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Abstract: Complex network theory, in conjunction with metrics able to detect causality relationships
from time series, has recently emerged as an effective and intuitive way of studying delay propagation
in air transport. One important step in such analysis is converting the discrete set of landing events
into a time series representing the average delay evolution. Most works have hitherto focused on
fixed-size windows, whose size is defined based on a priori considerations. Here, we show that an
optimal airport-dependent window size, which allows maximising the number of detected causality
relationships, can be calculated. We further show how the macro-scale but not the micro-scale
structure is modified by such a choice and how airport centrality, and hence its importance in the
propagation process, is strongly affected. We finally discuss the implications of these results in terms
of detecting the characteristic time scales of delay propagation.

Keywords: air transport; delay propagation; Granger causality; complex networks

1. Introduction

Air transport is a complex system whose dynamics evolve over multiple temporal
scales. When focusing on operational aspects, the largest time horizon is given by the
daily cycle, with the system resetting every night—as at least most passenger flights stop
operating, new crews start their shift, and (except in the case of extreme events) delays are
absorbed. At the opposite extreme, decisions can be made by multiple actors on very short
time scales; to illustrate, air traffic controllers have to react to potential separation losses
that develop on the scale of a few minutes [1] and that require reaction times of between 2
and 3 s [2].

While those time scales are relatively easy to measure, a relevant open problem is the
description of the one underpinning the propagation of delays (i.e., secondary or knock-on
delays). Delay propagation is the result of processes that exist at different time scales. One
may intuitively think that delays are related to the duration of flights, such that, if a flight a
is delayed at departure and it is to pass the delay to a second flight b, the minimum time
required to see the effect is the actual duration of a. In addition, if delays are measured
at landing, the observed time scale would be the duration of b plus the turn-around time
between a and b. On the other hand, information about delays can be transmitted much
faster; for instance, an airline can delay a flight knowing another one with connecting
passengers is delayed well before the latter has landed, and therefore well before its actual
delay is recorded [3,4]. The existence of upstream delay propagations, in which the delay
of one flight affects the flight prior to, it has also been documented [5]; for instance, if the
destination airport is congested, flights may not be allowed to land and may instead be
retained on the ground at the airport of origin.

The problem of describing the time scale of delay propagation is made even more
complex by the fact that limited options exist for measuring such phenomenon. Two main
alternatives have been extensively studied: the analysis of the local dynamics of individual
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flights and airports [6–8] and the use of large-scale synthetic models [5,8–11]. To the best
of our knowledge, only one research work has tried to explicitly assess the time scale of
network-wide delay propagation from real data [12] by detecting sliding windows for
which a stable correlation is observed between the aggregate delays at two airports and
then extracting the time lag maximising such correlation; the use of a linear correlation
nevertheless introduces some problems, as for instance, it does not discriminate direct
(i.e., true causalities) from indirect (spurious correlations) relationships.

In recent years, a complementary approach has been proposed based on the detection
of instances of delay propagation through causality metrics, such as, e.g., the celebrated
Granger causality test [13,14], and on mapping these instances as links of a complex
network—see for instance, Refs. [15–21]. Even if it comes with its own limitations, the
Granger test presents the advantage of detecting instances of true “predictive causality”
and is thus less affected by the presence of confounding elements—and hence of spurious
correlations. A network representation is also easier to describe, as many techniques are
available to quantify properties of the emerging structure [22,23].

Intuitively, a study similar to that proposed in Ref. [12] could be performed using the
Granger causality test, as this test yields the temporal lag maximising the causal connection
for each analysed pair of time series: a lag that can be interpreted as the time required
for the information describing delays to propagate between the corresponding airports.
This nevertheless comes at a cost: a new time scale has to be defined over which the
causality is tested. More specifically, this test requires as input a time series per airport,
representing its dynamics. In this case, it represents the evolution of average landing
delays; it is thus necessary to define the length of the window in which delays are averaged.
Choosing the best time scale for evaluating the presence of a causality in the Granger sense
is an open problem, known to be highly complex. Most research works have focused
on the case of continuous dynamic processes sampled at a specific resolution—for being
the most common problem found in science and engineering. In this case, increasing the
temporal sampling rate yields improved causality estimations, both in synthetic models [24]
and in empirical studies [25]. This is intuitively to be expected, not only because higher
sampling frequencies yield longer time series (which are easier to analyse), but also because
important dynamic patterns may otherwise be lost. However, increasing the sampling
resolution is not always beneficial, with the detected causality approaching zero almost
linearly as the sampling interval tends to zero [26]. On the other hand, is has been shown
that using too large a sampling interval can result in statistically significant yet spurious
causality relationships [27–31].

The problem becomes even more complex in the analysis of delay propagations, as
the underlying process is a fixed point as opposed to a continuous process. In other words,
even if the propagation of delays could be visualised as a continuous process, we only
observe its result at discrete moments in time, i.e., whenever an aircraft actually lands. This
implies that the sampling frequency cannot be made arbitrarily large. Otherwise, most
samples would correspond to time windows for which no information (i.e., no landing
events) is available [32,33]. On the other hand, safety limitations imply that at best only
tens of landing events are available per hour. Ensuring a large number of events in each
time window would therefore require impractically large windows.

In this paper, we explore how the Granger causality test can be used to describe the
characteristic time scale of delay propagation processes. We show how results can be
framed within three complementary viewpoints: a methodological one, an operational
one and a systemic or network one. We explore this issue by constructing and analysing a
minimal synthetic model of delay events, simulating how delays can propagate between
two airports and how such propagation can be detected by the Granger causality test.
We also extend the scope to a whole airport network by evaluating such causality on all
possible pairs of airports, representing the structure as a complex network. In the latter case,
the concept is tested on real data about operations in 50 large European airports during
September 2019.
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Results indicate that optimising the size of the window used to calculate the Granger
causality for each pair of airports results in a substantial increase in the number of detected
propagation links and, in turn, in different macro-scale (but notably not micro-scale) prop-
agation structures. We further show how the choice of this temporal resolution strongly
affects the ranking of airports in terms of their importance for the propagation of delays.
We finally study how the Granger causality can be used to assess the time scale of delay
propagation and how the chosen window size affects such estimation.

In the remainder of this paper, we first introduce the data (Section 2.1), the Granger
causality test (Section 2.2), and the network reconstruction procedure (Section 2.3). We
then present a minimal model, generating synthetic time series of landing events at two
airports with custom parameters in Section 3. The results for the real data are analysed in
Section 4, organised according to methodological (Section 4.1), operational (Section 4.2),and
network (Section 4.3) viewpoints. We finally discuss the validation of the results in
terms of time series length (Section 5) and draw some methodological and operational
conclusions (Section 6).

