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Abstract: Aircraft hydraulic fault diagnosis is an important technique in aircraft systems, as the
hydraulic system is one of the key components of an aircraft. In aircraft hydraulic system fault
diagnosis, complex environmental noises will lead to inaccurate results. To address the above
problem, hydraulic system fault detection methods should be capable of noise resistance. Previous
research has mainly focused on noise-free conditions and many effective approaches have been
proposed; however, in real-world aircraft flying conditions, the aircraft hydraulic system often has
strong and complex noises. The methods proposed may not have good fault detection results in
such a noisy environment. According to the situation, this work focuses on aircraft hydraulic system
fault classification under the influence of a hydraulic working environment with Gaussian white
noise. In order to eliminate the noise interference and adapt to the actual noisy environment, a new
aircraft hydraulic fault diagnostic method based on empirical mode deposition (EMD) and long
short-term memory (LSTM) is presented. First, the hydraulic system is constructed by AMESIM.
One normal state and five fault states are considered in this paper. Eight-channel signals of different
states are collected for network training and testing. Second, the EMD method is used to obtain the
different intrinsic mode functions (IMFs) of the signals. Third, principal component analysis (PCA) is
used to obtain the main component of the IMFs. Fourth, three different LSTM methods are chosen
to compare and the best structure that is chosen is the gate recurrent unit (GRU). After that, the
network parameters are optimized. The results under different noise environments are given. Then,
a comparison between the EMD-GRU with several different machine learning methods is considered,
and the result shows that the method in this paper has a better anti-noise effect. Therefore, the
proposed method is demonstrated to have a strong ability of fault diagnosis and classification under
the working noises based on the simulation results.

Keywords: aircraft hydraulic system; fault diagnosis; EMD; LSTM; anti-noise

1. Introduction

The hydraulic system is an important part of an aircraft, which is the key to ensuring
the safety of both the aircraft and its passengers. Aircraft hydraulic systems account for a
large proportion of aircraft maintenance work, the failures of aircraft hydraulic systems
make up about 30% of total mechanical failures, and their maintenance accounts for one-
third of the total mechanical maintenance [1].

Therefore, the hydraulic system has a crucial impact on the reliability of the whole
aircraft system, and effective fault diagnostic methods should be presented to ensure
the safe operation of the aircraft. In order to ensure the safety of the hydraulic system,
numerous fault diagnostic methods are proposed. Early research can be divided into two
categories, that is, experience-based diagnostic methods [2–4] and model-based diagnostic
methods [5,6]. However, with these methods, it is hard to distinguish all the fault types in
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a hydraulic system, and it is difficult to establish a model because of the complexity of the
aircraft hydraulic system. Therefore, a lot of advanced approaches to deep-learning-based
fault diagnosis and feature extraction have been proposed [7–10] in recent years. Among
these methods, the LSTM-based methods have a better processing ability to deal with
timing signals.

Long short-term memory (LSTM) neural network is an improved recurrent neural
network (RNN) structure that can effectively process time sequence data [11]. It is mainly
used to solve the problem of gradient disappearance and gradient explosion during the long
sequence training process in RNN. A LSTM can adaptively learn the dynamic information
of time sequences by non-linear gating units that regulate the information into and out of
the memory cells of the LSTM. At present, this method is widely used in the field of image
generation, classification, and feature extraction [12–14]. In recent years, LSTM has been
applied in the field of fault diagnosis since this method combines feature extraction and
classifier design into one neural network. Cabrera et al. propose a method that combines
the bayesian approach and time series dimensionality reduction to build an LSTM model
to evaluate the faults of a reciprocating compressor. Their simulation results show that
the accuracy of this method is higher than the other machine learning algorithms in the
paper [15]. Khorram et al. present a method using convolutional neural networks (CNNs)
to improve an LSTM model. When using CNNs as the feature extraction layer and using
LSTM as the classification layer to deal with the fault diagnosis in a bearing, the simulation
results show that their method is better than the CNN method [16]. Ravikumar et al.
propose a gearbox fault diagnostic method based on multi-scale deep residual learning
and a stacked LSTM model, and the simulation results show that their method has the best
accuracy and shortest testing time [17]. In addition, there are several other research studies
on the application of the fault diagnostic method of LSTM [18–21].

The proposed methods all have good fault diagnostic results. However, these methods
are not used in aircraft hydraulic systems. In a real aircraft hydraulic system working
environment, noises exist on a wide frequency range, which may result in violent changes,
and this situation makes it difficult to conduct fault diagnosis [22,23]. Therefore, the
proposed methods cannot be effective in such a noisy environment. Empirical mode
deposition (EMD) is a widely used time–frequency signal deposition method that is useful
for analyzing complex and nonlinear signals and has been widely applied to the field
of fault diagnosis in a noisy environment [24–27]. During EMD, a number of complete
components called intrinsic mode functions (IMFs) are adaptively obtained. The IMFs
contain the feature information of the original signals, and will not cover the information
under the noise as time serial signals. Therefore, this method can reduce the effect of noise
on the result of fault diagnosis.

