by an airline company. The
aircraft health management and status monitoring based on the ACARS data can improve
the fleet engineering management capability and maintenance efficiency and reduce the
occurrence of aircraft abnormal events; the ACARS data has been widely used in various
fields of civil aviation. However, as a complex thermodynamic system, the aeroengine has
a complex working state and measurement noise of on-board sensors. These factors may
lead to the additional influence of input parameters in the original aeroengine ACARS
message data on model results, so the original data must be preprocessed.

3.1.1. Data Filtering

Airborne sensors are inevitably disturbed by various factors when recording data,
which leads to abnormal data containing noise values. Therefore, noise reduction of the
original aeroengine message data is needed. The Kalman Filter (KF) has been widely used in
engine sensor data noise reduction due to its robustness [32]. In this paper, the Unscented
Kalman Filter (UKF) is used for data denoising. Assuming the measurement noise is
Gaussian white noise, the calculation process is UT transformation near the estimated
point, calculating the mean and variance of the point set, and then performing nonlinear
mapping to obtain the state probability density function [33]. The nonlinear system of UKF
can be represented as follows:{

X(k + 1) = f (x(k), W(k))
Z(k) = H(x(k), V(k))

(12)

where f is the nonlinear state equation function, H is the nonlinear observation equation
function W(k) and V(k) is the Gaussian white noise of the covariance matrix.
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3.1.2. Data Cleaning

Since the airborne sensors may have signal transmission failure, part of the original
aeroengine ACARS message data may be lost, and machine learning algorithms generally
cannot handle the characteristics of missing data, which will lead to data quality degra-
dation. Therefore, the missing values in the message data must be cleared to improve the
data quality. In this paper, we use the Exponentially Weighted Moving Average (EWMA)
to complete the missing values from the existing values. The expression is as follows:

EWMA(t) = aY(t) + (1 − a)EWMA(t − 1), t = 1, 2 · · · n (13)

where EWMA(t) represents the estimated value t, Y(t) represents the actual measured value
at t, n represents the total number of data and a represents the weight coefficient of historical
measured values. The traditional moving average method replaces the missing value by
calculating the arithmetic mean of the data on both sides of the missing value, while EWMA
uses the moving average weighted by exponential decline, and the weight of each value
decreases exponentially over time. The closer the data are, the heavier the weight is and the
farther the data are also given a certain weight [34]. The working conditions and conditions
of the engine will change constantly, so EWMA can better cope with these sudden changes.

3.1.3. Data Scaling

When the magnitude scale of the input parameters varies greatly, the machine learning
algorithm may not perform well. It is usually solved by scaling the data to make them
have the same magnitude scale. In this study, minimum–maximum normalization is used
to scale the data so that the original value is mapped to the set range. The formula is as
follows [35]:

x∗ =
x − xmin

xmax − xmin
(x∗max − x∗min) + x∗min (14)

where xmax and xmin are the maximum and minimum values of the data, and x*max and
x*min are the newly preset maximum and minimum values. In this study, the setting range
of x*max and x*min is [0, 1].

3.1.4. Data Partitioning

In data division, aeroengine ACARS message data are divided into a training set
and a test set. The training set is used to learn and adjust the internal parameters of the
model, and the test set is used to evaluate the performance of the model after learning. Data
partitioning can avoid unnecessary deviation of the learning results of the model and ensure
the universality of the model after learning as much as possible. In this study, 2170 data
samples were extracted, and all data samples were preprocessed. Among them, 2000 data
samples formed a training set, and 170 data samples formed a training set. Theoretically,
the results of the model in the training set and test set should be basically the same.

3.2. Establishment of the Baseline Model

The model of the engine in this paper is the CFM56-5B engine, which is a two-axis
turbofan engine with the large bypass. There are five gas path rotating parts: fan, low-
pressure compressor, high-pressure compressor, high-pressure turbine and low-pressure
turbine. The aeroengine ACARS message data usually only include the deviation value
between the measured EGT and the EGT provided by the original equipment manufacturer
(OEM). EGT baseline value is obtained from this, and its formula is the following:

EGTOEM = EGTm − ∆EGTOEM (15)

where EGTOEM represents the baseline value of EGT, EGTm represents the measured value
of EGT and ∆EGTOEM indicates the EGT deviation value provided by the OEM.