2. Methods
2.1. Real Operational Data

Data about air transport operations were extracted from the EUROCONTROL’s R&D
Data Archive, a public repository of historical flights made available for research purposes,
and freely accessible at https://www.eurocontrol.int/dashboard/rnd-data-archive (ac-
cessed on 11 February 2022). It includes information about all commercial flights operating
in and over Europe, complete with flight plans, radar data and associated airspace structure.

For this study, we considered the information associated with all flights landing in
the 50 largest airports in Europe ranked according to their number of landing operations
in September 2019. This month was selected for being the one with the largest number of
operations in 2019, i.e., the last year not affected by the COVID-19 pandemic. The full list of
airports, along with information about number of landings and their delays, can be found
in Table A1.

The landing delay of each flight arriving at those 50 airports was estimated as the
difference between the actual (from the ATFM-updated flight plan) and the planned (ac-
cording to the last filed flight plan) landing times. A time series representing the average
landing delay at each airport has then be calculated by averaging the delays of all flights
landing within non-overlapping windows of a given length w. Negative delays, i.e., in-
stances in which the aircraft arrived before the planned times, were not deleted and thus
contribute to the final average delay. Note that other alternatives for calculating delays
can also be considered, e.g., departure delays. We chose arrival delays, first because they
have been the focus of similar studies [15–21] and second, because they directly affect
passengers (i.e., a departure delay that is recovered en-route does not negatively impact
mobility). In addition, note that delays are calculated according to flight plans; longer than
real declared flight times (as commonly used by airlines to reduce the perceived amount of
arrival delays) have no impact on the results.

The Granger causality test requires the time series to be stationary in order to avoid
spurious results, that is, values in these time series should not explicitly depend on time [34].
This is not fulfilled by raw average delay time series, as the probability for an aircraft
arriving late is higher during peak hours. We thus make them stationary by applying a
Z-Score detrend procedure defined as:

D′(d, h) =
D(d, h)− 〈D(·, h)〉

σ[D(·, h)]
, (1)

where D′(d, h) is the normalised delay of day d and for the time window h, D(d, h) is the
original delay, and 〈D(·, h)〉 and σ[D(·, h)] are the mean and standard deviation for the
delays observed in all days of the same week at a window h. Thus, this Z-Score represents
how one average delay deviates from that observed in neighbouring days at the same time,

https://www.eurocontrol.int/dashboard/rnd-data-archive
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that is, how usual or unusual the delay is for that time window. As a consequence, the
resulting time series are stationary, with constant mean and standard deviation. Note that
we normalise the average delays considering the same time period of the 7 days after for
the first week of the month and the 7 days before for the remaining days of the month.

2.2. Delay Propagation Assessment: The Granger Causality

As mentioned before, we used the Granger causality test to detect causality relation-
ships among the delay time series. This test was developed by the economics Nobel Prize
laureate Clive Granger [13], and since then it has been extensively applied to solve problems
in different fields, such as economics [35,36], engineering [37] and neuroscience [38–40].
The test is based on two intuitive concepts: the cause precedes the consequence, and the
consequence is better predicted using the past information of both the cause and the conse-
quence than of the consequence alone. Mathematically, suppose we have two time series A
and B, representing the delays of two airports; also assume they meet some conditions,such
as being stationary and regularly sampled. We can then say that B “Granger-causes” A if:

σ2(A|U−) < σ2(A|U−\B−), (2)

where σ2(A|U−) is the error in forecasting the time series A using all past information
of the universe U, and σ2(A|U−\B−) is the corresponding error in forecasting the time
series A when the past information of B is dismissed. That means that B “Granger-causes”
A if including the past information of B results in a better prediction of A. Note that the
universe U represents all available information, or, in this case, the evolution of delays in all
other airports. For the sake of simplicity, this can nevertheless be avoided by considering
pairwise interactions, i.e., supposing in each test that only airports A and B exist.

The previous definition of the Granger causality test is agnostic with respect to how
the forecast is actually performed, and many alternatives have been proposed in the litera-
ture [41–43]. Here, we followed the initial proposal of Granger and chose an autoregressive-
moving-average (ARMA) model. We fit two models,

At = C · Am
t−1 + εt, (3)

At = C′ · (Am
t−1 ⊕ Bm

t−1) + ε′t, (4)

where m is the model order, ⊕ indicates the concatenation of column vectors, C and C′

represent the model coefficients, and ε and ε′ depict the residuals of the models. Here, m
is also called the lag and indicates the time length used when including past information
about the two systems. To illustrate, Am

t−1 implies that we use information about A from
t−m− 1 to t− 1. Here, we considered 1 ≤ m ≤ 12. For the purpose of determining whether
information about B has a significant impact, we perform an F-test on its coefficients and
obtain a p-value. In other words, the objective is to conclude if the coefficients C′ that are
related with the information of B are significantly different to zero.

It is important to stress that the Granger causality test is very sensitive to missing
values. When examining the time series of delays, it can be noted that they have some
missing values since most airports stop working around midnight and resume their flights
the following morning; therefore, at night, delays are always zero. Note that it is different
from having no delays at those times, as more correctly we have no information about what
delays there may be; thus, those zero values ought to be represented with missing values.
In order to deal with that, we use a weighted variation of the Granger causality test [33],
where the weights are set to zero for missing values in the linear models. This means that
elements containing missing values are discarded, and only correct ones are considered in
the regression and thus in the calculation of the Granger causality test.
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2.3. Network Reconstruction and Analysis

As previously introduced, a natural way of representing the structure created by
delay propagation is provided by functional complex networks, as extensively performed
in neuroscience [44–46] and climate [47–49]. We reconstruct directed and unweighted
networks whose nodes represent the 50 considered airports, and directed links between
pairs of them are added whenever a statistically significant causality is detected between
the corresponding delay time series. Note that the Granger causality test is applied on
the data of every possible pair of airports, thus yielding a set of directed relationships
that are represented as a complex network. Additionally, and in order to obtain reliable
results, such analyses are performed on the series of stationary average delays D′(d, h).
It should be noted that the output of the Granger causality test is a p-value. In order to
compensate for the higher probability of Type I errors as a consequence of the multiple
comparisons to be executed, we perform a Bonferroni correction, i.e., we use an effective
α = 0.01/(50× 49) ≈ 4.08× 10−6.