To address the above problems, a model based on EMD and an LSTM network (EMD-
LSTM) is proposed in this paper. The remainder of this paper is organized as follows:
Section 2 defines the aircraft hydraulic system and presents how an AMESIM aircraft
hydraulic system was built; six states were considered and eight different channel signals of
the states were collected. In Section 3, the EMD-LSTM method is proposed; three different
inner structures of LSTM were considered, the main structure of LSTM was designed,
and the parameters and the flow chart of the EMD-LSTM are presented. In Section 4,
the simulation results of the three LSTM networks are presented. The inner structure of
GRU was the best. Then, the structure and parameters of the EMD-GRU were optimized.
Different SNR Gaussian white noises were added to the eight-channel signals to simulate
environmental noises. The EMD-GRU method was used for fault diagnosis under different
environmental noises. The simulation results show that this method can resist 40 dB noises.
Finally, we compared this method with several other machine learning algorithms. The
results show that the method in this article has better accuracy in high-noise environments.
Section 5 concludes this research.
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2. Aircraft Hydraulic System Model Building and Data Collection
2.1. Aircraft Hydraulic System Definition and AMESIM Model Build

The hydraulic system is one of the core systems of an aircraft flight, with the functions
of driving and supporting the aircraft. The structure of an aircraft hydraulic system is
shown in Figure 1 [28]. There are three relatively independent oil supply systems, and a lot
of hydraulic users.
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Figure 1. Structure of an aircraft hydraulic system.

To highlight the research focus, this paper describes the study of the section from
the oil tank to the actuation system without the driven part or the transmission part. The
normal operation of the system means that the input signal can be transformed into a stable
operation of the control surfaces. In general, an aircraft hydraulic system can be divided
into two parts, namely, the servo-actuation systems and the oil supply systems. They are
the core components of an aircraft hydraulic system. The aircraft hydraulic system in
Figure 1 can be established by AMESIM. The AMESIM model built in this paper is shown
in Figure 2.

In the AMESIM aircraft hydraulic system, being the same as in Figure 1, the oil supply
system is composed of three relatively independent systems: a main oil supply system 1, a
main oil supply system 2, and a back-up oil supply system.

The main oil supply system 1 is powered by a left engine drive pump (EDP,2), and
an electrical motor pump (EMP,3). The main oil supply system 2 is powered by a right
EDP (13) and an EMP (12). The back-up oil supply system is powered by an EMP (14) in
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normal state, and a ram air turbine (RAT,15) in case of the state when the left and right
engines have both failed.
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Figure 2. An aircraft hydraulic system built by AMESIM.

In the servo-actuator system which is in the blue dotted frame, the actuator (11) is used
to provide mechanical energy for different oil users of the aircraft, such as the landing gear,
wing flap, aileron, flipper, and rudder. The actuator control value (10) is used to control the
actuator’s working time and oil pressure.

The green dotted frame between the main oil supply system 1 and the main oil supply
system 2 is a two-way power transfer unit (PTU) system. In normal time, the PTU system
will not work. When the pressure of one oil supply system is reduced to a low level, the
PTU system will work. It transfers oil from the high-pressure side to the low-pressure side,
and makes the low-pressure side return to a normal state.

2.2. Normal State and Fault State

In the AMESIM aircraft hydraulic system, one normal state and five kinds of fault
states are considered in this paper.

When the hydraulic system is in operation in a normal state, the EDP (2) works at
a constant speed of 5000 rpm, and outputs pressure of 3000 psi to the aircraft hydraulic
system. The EDP (2) delivers oil flow from the oil tank (1) to the hydraulic system, first
through a one-way value (5), which is to prevent the return of hydraulic oil, and then
through an oil filter (6), which is to reduce the temperature of the hydraulic oil and prevent
oil pollution. Finally, oil is delivered one way to a relief valve (7), which is used to prevent
the system pressure from being too high; when the system pressure is over 3400 psi, the
relief value will open and reduce the system pressure. The other way is to the actuation
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system. A bladder accumulator (8) ensures system pressure stability when there are sudden
changes in the flow demands.

The five fault states are pump inner leakage (2), filter block (6), relief value spring
failure (7), actuator inner leakage (11), and oil pollution (16). In order to improve the
accuracy of fault diagnosis in the hydraulic system, eight different sensors are used in this
paper. Each state has 8 kinds of different signals, including the pressure in three different
places (pump, filter, and actuator), the flowrate in three different places (pump, filter, and
actuator), the displacement of the actuator, and the velocity of the actuator.

2.3. Data Collection

The data of six states are simulated in the AMESIM hydraulic system. Taking the
aircraft hydraulic system as the research object, eight channels signals of six different states
are collected in this section. The main parameters of the AMESIM simulation model are
given in Table 1. These parameters are used when the hydraulic system is in a normal state.

Table 1. Simulation parameters of the aircraft hydraulic system.

Number AME-Element Key Parameter Value Meaning

1 signal03 Output 5000 r·min−1 The shaft speed is 5000 r/min, and the
pressure of the pump is 3000 psi.

3 Accumulato2 Gas pressure
accumulator volume

1885 psi
2.62 L

Accumulator reduces pressure, as an
emergency source.

4 presscontol01 Relief valve cracking pressure 3436 psi Pressure relief value,
for system discharge.

5 tank01 Tank pressure 50 psi Booster tank, for pre-boost to 50 psi.

7 pump13 Nominal shaft speed 5000 r·min−1 Left engine drive pump (EDP).