The engine parameters recorded in ACARS message data include engine oil volume,
EGT, total power, low-pressure speed (N1), high-pressure speed (N2), fuel flow (Wf), flight
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altitude (H), total atmospheric temperature (TAT), flight Mach number (Ma), etc. Engine
EGT is affected by many factors. According to the literature [36,37], the parameters related
to EGT extracted from ACARS data are listed in Table 1, including H, TAT, Ma, N1, N2 and
Wf. Since they are the main parameters that affect the change of EGT, these factors were used
as input parameters of the baseline model, and the EGTOEM was used as the output target of
the model. To clarify the impact of these factors on EGT baseline prediction, we conducted a
correlation analysis on the training dataset according to Equations (16) and (17), as shown
in Figure 5.

cov(X, Y) =
∑n

i = 1
(
Xi − X

)(
Yi − Y

)
n − 1

(16)

ρXY =
cov(X, Y)

σXσY
(17)

where cov(X,Y) is covariance calculation function; X and Y means the data of different
features and n is the sample number. σX is the standard deviation of X, and σY is the
standard deviation of Y.

Table 1. Model input parameters.

Symbol Parameter

H Flight altitude
TAT Total atmospheric temperature
Ma Mach number
N1 Low pressure shaft speed
N2 High pressure shaft speed
Wf Fuel flow
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Figure 6 shows the scatter plot of these six parameter variables relative to EGTOEM; the
rotational speed is dimensionless. It can be seen that these parameters are highly correlated
with EGTOEM, so these parameters are considered to predict EGTOEM. In addition, it can be
seen that most parameters are positively correlated with EGTOEM, and N2 is significantly
positively correlated with EGTOEM. Compared with other parameters, the distribution
of H is not uniform because the flight altitude recorded by ACARS data in cruise state
is relatively stable. Ma is mainly distributed in the high-speed area, which is positively
correlated with EGTOEM. TAT and Wf are more widely distributed, and their effects on
EGTOEM are obviously positively correlated.
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Figure 6. The scatter plot of six parameter variables.

The EGT baseline model can be expressed as follows:
X =

[
H, TAT, Ma, N1, N2, W f

]
Y = EGTOEM

Y = f (X)

(18)

In the formula, function f is used to characterize the nonlinear function between
EGTOEM and the parameters that cause the change of EGT

3.3. Process Framework

The process framework of EGT baseline modeling is shown in Figure 7, which mainly
includes four steps:

Step 1: Obtain the aeroengine ACARS message data. The data in this paper come from
the ACARS cruise message data of the CFM56-5B engine provided by an airline.

Step 2: Preprocessing of the original data. According to the engine type and gas path
performance analysis method studied, the required input parameters are extracted; UKF is
used for data noise reduction, and EWMA is used to complete missing data from existing
data. The minimum–maximum normalization is used to scale the data, and the data are
divided into a training set and a test set.
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Step 3: Model development training. In this study, the GRNN, RBF, SVR and RF are
used as basic machine learning methods, and EGT baseline model was developed using
the training set.

Step 4: Test and evaluate the model. In this link, the data of the test set will be input
into the trained model, and the performance of the model will be evaluated by the error
between the predicted value calculated by the model and the actual value of the test set.
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4. Case Study

The aeroengine message data in this study come from the ACARS cruise message data
of the CFM56-5B engine provided by an airline in 2021, which is based on the health status
or the post flight data of new engines. In this study, 2170 data samples of an aeroengine
were extracted, and all data samples were preprocessed. Among them, 2000 data samples
formed a training set, and 170 data samples formed a training set. Each raw data sample
includes engine operating condition parameters (H, Ma), operating state parameters (N1,
N2, Wf) and total engine exhaust temperature (EGT).

4.1. Training Result Analysis

In the training process, all the super parameters within the model will be continuously
optimized until the training error of the model reaches the minimum to determine the
optimal network structure. The four machine learning methods were developed under the
language environment of MATLAB2020, and their settings are as follows:

1. GRNN. The GRNN follows the deep learning architecture shown in Figure 1. The
epochs and the batch size are set to 50 and 100, respectively.

2. RBF. The RBF follows the deep learning architecture shown in Figure 2. Among them,
the learning rate η is set to 0.3, the number of hidden layer nodes is set to 7 and epochs
and the batch size are set to 50 and 100, respectively.