We then move to studying the obtained networks by calculating and evaluating a set
of topological metrics, i.e., metrics describing some properties of the underlying structure.
These can be organised in two groups: global topological metrics, describing a property of
the overall structure of the network; and centrality metrics, assessing the importance of each
node in the network. Therefore, while the former ones yield a single number per network,
the latter ones yield one value per node, in other words, a probability distribution per
network. For the sake of completeness, a short definition of each metric and its relevance
for the process under study are reported below. The full formal definitions are included in
Tables A2 and A3. Finally, we invite the interested reader to find additional details in any
of the many reviews available on the topic [22,50,51].

• Link density is the fraction of the potential edges in the network that are active, i.e.,
that have passed the statistical significance test.

• Diameter is the greatest distance between any pair of nodes in the network. Note
that such a distance is defined as the number of links in the shortest path connecting
the nodes and not the physical distance between them. Thus, it indicates how many
intervening airports are needed to disseminate the delays throughout the whole
network in the worst possible case.

• Transitivity measures the existence of triangles in the network and represents the
propensity of nodes to form clusters. It is defined as the ratio between the number
of closed triangles and of connected triplets of nodes. A high density of triplets of
airports that are strongly connected (a high transitivity) means that a delay in one of
them is easily propagated to the other airports of the group.

• Assortativity is the propensity of links to connect nodes of similar degrees (i.e., with a
similar number of connections) [52].

• Efficiency measures how easily the network can move information within it and
is defined as the inverse of the harmonic mean of the distances between pairs of
nodes [53,54]. The efficiency of a network thus represents how easily information (here,
delays) can move between two nodes and is inversely proportional to the number of
intervening nodes needed on average to reach the destination of the propagation.

• The information content (IC) metric evaluates the presence of regularities in the
adjacency matrix. It is defined as the quantity of information lost when pairs of nodes
are iteratively merged [55]. Small values of IC indicate complex topological patterns,
while large values correspond to random-like structures.

• Out-degree centrality is the number of edges coming out from a node. It represents
how strongly an airport can influence other.

• In-degree centrality is the number of edges arriving to a node. It represents how
strongly an airport is influenced by its neighbours.

• Betweenness centrality represents the fraction of times a node is included in the
shortest path between two other nodes. Thus, it depicts the amount of influence a
node has over the flow of information (delays) in a graph [56].
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In some instances, the values of the metric alone are insufficient to compare the
topological features of two networks with different characteristics. To illustrate, a network
with more links will have a smaller diameter, not due to a different structure, but only
because of the overall tighter connectivity. To sort this out, a large ensemble of random
networks (1000 unless otherwise specified) is created, each one with the same number of
nodes and edges as the considered network. We then compute the Z-Score of the value m
of the metric as:

mZ−score =
m− µM

σM , (5)

where µM y σM are, respectively, the average and the standard deviation of the metric under
consideration in the random networks. The resulting mZ−score indicates how much the ob-
served metric deviates with respect to what is expected in random equivalent networks [57].

3. Synthetic Model of Delay Propagation

Before delving deeper into the study of real data, we construct and evaluate a synthetic
model of delays to understand the relationship between, on one hand, the size w of the
window used to estimate the Granger causality and, on the other hand, the efficacy of the
causality detection. The approach consists of generating two time series representing the
evolution of average delays at two fictitious airports with similar dynamics. By lagging
the second one a certain number of time periods and applying the Granger causality test
between the original and the lagged series to assess whether a causality is detected, we run
several iterations of the simulation for different window sizes and calculate the fraction of
times we detect a statistically significant causality.

The first step is the creation of time series representing the global evolution of delays,
for which we resort to the well-known Lorenz model [58]:

dx
dt

= σ(y− x), (6)

dy
dt

= x(ρ− z)− y, (7)

dz
dt

= xy− βz, (8)

With the three parameters fixed to σ = 10, β = 8
3 and ρ = 28. It is well-known

that the system exhibits a chaotic behaviour for these three values, and chaotic systems
have a long history for being used as models of complex dynamics, e.g., in economics [59]
or biology [60]. The x variable of the Lorenz system, originally representing the rate of
convection in a two-dimensional fluid layer, is here used to model the evolution of the
average delay observed at an airport through the day, or in other words, the expected delay
of an aircraft landing at time t. The time series of x is smooth, i.e., no sudden jumps occur.
Additionally, it is deterministic but also chaotic; thus, no self-correlations are present. This
last point is of relevance, as the Granger test requires stationary time series; if simpler
functions are used to create such average delay evolution, e.g., a sinusoidal signal, the
resulting time series would have, periodic dynamics that may cause spurious causalities.
Once the time series has been generated, we normalise it in the range [0, 1]. Finally, two
time series are generated from it, respectively, referred to as the master (i.e., the cause) and
the dependent (i.e., the consequence) time series, by lagging the latter a certain number of
time periods representing the time needed for the delay to propagate.

Once the two time series representing the overall evolution of delays have been
created, it is necessary to reconstruct a set of landing events, as these are the only data
available when analysing the real system. These events, for both the master and the
dependent airports, are generated with a time separation between subsequent ones given
by random numbers drawn from a uniform distribution U(0, η). Thus, η defines the
expected separation between consecutive landings and is therefore inversely proportional
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to the amount of traffic. The delay assigned to each landing event is drawn from a second
uniform distribution U[x(t)− 0.1, x(t) + 0.1], where x(t) is the value of the variable x of
the Lorenz model at time t. The result is then two sets of events representing synthetic
delays, each one described by a time stamp and an observed landing delay. Finally, for a
fixed value of w, we extract the average delay observed in non-overlapping windows of
length w, both for the events of the master and the dependent airports. These averages are
merged in two time series, which can then be analysed using the Granger causality test.
Note that the detrend step is not necessary here, as the use of a chaotic system ensures the
stationarity of the time series. An example of the generation of one average delay time
series can be seen in Figure 1, top panels. From left to right, the three panels depict the
generation of the Lorentz series representing the global evolution of delays, the generation
of the landing events and the calculation of the average delays.

This model allows us to evaluate the behaviour of the Granger causality under well-
controlled conditions. First of all, a causality is present between both time series by
construction, as landing events in both airports are generated from time-shifted time series;
it is thus possible to evaluate how sensitive the test actually is. Second, it is possible to fully
control the parameters of the model and thus test the hypothesis that too small and too
large values of w can result in an underestimation of the causality.

We proceed with the analysis of the model by varying the two main parameters: the
average time between landing events and the window size w. For each combination of
parameters, 1000 repetitions are generated, and the fraction of times that the p-value is
significant is calculated.