11~14 pump13 nominal shaft speed 5000 r·min−1

4166 r·min−1

Right EDP, Yellow system EMP, Blue
system EMP, and RAT. Rated pressure

of RAT is 2500 psi.

10 constant_3 constant value 34.4738 bar
PTU opens when the pressure

difference between green and yellow
systems is 34.4738 bar.

The fault states are built according to the normal state with consideration of the five
relative values, including pump leakage (PL), filter blockage (FB), relief valve spring failure
(RF), actuator inner leakage (AIL), and oil pollution (OP). By changing the five different
values, the five fault states can be simulated in the AMESIM hydraulic system. The fault
state parameters are listed in Table 2.

Table 2. Fault state values of the hydraulic system.

Num Fault Category and Category Number Key Parameter Normal Value Fault Value

2 pump leakage-1 Equivalent orifice diameter (mm) 0.1~0.3 1~2

6 filter blockage-2 Equivalent orifice diameter (mm) 5~7 3~4

7 relief valve spring failure-3 Open pressure (psi) 3400 2600–3300

11 Actuator inner leakage-4 Leakage coefficient (L·min−1·bar−1) 0~0.01 0.03~0.05

16 oil pollution-5 Air content (%) 0.1~0.3 5~15

The simulation model is built when the system is stable. This simulation uses the main
oil supply system 1 and the servo-actuator system to simulate the aircraft hydraulic system.
When the system is working normally, it will be considered as the normal state.

The total simulation time is 50 s, including 0–5 s during which the actuator is closed,
5–10 s during which the actuator is opened and moves left, 10–15 s during which the
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actuator is closed, 15–20 s during which the actuator is opened and moves right, and
20–25 s during which the actuator is closed, and then it returns to this cycle again after
this simulation has ended. The sample rate is 100 hz; in each simulation, a sample of
5000 number of time point will be collected. The simulation results are shown in Figure 3.
This simulation result is a comparison between the normal state and the air pollution state
in eight different channel signals. Here, the oil pollution value is 0.1% in the normal state
and 15% in the fault state. Due to the length of the article, the other fault state simulation
results will not be presented.
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After the simulations, six different kinds of data can be collected. There are eight
signals that can be collected in each state, as shown in Figure 3. These include the pressure
signal at the hydraulic pump outlet (Pp); the flowrate signal at the hydraulic pump outlet
(Qp); the pressure signal (Pf) and the flowrate signal (Qf) at the oil filter exit position; the
pressure signal (Pa) and the flowrate signal (Qa) of the actuator inlet; and the velocity
signal(Va) and the displacement signal (Da) of the actuator. All the signals are shown in
Table 3.

Table 3. Collection signals of six states.

Position Signal Mark Position Signal Mark

Pump Pressure Pp

Actuator

Pressure Pa
Flowrate Qp Flowrate Qa

Oil filter
Pressure Pf Displacement Da
Flowrate Qf Velocity Va

3. The EMD-LSTM Method
3.1. EMD and PCA Method

After the six states’ signals have been collected, EMD decomposition needs to be
performed on each signal. The process of EMD is to decompose the original input signal
into multiple IMFs. These IMFs contain different feathers in each frequency in the input
signal. During the decomposition of EMD, there is no limitation on the signals of these
inputs, and it does not require these input signals to be linear or smooth signals. Therefore,
when dealing with the fault signals of a real-world hydraulic system with different noises,
this method will have a good effect. At present, there are many research studies which
applied EMD to fault diagnosis [29–32]. However, there is a lack of research on the overall
multi-faults comprehensive diagnosis of an aircraft hydraulic system.

The general process of the EMD method is as follows: If x(t) is the original signal to
be processed by the EMD, first, we seek all the local maximum values and local minimum
values of the signal x(t). Then, we use the three-time strip curve interpolation methods
and connect all the local maximum points and all the local minimum points to obtain the
maximum envelope curve emax(t) and the minimum envelope curve emin(t); all data points
in signal x(t) are wrapped between these two curves. We calculate the average value of the
emax(t) and emin(t), and mark it as e(t). Then, we subtract the e(t) from the original signal
x(t), and obtain a new signal x1(t) =x(t)–e(t). At this time, we test whether x1(t) meets the
two conditions of the IMFs: 1. in the decomposed signal, the equivalent points are equal
to zero or equal to one, and 2. the signal is about the local symmetry of timeline. If it is
satisfied, it is recorded as IMF1 (t) = x1(t). If it is not satisfied, we use x1(t) as the original
signal and repeat the above operation.

After that, IMF1(t) is separated from x(t), and we obtain a residual signal r1(t), r1(t)
= x(t) -IMF1(t). Then, we use r1(t) as a new original signal to repeat the above operation.
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After N times, the signal can obtain N components of the IMFs, which can be expressed
as follows: 

r1(t) = x(t)− IMF1(t)
r2(t) = r1(t)− IMF2(t)

. . .

. . .