3. SVR. The regularization parameter C in the SVR is set to 1 × 103, γ is set to 0.1, ε is set
to 1 × 10−3.

4. RF. The maximum depth, number of estimators and random state of the RF are set to
30, 100 and 2, respectively.
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At the same time, the above methods are run on a PC with the AMD Ryzen 9 3900X
CPU and Kingston 3200 MHz 32G memory in subsequent calculations to prevent other
factors from having an additional impact on the performance evaluation of the model.

Figure 8 shows the training results of four machine learning models. From the detailed
comparison in the figures, it can be seen that the training results of each model are basically
consistent with the actual situation, and in most cases, their prediction points are almost
at the accurate location of the 45◦ diagonal straight line in the figure. Prediction points
from the GRNN and SVR are almost perfectly aligned with the 45◦diagonal line, making
it difficult to distinguish them. The prediction accuracy of the RF is slightly lower than
other models. In order to better evaluate the training accuracy of these machine learning
methods, this paper introduces the following equation comparison indicators, which are
widely used to describe the prediction accuracy of data.
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Figure 8. Prediction output of different models based on training data.

Relative error (RE) is calculated as follows:

RE =
yi − y∗i

yi
(19)

where yi and y*
i represent the actual value and predicted value of the i-th data sample,

respectively.
Mean absolute error (MAE) is calculated as follows:

MAE =
1
n

n

∑
i

∣∣∣∣yi − y∗i
yi

∣∣∣∣ (20)

Root mean square error (RMSE) is calculated as follows:

RMSE =

√
1
n

n

∑
i

(
yi − y∗i

)2 (21)

Figure 9 shows the training relative error block plot of each machine learning algorithm
to further compare the training accuracy of each algorithm used. Figure 7 shows that the
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GRNN and SVR have similar and lower relative errors of the training results, which means
that the GRNN and SVR have better error accuracy. In contrast, the relative errors of
training results from the RBF and RF are more widely dispersed in the figure, which
indicates that their performance in predicting engine EGT baseline is inferior to the GRNN
and SVR. Table 2 lists the MAE and RMSE of the training results of the four machine
learning algorithms.
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Table 2. The prediction results under training data.

Methods
GRNN RBF SVR RF

Metrics

MAE 1.092 × 10−3 1.496 × 10−3 1.141 × 10−3 2.261 × 10−3

RMSE 0.739 1.015 0.765 1.435
CPU time/s 4.43 × 10−2 5.25 × 10−2 4.92 × 10−2 7.14 × 10−2

The RE results in Figure 9 are similar to the predictions in Table 2 and Figure 8. The
RE of the RBF and RF is widely distributed between ±0.15% and ±0.23%, while the RE of
the GRNN and SVR can be well limited between ±0.10% and is significantly smaller than
the RE of the RBF and RF. At the same time, it can be seen from Table 2 that the training
results of all models are very accurate. The MAE and RSME of the RBF are 1.496 × 10−3

and 1.015, the MAE and RSME of the SVR are 1.141 × 10−3 and 0.765, the MAE and RSME
of the RF are 2.261 × 10−3 and 1.435, the MAE and RSME of the GRNN are the lowest
and their MAE and RSME are 1.092 × 10−3 and 0.739, which indicates that the relative
accuracy of the GRNN training results can reach 99.89% (calculated in (100%-MAPE)). At
the same time, under the same calculation conditions, 2000 data points are processed, and
the GRNN costs 4.43 × 10−2 s in CPU time, the RBF costs 5.25 × 10−2 s in CPU time, the RF
costs 7.14 × 10−2 s in CPU time, the SVR costs 4.92 × 10−2 s in CPU time. The computing
time of the GRNN is the lowest, indicating the highest computing efficiency. Although the
training accuracy of these four algorithms is different, the actual deviation between them is
very small. The lowest RF model training result accuracy can still reach 99.74%, which is
enough to meet practical engineering applications.

4.2. Test Result Analysis

To further evaluate the prediction stability of the four machine learning algorithms,
Figures 10 and 11 and Table 3 show the comparison of the prediction performance of the
four algorithms in 170 sets of sample data test sets.
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Figure 10. Prediction output of different models based on test data.
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Table 3. The prediction results under test data.