The left middle panel of Figure 1 reports the proportion of significant tests for different
window lengths w and for different event separation times η. All plots follow a similar
trend, where for very low values of the window length (between zero and one), most of the
tests are not statistically significant, as not enough landing events are available to obtain
meaningful average values. The fraction then increases until it reaches a maximum and
finally decreases for large window lengths. This is different than that observed for small
w, which is potentially due to the fact that too long a window results in the average of too
much information, thus losing the high-frequency dynamics in both airports—or, in other
words, that just the global average landing delay is obtained. The right middle panel of
Figure 1 additionally reports a scatter plot of the optimal window size as a function of the
separation time η. In synthesis, the model confirms that an ideal (optimal) window size
exists, for which the maximum number of causality relationships are detected; deviating
from such an optimum results in an underestimation of the propagation.

We then change the simulation, specifically the synthesis of the landing events. The
time separation between consecutive landings is now given by random numbers drawn
from a distribution [U(0, η)]e, e being an asymmetry exponent that stretches the positive
tail of the distribution. In other words, while keeping the average constant, increasing
this exponent results in clusters of landing events, with some of them happening after
long periods of inactivity. Thus, this exponent is used to break the regularity of landing
events and to simulate a more realistic burst distribution. We fix the average time between
landing events η = 1.4 and vary the window size w and the asymmetry exponent e; similar
to before, we execute 1000 iterations for each pair of parameter values and record the
proportion of times the p-value is significant.

The left bottom panel of Figure 1 depicts how the fraction of significant tests varies
when considering different window sizes and asymmetry exponents. In order to com-
pensate for the fluctuations due to the stochastic nature of the analysis, the dotted lines
represent second order polynomial fits. The right bottom panel further depicts a scatter
plot of the best window size as a function of the exponent e. A clear linear relation can
be observed, where for larger asymmetry exponents, namely for less uniform separation
times, the best window size grows; in other words, a larger window size is needed to detect
causality relationships in order to cope with the periods of less activity.
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Time series synthesis

Results, traffic volume

Results, traffic regularity

Figure 1. Analysis of the synthetic model—see Section 3 for details. (Top panels) Example of the
synthesis of one time series, with the calculation of the global delay trend using a Lorenz system
(top left panel); synthesis of individual landing events (top central panel); and reconstruction of the
evolution of the average delay (top right panel); (Middle panels) Analysis of the Granger causality
test as a function of the traffic volume: evolution of the fraction of significant tests as a function of the
window size w and of the event separation time η; (left middle panel); and size of the best window
size, i.e., the one maximising the fraction of significant tests for different values of η (right middle
panel); (Bottom panels) Analysis of the Granger causality test as a function of the traffic regularity:
evolution of the fraction of significant tests as a function of w and of the asymmetry exponent e
(left bottom panel); and value of w maximising that fraction as a function of e, as obtained from the
quadratic fits (right bottom panel). In the middle and bottom panels, coloured points in the right
panels correspond to the line of the same colour in the left ones.

In synthesis, results from the model confirm that the ideal window size to detect delay
propagation is a function of the number of landing events; in other words, the higher the
frequency with which we obtain information from the system, the higher the potential
temporal resolution of the results. This optimum is a balance between two forces: the need
for analysing large number of events to obtain a reliable average delay estimation, on one
hand, and the risk of considering too long time windows, with the consequent smoothing
of the fast part of the dynamics, on the other. Still, the estimation of such window length
is made more complex by other factors, such as, for instance, the degree of regularity of
landing events.

4. Analysis of Real Delay Propagation Patterns

When moving to the analysis of real delay data, the approach proposed here can be
applied at three different levels. Firstly, there is a methodological point of view, i.e., one
may simply be interested in optimising the analysis of delay propagation patterns and
hence derive the best window size for detecting causality relationships. Secondly, such
an optimal window size, along with the optimal lag as yielded by the Granger causality
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test, can be used to derive the time needed for delays to propagate between two airports.
Finally, the last step is to move to a network level and see whether and how changing the
window size modifies the resulting delay propagation topology. These three aspects will be
tackled in this section.

4.1. Methodological Viewpoint: Best Time Scale for Detecting Delay Propagation

The identification of the best time scale for detecting delay propagation in real data is
not dissimilar from what is presented in Figure 1; specifically, for a pair of target airports,
one needs to reconstruct the corresponding delay time series for different values of w; to
apply the Granger causality test, thus obtaining a p-value as a function of w and finally
to select the w minimising such a p-value. Note that a smaller p-value implies a more
statistically significant relationship, but also that such relationship manifests clearer in
the data.

The top left panel of Figure 2 shows the window size w minimising the p-value, for
those pairs of airports that display a statistically significant relationship (i.e., p-value < 0.01,
with a Bonferroni correction for multiple testing). No clear pattern can be discerned, with
the optimal w varying from 30 min to up to two hour (see top right panel for a corresponding
histogram). Specifically, no clear relationship seems to exist with the size of the airport (see
middle right panel of Figure 2 representing a box plot of all ws for each airport and with
airports sorted by decreasing number of operations and Figure A1, reporting a scatter plot
of the optimal w as a function of the number of operations of airports).

Then, what are the elements that drive the size of such an optimal window? In
order to answer this question, we extracted a set of time series describing the two most
important aspects of the operations at an airport, i.e., the separation between landings and
their delays—see the first column of Table A4. Each one of these sets of values has been
synthesised using metrics such as the average or the standard deviation—second column
of Table A4, and these features have further been combined for each pair of airports under
analysis, using standard mathematical manipulations (e.g., the product or the maximum)—
right columns of Table A4. The result is a set of 90 features per link. As a first approach,
the linear correlation between each one of these features and the optimal w has been
obtained, and the corresponding coefficient of determination R2 has been calculated—see
results in Table A4. Taken individually, none of them seem to substantially explain the best
window size; the best result is given by the maximum of the median absolute deviation
(MAD) of the landing times although the R2 is only 0.053. We then exhaustively explored
all combinations of four features and evaluated linear models based on them. The best
four, yielding an R2 of 0.133, are: the standard deviation of the landing separation for the
receiving airport, the minimum Hurst exponent (HE) of the landing separation, the MAD
of the landing times of the source airport, and the maximum of the MAD of the landing
times. Scatter plots for these features and the corresponding linear fits are reported in the
bottom panels of Figure 2. Finally, when combining all 90 features in a linear model, the
resulting R2 is 0.363.

What conclusions can be obtained from these results? From a general point of view,
the landing and delay dynamics of the involved airports are partly responsible for defining
the best window length w although a linear model can only explain 36% of the variability.
Additionally, it can be seen that such w depends mainly on the landing dynamics, with the
delays themselves having a minor role—see Table A4. While selecting a few features is
not enough to construct a model able to predict the best w, this latter seems to be related
with the variability of the separation between consecutive landings, something that is in
agreement with the results of Section 3.