. . .
rn(t) = rn−1(t)− IMFn(t)

(1)

The signals after EMD decomposition are shown in Figure 4. The aircraft hydraulic
oil filter blockage state is selected to the EMD. We choose three channel signals, and they
are Qa, Pp, Da. The horizontal coordinates are the number of sampling time points, and
the frequency is 100 Hz. The unit of each point is 0.01 s. The first subfigure is the original
signal, the last subfigure is the residual r component, and the other subfigures are the IMFs,
as shown in Figure 4.
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The oil filter blockage (FB) state is simulated. The EMD of Qa obtains 18 IMFs, the
EMD of Pp obtains 19 IMFs, and the EMD of Da obtains 12 IMFs. From Figure 4, different
IMFs can reflect the characteristics of the original signal to a certain extent. Each original
signal can obtain a set of feature vectors after the EMD, and the EMD results can be marked
as Fn = [IMF1, IMF2, . . . IMFK, r], with k meaning the total number of IMFs after the EMD,
and r meaning the residual after the EMD. From the three sets of EMD signals in the figures,
the types of information containing and expressing are different, so the total number of
IMFs are not consistent. The IMFs after the EMD enriches the input features of the LSTM
networks. However, it is inevitable that there are redundancy or repetition of information,
and the input dimensions of the LSTM are not the same. Therefore, the PCA method needs
to be applied to reduce the dimension of the input IMFs.

Principal component analysis (PCA) is a statistical method for the main component of
a signal, and converts a set of variables that may exist into a set of linear irrelevant variables
through orthogonal transformation. This set of variables is called the main ingredient. The
PCA method was proposed by Karl Pearson [33]. Presently, it has been widely used in
many fields, such as mode recognition, signal processing, signal compression, and fault
diagnosis [34–36]. The PCA method can ensure that the main characteristics of a signal are
not lacking and realize the simplification of data; this can greatly reduce the amount of
data that requires subsequent processing. Therefore, the training and calculation time of
the LSTM networks can be reduced, and the testing speed becomes faster. This process is
shown in Figure 5.
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Figure 5. PCA method to reduce the information.
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Considering that the number of feature vectors are different, we ensure that the error
between the real data after the dimension and the data before the dimension is less than
0.05, that is to keep the information more than 95% of the original features. The number of
all Fn in this simulation is chosen as 5 IMFs. If the IMFs are higher than 5 for PCA reduction,
the process is shown in Figure 5.

After the EMD and PCA, the extraction feature vector can be expressed as Fn* = [F1, F2,
F3, F4, F5]. After normalization, the feature vectors are as the inputs of the LSTM networks.
The total number of the inputs in the LSTM networks are 40 sets of special feather vectors.
Therefore, each test or train state data set has 40 characteristic vectors.

3.2. Three Inner Structure of LSTM Networks

Long short-term memory (LSTM) neural network is a deformation of recurrent neural
network (RNN). The internal structure of a RNN is a circular structure, and it can retain
a certain degree of time information. Theoretically, the neurons located at the time point
of ti pass their internal information to the neuron ti+1 of the next time point. In this way,
the input information and the output information at the neuron of time point ti can map
the effect of all the previous time points, and form a feedback structure similar to a ring.
However, in an actual application of a RNN, when the distance between ti+m and ti is too
large, there may be a problem that ti cannot map the input and output characteristics of
the time point ti+m. This situation is called the gradient disappearance in the RNN, or
long-term dependence. This problem is solved by the LSTM network algorithm proposed
by Hochreiter [37]. The LSTM network adopts its unique internal three gate units structure,
and through the structure of the three gate units, it can control the transmission rate in the
historical information dissemination in the RNN. The information is sent into the three
different gate units according to the important degree, so it solves the gradient explosion
of the long distance. The mathematical expression of the LSTM model can be written
as follows: 

ft = σ
(

W f ·[xt, ht−1] + b f

)
it = σ(Wi·[xt, ht−1] + bi)
ot = σ(Wo·[xt, ht−1] + bo)
c̃t = tan h(Wc·[xt, ht−1] + bc)
ct = ft ∗ ct−1 + it ∗ c̃t
ht = ot ∗ tan h(ct)

(2)

In Formula (2), t is the time point, xt is the input of the LSTM network, and ht is the
output of the hidden layer in the network. ct is called the unit state, and it is a unique
structure in the LSTM network. ct is used to preserve information, forget information, or
control the flow of information by passing the information to subsequent neuron cells. The
first three formulas are the gate unit structure, namely forgotten gate f t, input gate it, and
output gate ot. These three gate structures assist ct to delete or add information, and limit
the output range between 0 and 1 by the Sigmoid layer. When the output is 0, it means
that the information is abandoned. When the output is 1, it means that the information
is all recorded. σ is the active function, W is the weighted value of the network, and b is
the offset of the network. These two parameters will be optimized during the network
training. The symbols “.” and “*” here represent the matrix multiplication and the point
multiplication between the same dimension matrix. The structure of the LSTM is shown in
Figure 6a.