Methods
GRNN RBF SVR RF

Metrics

MAE 1.094 × 10−3 1.513 × 10−3 1.126 × 10−3 2.276 × 10−3

RMSE 0.746 1.019 0.772 1.496
CPU time/s 1.193 × 10−3 5.547 × 10−3 1.977 × 10−3 6.029 × 10−3

Figure 10 shows the test results of four machine learning models. It can be seen from
Figure 10 that the prediction points from the GRNN, RBF and SVR are almost at the exact
position of the 45◦ diagonal line in the figure, and it is difficult to distinguish them. The
prediction points of the RF have slight deviations from the 45◦ diagonal line in the figure.
It can be seen that the GRNN, RBF and SVR have better prediction performances because
their prediction points coincide more perfectly with the 45◦ diagonal line in the figure.
There are slight deviations between the prediction points of the RF and the 45◦ diagonal in
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the figure, which means that its prediction performance is inferior to that of the GRNN,
RBF and SVR.

The prediction results in Figure 11 are similar to those in Table 3 and Figure 10. The
RE of the RBF and RF are widely distributed between ±0.16% and ±0.25%, while the RE of
the GRNN and SVR can be well limited between ±0.12%, which is significantly smaller
than the RE of the RBF and RF. Table 3 shows the performance comparison of prediction
results using 170 data sample points. In the table, the GRNN performs best in the engine
EGT baseline prediction, and its corresponding MAE and RSME are 1.094 × 10−3 and 0.746,
respectively, which indicates that the relative accuracy of the test results of the GRNN can
also reach 99.89%. The MAE and RSME of the RBF are 1.513 × 10−3 and 1.019, respectively,
and the MAE and RSME of the RF are 2.276 × 10−3 and 1.496, respectively. The prediction
performance of the SVR is close to that of the GRNN, and its corresponding MAE and RSME
are 1.126 × 10−3 and 0.772, respectively. At the same time, under the same calculation
conditions, when 170 data points are processed, the RBF costs 5.547 × 10−3 s in CPU time,
the RF costs 6.029 × 10−3 s in CPU time, the SVR costs 1.9776 × 10−3 s in CPU time, while
the GRNN only costs 1.193 × 10−3 s in CPU time, and the calculation time of the GRNN is
the lowest, so the calculation efficiency is the highest. All the prediction error results of the
four algorithms are consistent with the previous training set, and the differences between
these algorithms are actually very small. Even if the RF can also achieve 99.77% of the test
accuracy, all methods can achieve at least 99% of the prediction accuracy, which shows that
these methods can be well used for engine EGT baseline prediction.

4.3. Instance Verification

In order to further verify and compare the generalization ability and applicability
of several algorithm models constructed in this paper, the ACARS flight data of another
engine of the same model are selected as the verification sample, and the number of
samples extracted after data processing is 500. Figure 12 shows the verification results of
four machine learning models. As shown in Figure 12, almost all prediction points from the
GRNN, RBF and SVR are precisely located at the exact position of the 45◦ diagonal line in the
figure, while the prediction points from the RF are slightly different from the 45◦ diagonal
line in the figure, which means that its prediction performance is inferior to that of the
GRNN, RBF and SVR. It can be further seen from Figure 11 what the RE differences of the
four methods are. The convergence range of the GRNN and SVR is ±0.125%, while the RE
of RBF and RF varies greatly between ±0.2% and ±0.25%, which is very consistent with
the results in Figure 11, indicating that the GRNN has better error accuracy.

Table 4 shows the performance comparison of the validation results using 500 data
sample points. The results in Table 4 are consistent with those in Figures 12 and 13. The
GRNN performs best in the engine EGT baseline prediction, and its corresponding MAE
and RSME are 1.132 × 10−3 and 0.768, the MAE and RSME of the RBF are 1.538 × 10−3 and
1.032, respectively; the MAE and RSME of the RF are 2.312 × 10−3 and 1.507, respectively.
The prediction performance of the SVR is close to that of the GRNN, and its corresponding
MAE and RSME are 1.179 × 10−3 and 0.781, respectively. All validation results of the
four algorithms are consistent with those of the previous training set and test set, and
the relative accuracy of the GRNN model validation results can still reach 99.88%. At
the same time, under the same calculation conditions, 500 data points are processed, and
the GRNN costs 3.512 × 10−3 s in CPU time, the RBF costs 16.284 × 10−3 s in CPU time,
the RF costs 17.743 × 10−3 s in CPU time, the SVR costs 5.812 × 10−3 s in CPU time. The
computing time of the GRNN is the lowest, indicating the highest computing efficiency.
From the example verification, it can be seen that the GRNN is superior to the other models
in predicting the engine EGT baseline, with the highest calculation efficiency and higher
prediction accuracy. The difference between these algorithms is actually very small. Even
the RF can achieve 99.76% verification accuracy, and all methods can achieve at least 99%
prediction accuracy, which shows that these methods can be well used for engine EGT
baseline prediction.
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Table 4. The prediction results under verification data.