In synthesis, obtaining the best window size w for a pair of airports is not a trivial
process. Although it depends on the characteristics of the landing events, and specifically
on the time between consecutive operations, the best w strongly changes between different
pairs of airports, such that its value cannot be predicted at this stage. While disappointing,
this is to be expected, as real operations (and data) are more complex than any synthetic
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model. Consequently, the only reliable alternative is testing several values of w and
selecting the one yielding the minimal p-value.
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Figure 2. Best time scale for detecting real delay propagation patterns. (Top left) window length
minimising the p-value of the Granger causality test for each pair of source–destination airports;
note that results are only reported for those pairs for which the test is statistically significant and
that airports are sorted in decreasing number of operations (see Table A1); (Top right) histogram of
the best window lengths w; (Middle right) box plot depicting the distribution of the best window
lengths for each airport, considering the links it causes, with airports sorted by decreasing number of
operations; boxes indicate the interquartile range (Q3–Q1) and blue horizontal lines the median of
the distribution; (Bottom) scatter plots of the four features that best predict the length of the optimal
window as a function of the latter for each statistically significant causality link; the black lines
represent the best linear fit. L. sep.: landing separation; L. time: landing time. See main text and
Table A4 for details on the metrics.

4.2. Operational Viewpoint: Delay Propagation Time

Next, we tackle the problem of estimating the time it takes for delays to propagate
within the network. This is achieved by considering the optimal window size w for each
pair of airports, as estimated in the previous subsection, for then performing an exhaustive
search to find the maximum lag yielding the best (lowest) p-value. Finally, the delay
propagation time is obtained by multiplying these two values.

The left panel of Figure 3 reports the resulting delay propagation time for each pair
of airports. As in the case of Figure 2, only results for those pairs of airports that have a
statistically significant propagation are reported. Intuitively, one may hypothesise that
such propagation time should be proportional to (or at least, be a function of) the distance
between the two involved airports. As is evident in the scatter plot of the right panel of
Figure 3, no simple pattern can be observed; a linear correlation analysis yields a coefficient
of 0.045, with a p-value of 0.411.

We further estimate the time required for a delay to be propagated by an aircraft
performing two consecutive flights, respectively, departing from airports a and c, as a
function of the distance between the two airports. The geographical distance is transformed
into time by considering a ground speed of 500 knots, plus one hour for departure and
arrival procedures and turn-around operations. In other words, the objective is to obtain
an estimation of the minimum time required between the two consecutive departures. The
result is depicted by the dashed diagonal line in the right panel of Figure 3. It can be seen
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that most propagation times are well above the line, suggesting the presence of indirect
propagation patterns—e.g., when the propagation between two airports a and c requires an
intermediate airport b. This is consistent with the use of the Granger causality test, which
is designed to detect these indirect patterns.
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Figure 3. Delay propagation time. The left panel reports the delay propagation time in hours between
each pair of airports. Only pairs with a statistically significant propagation are reported, and airports
are sorted in decreasing number of operations (see Table A1). The right panel represents a scatter
plot of the propagation time in hours as a function of the distance between each pair of airports. The
diagonal dotted line approximates the flight time as a function of the distance.

At the same time, a few pairs of airports have delays propagating between them in
very short times, as low as 50 min—see Table A6. In other words, there are instances
in which a delay takes less time to propagate than the duration of the shortest flight
connecting the corresponding pair of airports. To illustrate this point, Figure 4 depicts a
graphical representation of the five pairs of airports with the largest (red arrows), smallest
(green arrows) and most asymmetrical (blue lines) propagation times—numerical data
are reported in Tables A5–A7. No clear trend can be identified. While most of the largest
propagation times occur between distant airports, this also happens between Brussels and
Hamburg and between Hamburg and Stuttgart. If delays between nearby airports are
propagated by indirect connections, this does not explain the short time observed from
Amsterdam and Hamburg or between Paris Orly and Stuttgart.

Following what was proposed in Ref. [12], the left panel of Figure 5 reports the
distribution of the propagation time when airports are classified according to their size, i.e.,
in large and small ones—see also Figure A2 for full results. The former ones are those with a
number of flights larger than the median of all considered airports; the latter ones are those
with less flights. Four distributions of propagation times are then calculated corresponding
to all possible combinations of airports at each end of a propagation link. As opposed to
what was reported in Ref. [12], no significant differences can be observed. Additionally,
the right panel of Figure 5 reports two distributions of the propagation times, respectively,
corresponding to pairs of airports that are nearer or farther away than the median of
all pairwise distances. While the propagation time is slightly larger for airports located
farther away, the difference in medians is not statistically significant (Mood’s median test,
p-value = 0.152).
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Figure 4. Graphical representation of the most extreme delay propagation times. Red and green
arrows indicate the five pairs of airports with, respectively, the largest and smallest propagation
times; blue lines indicate those pairs with the most asymmetrical ones. See Tables A5–A7 for
numerical values.
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Figure 5. Violin plots reporting the distributions of propagation times as a function of the size of the
airports at each end of the link (left panel) and of the distance between them (right panel). L: large;
S: small.

We hypothesise that several factors may contribute to the complex relationship be-
tween the propagation time and airports’ characteristics. On one hand, it is clear that delays
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at neighbouring airports are influenced by shared weather patterns or even by interactions
between their approach procedures. On the other hand, it is possible for information
about delays to be transmitted before the corresponding flights reach their destination, as
for instance when managed through ground delay programs. In short, it seems that the
delay propagation time is driven by different and intermingling factors, including (but not
exclusively) indirect connections and localised weather patterns.

4.3. Network Viewpoint: Propagation Network and Its Structure

The next logical step is to reconstruct the whole functional propagation network by
varying the size of the window used to assess the Granger causality on the time series of
pairs of airports. In Figure 6, blue lines report the evolution of six topological metrics as
defined in Section 2.3 as a function of the window size used in the network reconstruction
process. Note that this corresponds to the standard approach of using a single time scale for
all possible propagation links. On the other hand, the dotted horizontal lines in the same
figure report the network metrics when the optimal time scale is used for each airport pair.

Let us start by analysing the link density in the top left panel of Figure 6. It is apparent
that using a fixed time window of 60 min, as common in the literature [15–21], leads to a
significant information loss. In other words, and as seen in Figure 1, long windows imply
a loss of information about the fast dynamics of delays and hence in an underestimation
of the propagation. It is worth noting the magnitude of this effect: almost three-fourths
of the causality links are lost for windows of 60 min compared to the use of optimal
window lengths. At the same time, using very short time windows seems beneficial, with
an increase in the link density. This is nevertheless misleading, as very short windows
necessarily include more periods of inactivity—see the aqua line, right Y axis, representing
the reliability, i.e., the fraction of airport pairs for which at least 50% of the windows
have one or more landing events. As previously discussed, these correspond to missing
values, and it has been shown that too large a share of them results in an overestimation of
the causality [33].