In order to choose the best internal structure of the LSTM, the other two different
internal structures of LSTM networks are considered in this paper. LSTM also has a
variety of internal structural design methods, and by changing the internal structure of the
network, it can change its effect on fault classification. Among the current commonly used
methods, there is a structure called LSTM with observation holes. This network structure
is set up inside the network by changing the settings of the three units, and adds a part
of the ct-1 observation for each unit status at the previous time point. The structure of
LSTM with observation is shown in Figure 6b. Compared to the traditional LSTM network
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structure, this structure is more complicated, and the mathematical expression can be
written as follows: 

ft = σ
(

W f ·[xt, ht−1, ct−1] + b f

)
it = σ(Wi·[xt, ht−1, ct−1] + bi)
ot = σ(Wo·[xt, ht−1, ct] + bo)
c̃t = tan h(Wc·[xt, ht−1] + bc)
ct = ft ∗ ct−1 + it ∗ c̃t
ht = ot ∗ tan h(ct)

(3)
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In addition, there is another structure of LSTM which is called gated recurrent unit
(GRU), that is applied in the field of fault diagnosis and has a relatively novel structure.
Compared to the traditional LSTM, it simplifies the internal structure, but the accuracy of
classification of a GRU can achieve considerable or better results. In addition, it is easier to
train in comparison, and it can largely improve training efficiency. Therefore, GRU is more
inclined to be used in the field of fault diagnosis. It simplifies the internal structure of the
standard LSTM, integrates the forgotten gate and the input gate as a new structure called
update gate zt, and introduces rt as the reset gate. The structure of the GRU is shown in
Figure 6c. Its expression can be written as follows:

zt = σ(Wz·[xt, ht−1] + bz)
rt = σ(Wr·[xt, ht−1] + br)

h̃t = tanh(Wh·[xt, rt ∗ ht−1] + bh)

ht = zt ∗ ht−1 + (1 − zt) ∗ h̃t

(4)

Figure 6 shows the structures of the three different kinds of LSTM neural networks.
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3.3. The LSTM Network Structure Design

The input layer of the LSTM is 40 IMFs. In the LSTM layer, each internal unit is spliced
in order, and at each time, on the long step, we perform a state of states at a hidden layer
and data update; this process is called a unit time step process.

The characteristic input at the current moment and the implicit unit status of the
previous moment are used as the input of the hidden unit in the next step to update
the state. The mathematical expressions of the three different LSTM methods are shown
in Formulas (2)–(4). After that, the output of the LSTM layer is connected with a fully
connected layer (FC 1), and this fully connected layer uses the ReLU activation function
to restrict the output above 0. Then, the output of the FC 1 is connected to a second fully
connected layers (FC 2). This layer with the SoftMax function layer forms the output layer.
The output is a possible state for the samples, and it represents five types of fault states and
a normal state. The structure is shown in the Figure 7.
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The input layer is 40 characteristic data samples after preprocessing. The input neurons
are 40, each data column length is 5000, the sampling frequency is 100 Hz, and the number
of neurons in the LSTM layer is 12. The number of neurons on the first fully connected
layer is 12. The number of neurons on the second fully connected layer is 6. The number of
neurons in the Softmax layer is also 6, which is the six different states’ output.

The three LSTM models in this article are built based on the TensorFlow2.0 GPU
framework, computer matching: Intel (R) Core (TM) i5-12400F CPU @ 4. 40 GHz + NVIDIA
GEFORCE RTX 2070 super 8 GB. The batch size is set to 800, and the maximum number of
iterations is 200 times. During the model training, the loss of the task is calculated with
cross-entropy loss, and it is used as the total loss of the model. Due to the fast convergence
speed of the Adam optimizer and less memory demand, it can reduce the performance of
the device. Therefore, the Adam algorithm is chosen as the optimizer and the learning rate
is set to 0.001 to optimize the model. The proportion of the task is adjusted to the optimal
training effect of the tasks. The main parameters of the network are shown in Table 4.

Table 4. Optimal parameter values for the LSTM.

Parameter Name Value

Lr 0.001
Lr decaying lr = lr × 0.9/epoch
Batch size 800

Dropout rate 0.4
Training epochs 200

Activation function ReLU
Optimizer Adam
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Table 4 lists the optimal values for the network parameters, where lr is the learning
rate and the batch size refers to the number of batch samples. The dropout rate refers to the
random resetting of the neuron output to zero with a certain probability during training,
which can help reduce over-fitting. The optimal parameter is obtained based on the actual
situation of the aircraft hydraulic system and multiple experiments.

3.4. EMD-LSTM Method for the Aircraft Hydraulic System

This paper focuses on the fault diagnosis of an aircraft hydraulic system in a noisy
environment, and a fault diagnosticmethod based on EMD-LSTM is proposed in this article.
The collection data include the six different states of signal data obtained by the AMESIM
simulation in Section 2. Eight sensors are used for each state to collect data, including three
data sets of oil pressure (pump, filter, and actuator), three data sets of oil flow rate (pump,
filter, and actuator), a displacement data set, and a velocity data set. First, the EMD method
is used to decompose the collected eight-channel aircraft hydraulic system fault data to
obtain the data characteristics of the IMFs. Then, the PCA method is used to reduce the
dimensions of the IMFs. On the premise of ensuring the effectiveness of the data, the main
feature component is extracted from the different decomposition results of multiple groups
to reduce the data processing amount for subsequent fault diagnosis, and to improve the
efficiency and the speed of fault diagnosis. Finally, the IMFs with high correlations after
dimension reduction are used as the training and test sets to train and test the three LSTM
networks with different internal structures. The flow chart of the EMD-LSTM method is
shown in Figure 8.
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4. The Simulation Results of the EMD-LSTM Method
4.1. Data Collection and Feature Extraction

The data samples used for training and testing of the LSTM are obtained through
simulation of the aircraft hydraulic system model in the second section. The six categories
of states contain a normal state and five types of failure are simulated. Among them,
1000 experimental samples are collected, of which 800 samples are randomly selected as
the training sets and 200 samples are selectd as the testing sets.