Methods
GRNN RBF SVR RF

Metrics

MAE 1.132 × 10−3 1.538 × 10−3 1.179 × 10−3 2.312 × 10−3

RMSE 0.768 1.032 0.781 1.507
CPU time/s 3.512 × 10−3 16.284 × 10−3 5.812 × 10−3 17.743 × 10−3
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By comparing the calculation results in Sections 4.1 and 4.2, four typical machine
learning methods can achieve very good consistency for three different data samples. The
GRNN and the SVR have better prediction accuracy, especially in the case study of testing
and verification, and the GRNN uses the least CPU time to process the dataset and has the
highest calculation efficiency. The GRNN is different from the output layer of the RBF in
that it uses nonparametric estimation for subsequent probability processing, which has
stronger advantages in nonlinear mapping ability and learning speed. The GRNN is an
optimal regression, which can converge to more sample aggregation locations, is insensitive
to sample data size, and is better at handling unstable data. The SVR has high classification
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accuracy and strong generalization ability when the sample size is not mass data, but it has
no general criteria for selecting kernel functions for nonlinear problems and is sensitive to
missing data, which may be the reason why its accuracy is slightly lower than the GRNN.
Although the RF can better avoid over fitting, more trees lead to slower computing speed,
so the RF consumed more computing time than other methods. All case studies show that
the GRNN has better prediction accuracy, while the RBF can be ranked third. The difference
between the four methods is very small, and the prediction accuracy of all four algorithms
is very high, above 99%, which is applicable to the prediction of the engine EGT baseline.
In addition, the four typical machine learning methods for prediction purposes can also be
used to predict other engine state parameter baselines in theory.

5. Conclusions

In this paper, CFM56-5B engine ACARS flight data were taken as a dataset, four
data-driven frameworks were developed to predict engine EGT baseline, the relationship
between EGT and other parameters were established. H, AT, Ma, N1, N2 and Wf were
taken as input variables, and EGTOEM were taken as output variables in the prediction
frameworks. Four different machine learning models were used to establish prediction
frameworks, including the GRNN, RBF, SVR and RF. The prediction performance of four
methods were compared and evaluated, and the main conclusions are as follows:

(1) The accuracy of all machine learning models can be higher than 99%, which meets the
requirements of airlines. In particular, the GRNN used the same data to obtain lower
errors than other machine learning models. In the training, testing and verification
of EGT baseline model, the MAE of the GRNN are 1.092 × 10−3, 1.094 × 10−3 and
1.132 × 10−3, respectively.

(2) By comparing the calculation time of each model, it can be found that the GRNN has
the best calculation efficiency. In the training, testing and verification of EGT baseline
model, the GRNN consumed in CPU computing time 4.43 × 10−2 s, 1.193 × 10−3 s
and 3.512 × 10−3 s, respectively.

The methodologies can be employed by airlines to predict EGT baseline for the pur-
pose of engine performance monitoring and health management and help airlines save
maintenance costs. The EGT baseline models developed in this study have high accuracy
and calculation efficiency. The prediction frameworks can effectively provide EGT baseline
data, together with historical operating data, to quantify engine performance degradation.
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Nomenclature

EGT Exhaust Gas Temperature KF Kalman Filter
ANN Artificial Neural Network UKF Unscented Kalman Filter
GRNN Generalized Regression EWMA Exponentially Weighted

Neural Network Moving Average
RBF Radial Basis Function Neural Network RE Relative Error
SVR Support Vector Regression MAE Mean Absolute Error
RF Random Forest RMSE Root Mean Square Error
OEM Original Equipment Manufacturer
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