As to be expected, these changes in the link density, and hence in the number of
detected links, have an impact on the values of all other topological metrics. Assortativity,
transitivity and IC yield qualitatively similar values when comparing the results of using
the optimal window size and a fixed 60 minimum one. The same is not true for the
other two metrics, with the diameter and the efficiency being, respectively, under- and
overestimated by using a fixed time window of 60 min. It is interesting to note that the
former group of metrics are mostly local in nature, while the latter (i.e., those not correctly
estimated) focuses on the macro-scale structure of the network. In other words, using a
fixed (non-optimal) window size does not bias the structure created by pairs and triplets of
airports, possibly those more strongly connected, but instead changes the overall structure
of the propagation network.

To better understand how the centrality of the airports is modified by the use of
different window sizes, Figure 7 reports the evolution of the airport ranking according to
three centrality measures: in-degree, out-degree and betweenness centrality. Specifically, in
each case, we consider the five airports that have the largest centrality when reconstructing
the propagation network with the optimal window size and calculate the position in the
ranking of these airports when considering a fixed window size. A simple look at Figure 7
shows that the window size has a profound effect on the centrality of airports, with these
top five airports ending, in many cases, in the bottom half of the ranking. The sensitivity of
the ranking to the window size is also noticeable, especially in the case of the betweenness.
It is worth noting that this centrality metric strongly depends on the macro-scale structure
of the network and that this result is therefore aligned with what is observed in Figure 6.
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Figure 6. Evolution of the six topological metrics described in Section 2.3 (blue lines, left Y axes), as a
function of the size of the window used for calculating the Granger causality. Aqua lines (right Y
axes) depict the reliability of each value, i.e., the fraction of pairs of airports having operations in at
least 50% of the windows used to calculate the causality. The horizontal dotted lines indicate the
values of the metrics when the optimal window size is used for each link.
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Figure 7. Evolution of the centrality ranking as a function of the window size used to calculate the
Granger causality. From left to right, the three panels depict the evolution of the ranking according
to the out-degree, in-degree and betweenness centrality. In each case, the five reported airports are
those with the maximal centrality in the networks reconstructed with optimal window sizes.

5. Resampling Validation

As a last point, we analyse another aspect that can influence the optimal window
size for estimating the Granger causality. Several studies indicated that the sensitivity
and stability of the test can be improved with higher temporal sampling rates [24,25]; this
nevertheless can be due to two factors: the presence of new high-frequency information
which is lost for low sampling rates or alternatively, the simple fact that longer time series
(i.e., more data) make tests more statistically significant, even if no new information is
included. Here, we approach this problem by leveraging the test suggested in Ref. [25]
involving artificially resampling the analysed time series and comparing the evolution of
the resulting p-values.

We start by considering the two original time series for a given pair of airports, recon-
structed using the corresponding optimal window length. We then consider a resampling
rate ρ = (2, 3, . . . , 5), and synthesise a new pair of time series by firstly downsampling
the original data by a factor of ρ and secondly upsampling them by the same factor. The
result is a new set of time series whose length is preserved but in which high-frequency
information is deleted. We finally compare the two p-values obtained with the original and
resampled time series by calculating δp = log10 pr − log10 po, where pr and po represent
the p-values obtained with, respectively, the resampled and original time series. Note that
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δp < 0 implies that the causality calculated with the resampled time series is stronger than
that seen in the original case.

Figure 8 reports violin plots of the distribution of δp as a function of the resampling rate.
In all cases, most δp are greater than zero—see also the aqua line, right Y axis, representing
the percentage of links for which δp < 0. In addition, the average of all distributions sits
around five, thus indicating that the p-values for the original time series are significantly
smaller than those for the resampled time series. In synthesis, one can conclude that the
length of the optimal window is a function of the information the time series contains,
specifically of its high-frequency part, and not directly of the time series length.
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Figure 8. Probability distribution of δp, i.e., the difference between the p-values obtained with the
original and the resampled time series. Each violin plot corresponds to a different resampling, and its
values to all pairs of airports with a statistically significant causality (according to the original time
series). The water green line (right Y axis) shows the percentage of pairs for which the resampled
time series yield a smaller p-value (that is, a more statistically significant relationship) than the one
obtained with the original series.

6. Discussion and Conclusions

In this paper, we have studied the effect of the temporal resolution used in the analysis
of delay propagation in air transport, both in a synthetic model and in real operational data.
While this is a problem well-known in the literature [24–26], air transport presents several
idiosyncrasies, most notably the fact that events generating the time series (i.e., landings
and their delays) are discrete. As shown in Section 3, the window size that maximises
the sensitivity of a Granger causality test is a balance between several elements; in the
simplest and noiseless case, it is between the need for detecting high-frequency dynamics
through small windows and the need for windows long enough to contain a significant
number of landing operations. Additional elements affecting the optimal window length
include the presence of inactivity periods for which no events are available and the shape
of the probability distribution of landing separation times, such that more heterogeneously
spaced events require longer windows.

When applying these ideas to real data, three main conclusions can be drawn. First of
all, due to the high complexity of real operations, the estimation of the best window size for
a given airport pair can only be obtained numerically by systematically checking different
window sizes and choosing the one minimising the test p-value. While these optima are
related to some properties of the landing operations (see Figure 2), as previously discussed,
such relationships are too weak to support the creation of an analytical solution. Secondly,
the same approach can be used to infer the time required by delays to propagate between
airports. Once again, results are loosely related to some airport characteristics, such as
their distance and size, but no clear pattern can be discerned (see Figure 3). Thirdly, the
use of a non-optimal window size has profound effects on the estimated structure of the
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delay propagation networks, with global features being more affected than micro-scale
ones (see Figure 6).

It is worth noting that research works have hitherto used a fixed window length of
one hour [15–21]. This prima facie made sense, as it is a natural way of dividing the day in
equal parts; simplifies calculations, as windows of different days always start at the same
time and is aligned with the way airport capacity is defined (i.e., operations per hour). We
have nevertheless shown that the use of this fixed window substantially underestimates
causality relationships and that the reconstructed network topology is thus misrepresented.
This should be interpreted as a note of caution by the community, as previously published
results may be partly incorrect. The present work is thus not only a theoretical exercise.
Rather, it has direct implications on the analysis of real air transport delays.