In an environment with higher noise, featured information is often drowned in noise.
It is difficult to use the timing signal training network for fault diagnosis. Therefore, signal
preprocessing is considered in this paper, and the feature information is obtained before the
LSTM fault diagnosis. In this paper, the data are preprocessed using the EMD method to
obtain different IMFs. Then, the PCA method is used to reduce the dimension of the IMFs
obtained. There are 5 IMFs in each channel, and we transform the network training data set
from 8 channels to 40 channel sample sets. The length of each data sample is 5000 sampling
points, and the sampling frequency is 100 Hz. These characteristics of different IMFs can
reflect the characteristics of different states of hydraulic systems. The number of samples in
different types is specifically shown in Table 5.

Table 5. Different samples used for the aircraft hydraulic fault diagnosis.

Class Number States Fault Value Training
Data

Testing
Data

Sample
Length Feature

0 Normal state - 800 200 5000 40
1 Pump leakage 1~2 800 200 5000 40
2 Filter blockage 3~4 800 200 5000 40
3 Relief valve spring failure 2600–3300 800 200 5000 40
4 Oil pollution 5~15 800 200 5000 40
5 Actuator inner leakage 0.03~0.05 800 200 5000 40

4.2. The Fault Diagnostic Results in the Comparison of Three EMD-LSTM Methods

In the simulation experiment, the LSTM neural networks with three different internal
structures are used to perform fault diagnosis of the hydraulic system. The accuracy, testing
time, and hardware size are considered in the three LSTM fault diagnostic methods to
compare the fault diagnostic effect. In order to compare the impact of structure on the
LSTM network, the other parameters of the network are set to stay consistent, and only the
internal structure in the LSTM layer is changed. The confusion matrix of the three different
structures of LSTM network diagnosis is shown in Figure 9.

From Figure 9, the accuracy of the three LSTM methods are high, and the accuracy of
all methods reaches more than 97%, Therefore, these three methods are feasible methods
for the fault diagnosis of aircraft hydraulic systems. Relatively, the accuracy of the GRU
method is highest and reaches more than 98%.

From a single failure, the accuracy of class 4 is lower than the other classes. Class 4 is
the oil pollution state of the aircraft hydraulic system. From the figures, the accuracy of the
LSTM method is 86%, the accuracy of the LSTM with observation is 83.5%, the accuracy of
the GRU method is 90%, and almost all of the oil pollution states predict the normal state.
This is because when oil pollution is under a low level, it has a small impact on the entire
aircraft hydraulic system. Therefore, inaccurate situations appear in the fault diagnosis.
In general, low oil pollution degree does not have a great impact on the aircraft hydraulic
system, and can reduce oil pollution by regular replacement of hydraulic oil filters. Specific
overall accuracy, system training time, and hardware resource consumption are shown in
Table 6.
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Table 6. Simulation results of the three LSTM methods.

Class Algorithm Accuracy/% Test Time/s Software/Mb

1 LSTM 97.33 1.68 5.9
2 LSTM with observation 97.08 1.77 7.5
3 GRU 98.25 1.61 3.2

The simulation results show that the accuracy of the three LSTM methods is higher
than 97%, and the GRU method has the highest accuracy at 98.25%. These simulation
results show the method of EMD-LSTM is the best method for fault diagnosis of an
aircraft hydraulic system. In the comparison of the testing time and hardware resource
consumption, it can be seen that the testing time is all relatively short. Basically, the
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operation time can be counted. In terms of hardware resource consumption, the GRU
method has simplified the input door and output door, and due to the simple internal
structures, the GRU is more advantageous than the LSTM and the LSTM with observation
in terms of hardware resource consumption.

Comparing Figure 9 and Table 6, the internal structure of the GRU as the LSTM
network is more suitable for the fault diagnosis of aircraft hydraulic systems, and the
research on anti-noise performance will be based on EMD-GRU.

4.3. EMD-GRU Network Structure and Parameter Optimization

To optimization the performance of the EMD-GRU model, the GRU network structure,
the learning rate, and the batch size are chosen to test the EMD-GRU method.

(1) The structure of the method will affect the fault diagnostic results. In order to
prove the advantages of the EMD-GRU method in this article, three comparison classes of
different structures are selected to compare with the EMD-GRU method.

The first class does not use the EMD method or the PCA method, and directly uses
the 8-channel signals to train and test the GRU networks. The second class does not use the
PCA method and uses all the IMFs to train and test the GRU networks. The third class uses
the EMD method and PCA method, but the GRU networks are separated to eight different
GRU networks, and each network uses five IMFs to train and test the GRU. At last, the
eight GRU networks are used to obtain eight fault diagnostic results, and the eight fault
diagnostic results are used to vote for the final result of this method.

To test the effect of structure on the fault diagnostic results, the parameters in the
different structures are the same. Each structure is simulated 10 times to obtain the average
accuracy and testing time. The simulation results are shown in Table 7.

Table 7. The simulation results of different network structures.

Class Fault Diagnostic Model Structure Accuracy Test Time Mode Size

1 GRU without EMD 93.16% 1.31 s 2.6 mb
2 GRU without PCA 96.33% 3.99 s 7.3 mb
3 EMD-8-GRU 95.71% 1.43 s 10.3 mb
4 EMD-GRU 98.25% 1.61 s 3.2 mb

From the simulation results, it can be seen, in the class of the structure that does not
use EMD for feature extraction, the accuracy decreases significantly. The accuracy of the
GRU network structure reaches 93.16%. From class 2, which is the structure that does
not use PCA dimension reduction, the accuracy rate also decreases, but the decline is not
obvious, with only about 2% decrease. Therefore, the EMD decomposition is effective for
the extraction of features. The IMFs have not been reduced by PCA, so data redundancy
and duplication lead to an increase in testing time, because the input in each group of
test groups tested increases significantly. According to the analysis of 3.1, IMFs increase
from 5 to 15–19. Therefore, PCA dimension reduction can also effectively increase the
accuracy of GRU fault diagnosis. From class 3, the EMD and PCA methods are used in this
class. However, during the training process of the GRU, the features of 40 IMFs are not
processed into the same GRU networks. Instead, eight GRU networks with homogeneous
structures are used for separate training, then the voting decision is used to classify the
states. In this process, there is a problem with the integrity of the information; as a result,
the accuracy rate also decreases, but it is still higher than the accuracy of the solution that
does not adopt EMD. However, the size of the model under this situation is the largest, and
it is not suitable for application in an aircraft hydraulic system because multiple network
operations at the same time take up more hardware equipment resources, and it does not
bring a significant increase in detection speed or a significant improvement in accuracy.

According to the content of the above table, it can be seen that the EMD method
feature extraction is used, and the PCA method is used to reduce the dimension. Finally,
the 40 IMFs is introduced into the same GRU network for training. In this way, the accuracy
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of the EMD-GRU is the highest. The accuracy of the internal structure of the GRU can reach
98.25%, and hardware resource consumption is relatively small; this structure of GRU is
the best structure for aircraft hydraulic system fault diagnosis.

(2) The learning rate and the batch size. In addition to the structure of the model, the
GRU internal parameters’ setting will also affect the effectiveness of the fault diagnosis. The
learning rate and the batch size have a greater impact on the GRU networks. We analyze
the effects of these two parameters and select the best parameters.

To prevent the simulation from being affected by other factors, a single variable is
used to simulate, and each training only changes the value of one parameter, while all other
parameter values are fixed. The input signals are 40 characteristic IMFs, and the internal
structure also uses the GRU structure.

The learning rate has a great impact on the reverse update speed of the GRU network.
If the learning rate is too large, it will cause the network parameters to swing back on both
sides of the optimal solution and it will be difficult to obtain the optimal solution. If the
learning rate is too small, it will cause the gradient to drop too much and cause the gradient
to disappear. Therefore, the GRU can increase learning rate attenuation to prevent the
gradient from disappearing.

The batch size is a method of updating the network parameters to divide the in-
put sample in the network training. Avoid the input of a single sample that causes the
optimal problem. Increasing the number of iterations can increase the accuracy of the
network. However, the network training time and fault detection time will be extended.
The simulation results are shown in Figure 10 and Table 8.
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Table 8. The simulation results of different learning rates and batch size.

Learning rate 0.1 0.01 0.001 0.0001 0.00001 0.000001
Accuracy/% 25.5 60.4 91.2 98.1 93.2 79.2

Training time/s 22 47 85 116 456 695

Batch size 100 200 400 800 1200 1600
Accuracy/% 63.5 85.2 96.8 98.4 94.5 88.2

Training time/s 283 209 135 105 99 92

As can be seen from Figure 10a, the learning rate can affect the accuracy of the fault
diagnostic results of the GRU network. When the learning rate is relatively low, the learning
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speed of the network is fast, and as a result, the accuracy of the fault diagnosis is relatively
low. When the learning rate is relatively high, the amount of data from learning is relatively
small, and the GRU network is difficult to make effective fault diagnosis. In the diagnosis
of the aircraft hydraulic system, when the learning rate is 0.001, 0.0001, and 0.00001, the
accuracy of the failure diagnosis of the GRU network is relatively high. The accuracy
all reaches more than 90%. From Table 8, when the learning rate is 0.00001, the training
time is longer. Comparing Table 8 and Figure 10, when the learning rate is 0.0001, the
training time is shorter and the accuracy is highest. Therefore, 0.001 the best learning rate
of GRU networks.

From Figure 10b, different batch sizes will also affect the accuracy of the fault diagnosis.
Compared to the impact of the learning rate, the impact of the batch size is not particularly
obvious. It can be seen from the figure that when the amount of the batch size is 400, 800,
and 1200, the accuracy of the GRU can reach above 95%. Among them, the accuracy rate is
up to 98% when the batch size is 800.

From Table 8, when the batch size is small, the training time will be relatively long.
This is because the total number of data loads in each training cycle is consistent and each
input batch size is small; therefore, it is necessary to enter a large number of samples. In
most cases, the reduction of the batch size can increase the accuracy of the fault diagnosis.
For example, the accuracy rate should be increased when the batch size is changed from
800 to 200. However, in the aircraft hydraulic system fault diagnosis, when the batch size
is lower, the accuracy of the fault diagnostic results cannot be improved; instead, there
will be a decline. It is because, in the failure diagnosis of the aircraft hydraulic system, the
characteristics of the signals of each state often do not appear in a short time. In a signal of
200 sample points, the signal features of different states are extremely similar, so the batch
size is lower and the accuracy of the fault diagnosis is lower too.