Regarding the delay propagation times between pairs of airports reported in Figure 3,
it is relevant to compare the results obtained here with those of Ref. [12]. Specifically,
those authors reported a correlation between the distance between two airports and the
corresponding propagation timescale, and the latter was also modified by the role of the
airport in the network (e.g., hub vs. peripheral airport), albeit to a lesser degree. Similar
trends can be observed in our results, albeit they never are statistically significant (see
Figures 3 and 5). Several causes can explain such a discrepancy. First of all, the detection
of the delay propagation patterns and the estimation of their time scale is performed in
Ref. [12] by using lagged linear correlations as opposed to the Granger causality considered
here. Significant differences ought to be expected, especially taking into account that the
Granger test is designed to detect indirect propagation patterns, i.e., when delays propagate
between two airports through an intervening one. Secondly, Ref. [12] is based on the use of
windows of a fixed size of 30 min; even though the analysis is based on a different technique
to detect the delay propagation, the use of a fixed window length seems sub-optimal in
light of what is presented here. Thirdly, the possibility that differences between the US and
European systems, e.g., in the management of delays [61,62], could be the basis of such
discrepancies cannot be ruled out.

Future works will have to be targeted at confirming and extending the results ob-
tained here. Firstly, given the variability observed when changing the temporal scale of the
time series reconstruction, it stands to reason to expect even more heterogeneous results
when links are obtained with different metrics, e.g., correlation or non-linear causality
ones. Specifically, non-linear causality metrics, such as non-linear versions of the Granger
causality [42,63,64] or the Transfer Entropy [65], usually require longer time series to obtain
reliable results. As a consequence, correctly estimating the optimal time scale may be-
come even more critical. Secondly, similar analyses could be performed when considering
alternative ways of reconstructing delay time series, e.g., by analysing each airline indepen-
dently [15], thus effectively moving from a single- to a multi-layer representation [66], or
by estimating the departure (as opposed to arrival) delays. Thirdly, it would be interesting
to check whether similar results are also obtained in other large air transport systems, e.g.,
the US or Chinese ones. It would also simplify future studies to have an explicit a priori
estimation of the optimal window length, for instance obtained through a machine learning
model trained over a large set of airports and their operations.

As a final note of caution, it is worth recalling that functional networks are a powerful
tool to describe delay propagation patterns in air transport, as customarily conducted in
other scientific fields [44–49]. At the same time, this kind of analysis provides little infor-
mation about the factors and reasons behind them. In other words, they allow to describe,
but not to explain the dynamics of delay propagation. While it is in principle possible
to combine functional network representations with other operational data, and hence
understand if and how much the latter affect the former, this has yet to be accomplished
and represents an open field of research.
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Appendix A

Table A1. Information on the 50 airports considered in this study, including their 4-letter ICAO code,
number of landing flights and percentage of flights delayed more than 10 and 30 min.

Rank Name ICAO # Flights % Delayed > 10 min. % Delayed > 30 min.

1 Frankfurt Airport EDDF 23,061 30.65% 5.06%
2 Amsterdam Airport Schiphol EHAM 22,350 52.77% 11.55%
3 Paris Charles de Gaulle Airport LFPG 22,275 33.76% 5.39%
4 London Heathrow EGLL 19,407 68.39% 20.39%
5 Munich Airport EDDM 18,588 25.22% 2.75%
6 Adolfo Suárez Madrid-Barajas Airport LEMD 18,345 38.50% 7.44%
7 Josep Tarradellas Barcelona-El Prat

Airport
LEBL 15,817 44.39% 10.14%

8 Rome-Fiumicino International Airport LIRF 13,930 14.45% 2.84%
9 Milan Malpensa Airport LIMC 13,383 12.67% 2.84%
10 London Gatwick Airport EGKK 12,985 61.29% 18.78%

11 Palma de Mallorca Airport LEPA 12,616 32.13% 10.03%
12 Vienna International Airport LOWW 12,482 42.16% 7.34%
13 Copenhagen Kastrup Airport EKCH 11,811 18.72% 2.24%
14 Zürich Airport LSZH 11,426 41.24% 5.56%
15 Oslo Airport ENGM 11,203 12.79% 1.11%
16 Athens Intl Eleftherios Venizelos LGAV 10,808 25.54% 3.22%
17 Dublin Airport EIDW 10,731 26.94% 4.63%
18 Stockholm Arlanda Airport ESSA 10,585 22.57% 2.51%
19 Brussels Airport EBBR 10,313 40.79% 6.73%
20 Düsseldorf Airport EDDL 10,178 33.52% 4.87%

21 Humberto Delgado Airport LPPT 9852 45.98% 8.10%
22 Manchester Airport EGCC 9635 39.81% 6.58%
23 Paris Orly Airport LFPO 9283 30.09% 4.73%
24 London Stansted Airport EGSS 8634 41.52% 6.24%
25 Berlin Tegel “Otto Lilienthal” Airport EDDT 8545 27.55% 3.25%
26 Warsaw Chopin Airport EPWA 8434 10.91% 1.67%
27 Václav Havel Airport Prague LKPR 7263 24.03% 3.33%
28 Geneva Airport LSGG 7108 25.63% 4.47%
29 Nice Côte d’Azur Airport LFMN 6703 20.50% 3.43%
30 Málaga-Costa del Sol Airport LEMG 6660 35.47% 4.76%

https://www.eurocontrol.int/dashboard/rnd-data-archive
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Table A1. Cont.

Rank Name ICAO # Flights % Delayed > 10 min. % Delayed > 30 min.

31 Hamburg Airport EDDH 6531 21.45% 2.56%
32 Cologne Bonn Airport EDDK 6423 26.48% 3.30%
33 London Luton Airport EGGW 6103 46.53% 8.65%
34 Stuttgart Airport EDDS 6066 28.70% 3.07%
35 Edinburgh Airport EGPH 5843 21.80% 2.57%
36 Boryspil International Airport UKBB 5620 22.94% 2.74%
37 Budapest Ferenc Liszt International

Airport
LHBP 5452 17.59% 2.27%

38 Bucharest Henri Coandă International
Airport

LROP 5390 13.36% 1.78%

39 Lyon-Saint Exupéry Airport LFLL 5127 26.41% 3.49%
40 Alicante-Elche Miguel Hernández

Airport
LEAL 4946 34.17% 5.14%

41 Birmingham Airport EGBB 4891 20.40% 2.25%
42 Venice Marco Polo Airport LIPZ 4720 27.58% 5.76%
43 Francisco Sá Carneiro Airport LPPR 4443 38.06% 10.44%
44 Orio al Serio International Airport LIME 4417 16.32% 2.04%
45 Marseille Provence Airport LFML 4329 23.56% 2.73%
46 Toulouse-Blagnac Airport LFBO 4159 17.62% 1.90%
47 Naples International Airport LIRN 4041 27.86% 3.07%
48 Glasgow Airport EGPF 3732 28.27% 3.99%
49 Catania-Fontanarossa Airport LICC 3660 14.64% 1.53%
50 Bologna Guglielmo Marconi Airport LIPE 3519 25.09% 2.90%

Table A2. Formal definition of the network topological metrics considered in this study.

Metric Definition Range

Link density ld = L
N2 , 0 ≤ ld ≤ 1

L being the total number of active links in the network
and N the number of nodes.

Diameter D = maxi,j di,j, 0 ≤ D ≤ N
di,j being the distance between nodes i and j

Transitivity T =
3N4
N3

,
N4 being the number of closed triangles
3N4 = ∑

k>i>j
ai,jai,kaj,k, and N3 the number of connected

triplets N3 = ∑
k>i>j

(ai,jai,k + aj,iaj,k + ak,iak,j).

0 ≤ T ≤ 1

Assortativity r = 1
σ2

q
∑jk jk(ejk − qjqk), −1 ≤ r ≤ 1

j and k being the degrees of nodes at each end of a link;
qk the distribution of the remaining degree, i.e., of the
degree without the link under study; σ2

q the variance of the
distribution qk; and ejk the joint probability distribution of
the remaining degrees of the two vertices at either end of
a randomly chosen link.
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Table A2. Cont.

Metric Definition Range

Efficiency E = 1
N(N−1) ∑

i 6=j

1
dij

, 0 ≤ E ≤ 1

dij being the distance between the nodes i and j.

Information
Content

See [55] 0 ≤ IC

Table A3. Formal definition of the centrality metrics considered in this study. Note that these metrics
are calculated for a single node (here denoted as w), as opposed to the whole network; nodes can
then be ranked in importance accordingly.

Centrality Metric Definition

Out-degree centrality cO(w) ∝ ∑j aw,j,
where aw,j is equal to one if a link exists between nodes w
and j, and zero otherwise.

In-degree centrality cI(w) ∝ ∑j aj,w,
where aj,w is equal to one if a link exists between nodes j
and w, and zero otherwise.

Betweenness centrality cB(w) ∝ ∑
s,t∈V

Pw(s, t)
P(s, t)

,

where V is the set of nodes, P(s, t) the number of shortest
paths between s and t, and Pw(s, t) the number of shortest
paths between s and t that includes w.
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Figure A1. Scatter plot of the length of the optimal window for each pair of airports as a function of the
number of operations recorded in the data set for the source (X axis) and destination (Y axis) airports.
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Table A4. Coefficients of determination R2 obtained by fitting linear models to recover the best win-
dow size for each pair of airports, using the corresponding features listed in the left columns; a: source
airport of the causality (i.e., the cause); b: destination airport of the causality (i.e., the consequence).

Input Time
Metric

R2

Series a b a · b log2 a/b Max Min

Landing times MAD 0.00 0.01 0.00 0.01 0.05 0.02
Hurst exponent 0.00 0.01 0.01 0.00 0.02 0.00

Landing
separation

Mean 0.01 0.01 0.03 0.00 0.02 0.02
Standard deviation 0.00 0.04 0.03 0.01 0.02 0.04
Linear correlation 0.00 0.00 0.00 0.00 0.01 0.00
MAD 0.01 0.00 0.01 0.00 0.01 0.01

Delays

Mean 0.01 0.02 0.01 0.00 0.02 0.01
Standard deviation 0.01 0.02 0.02 0.00 0.02 0.01
Linear correlation 0.01 0.00 0.01 0.00 0.01 0.00
MAD 0.00 0.00 0.00 0.00 0.01 0.00
Hurst exponent 0.02 0.01 0.03 0.00 0.02 0.02

∆ consecutive
delays

Mean 0.00 0.01 0.00 0.00 0.01 0.01
Standard deviation 0.00 0.01 0.01 0.00 0.01 0.01
Linear correlation 0.00 0.00 0.00 0.00 0.00 0.00
MAD 0.00 0.00 0.00 0.00 0.00 0.00

Table A5. List of the ten pairs of airports with the longest propagation time (in hours); a: source
airport of the causality (i.e., the cause); b: destination airport of the causality (i.e., the consequence).

Airport a Airport b Distance (NM) Prop. Time a→ b

EBBR EDDH 482 8.0
LIME LEMG 1549 8.0
EDDH EDDS 552 7.5
EDDT LPPR 2077 7.3
LEBL LHBP 1523 7.1

EBBR EGBB 463 7.1
LIMC LOWW 657 7.1
LIMC LKPR 646 7.1
LIME LOWW 588 7.1
EGBB EBBR 463 7.1

Table A6. List of the ten pairs of airports with the shortest propagation time (in hours); a: source
airport of the causality (i.e., the cause); b: destination airport of the causality (i.e., the consequence).

Airport a Airport b Distance (NM) Prop. Time a→ b

LFPO EDDS 502 0.8
UKBB LGAV 1485 1.0
EDDS LFPO 502 1.2
EHAM EDDH 379 1.2
LIML ENGM 1645 1.4

LGAV UKBB 1485 1.8
EDDS EDDH 552 1.8
LFML ENGM 1906 2.0
ENGM EDDS 1286 2.0
LSZH EPWA 1031 2.2
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Table A7. List of the ten pairs of airports with the most asymmetrical propagation time, defined
as the difference between the forward (reported in the fourth column) and backward time (fifth
column); a: source airport of the causality (i.e., the cause); b: destination airport of the causality (i.e.,
the consequence). Propagation times in hours.

Airport a Airport b Distance (NM) Prop. Time a→ b Prop. Time b→ a

EDDH EDDS 552 7.5 1.8
LIME LEMG 1549 8.0 3.7
EBBR EDDH 482 8.0 4.0
LICC LSGG 1223 6.5 4.2
EKCH ESSA 546 7.0 5.2

LIMC EDDS 342 6.8 5.0
LGAV LPPR 2803 7.0 5.7
LIMC EHAM 795 7.0 5.8
LIMC LOWW 657 7.1 6.0
LIME LOWW 588 7.1 6.0
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Figure A2. Probability distributions of delay propagation times. Violin plots report the distribution
of the delay propagation times in hours for all 50 considered airports for outgoing (i.e., delays
propagated by an airport, top panels) and incoming (i.e., delays received by an airport, bottom
panels) links.
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