Comparing Figure 10b and Table 8, when the batch size of the GRU network is set to
800, the training time is relatively short and the accuracy of the fault diagnosis of the GRU
network is higher. The batch size is set to 800 for fault diagnosis in the EMD-GRU method.

Therefore, through the three groups of the simulation results, the optimized structure
is adding the EMD and PCA methods in the network structure, and using 40 IMFs as the
input to train the GRU networks. The optimized parameters of the GRU are when the
learning rate is set to 0.0001 and the batch size is set to 800.

4.4. Noise Addition and EMD-GRU Fault Diagnosis under Different Noise Environments

In this article, Gaussian white noise is used to add to the 8-channel signals in the
aircraft hydraulic system. Gaussian white noise refers to the probability distribution that
conforms to Gaussian distribution, and the power spectrum density meets the noise of
uniform distribution. It is an ideal model for analyzing channels with sexual noise. The
signal-to-noise ratio (SNR) is a common indicator of noise in a signal. It also adds to
different degrees of noise measurement. If the noise of m dB is added, the calculation is
shown in the following formula:

m = 10log10
Ps

Pn
(5)

In the Formula (5), Pn is the Gaussian white noise power of m dB and Ps is the power
of the original signal. The power calculation of the signal is shown in Formula (6):

P =
∑n

i=1
(
s2

i
)

N
(6)

In Formula (6), N represents the number of data points and si means the number i data
point. K times of Gaussian white noise is still Gaussian white noise; in order to generate
m dB of Gaussian white noise, it can generate a set of standard normal distribution of
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Gaussian white noise, and take a multiplier m to generate the Gaussian white noise of
m dB. Its calculations can be found through Formulas (7) and (8):

Pn =
∑n

i=1(k × nsi)
2

N
= k2 × Pns (7)

Pn =
Ps

10
m
10

(8)

In Formulas (7) and (8), nsi and Pns mean the number i data point and the corre-
sponding power of the Gaussian white noise. Then, different SNR noise is added to the
eight-channel original signals.

Figure 11 is a comparison figure of the original signals and the added noise signals.
In Figure 11, the normal state signal and the fault state of the hydraulic oil filter blockage
are selected and different SNR noises are added to them. The blue line in the figures is
the pump outlet pressure signal in the normal state, and the red one is the fault state. The
black dotted line adds noise of different SNR to the normal state, and the green dotted
line adds noise of different SNR to the fault state. The small window in each figure is an
enlarged signal to a certain time period, which can see the changes of the four state signals
more clearly.
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In Figure 11a,b, the environmental noise is not high, the process of the amplitude of
the oil pressure can be observed clearly, and this ensures that the accuracy will not decrease
significantly within this range. The pressure changes in Figure 11c have been covered
by noise signals, only through amplification that the change process can be seen clearly,
and, thus, the environmental noise statement is obvious. In Figure 11d, the entire signal is
almost completely annihilated in the noise environment.

Then, the anti-noise performance simulation of the EMD-GRU is simulated. In the
simulation experiment, all the signals collected from the AMESIM aircraft hydraulic system
are added different Gaussian white noises to imitate the environmental noises in the aircraft
hydraulic system in an actual working situation.

In the simulation, different SNRs are selected to add noise to simulate different SNR
noise environments. The noise of the EMD-GRU method in the diagnosis of faults affects
the size, and the results of the fault diagnosis are obtained in different noise environments.
The SNR of the white noise in this simulation is 90 dB, 80 dB, 70 dB, 60 dB, 50 dB, 40 dB,
30 dB, and 20 dB.

First of all, the added noise signals need to undergo EMD to obtain their characteristic
components, IMFs and residual r; multiple IMFs after decomposition is shown in Figure 12.
During the EMD process in the figure below, in order to calculate more conveniently, we
only calculate the decomposition of 10 IMFs and then stop the EMD process. Therefore,
each signal is decomposed into 10 unified IMFs and a residual r. The EMD results of the
signals under different SNR noise are shown in Figure 12.
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As shown in Figure 12, the label on the left is the number of the decomposed IMFs, the
first subfigure is the original signal, the following 10 subfigures are IMF1~IMF10, and the
last one is the residual r. The horizontal axis of the coordinate shaft is the number of time
points, the sampling frequency is 100 Hz, and the corresponding time for each sampling
point is 0.01 s.

From the results in the figures, the rationality and effectiveness of the EMD feature
extraction are demonstrated. Because in different noise environments, the distribution
rules of the input characteristics after EMD have obvious similarities, unlike the timing
signals which are difficult to distinguish. The IMFs can be treated as characteristic vectors
of a certain state to train the GRU neural network. Some states can even be easily identified
based on a few features. On the other hand, the result of this decomposition also illustrates
the necessity of using GRU as a fault state classifier. For such a complex characteristic
distribution law, it is almost impossible to diagnose real-time faults by human. The GRU-
based classifier proposed above can learn this inherently distribution law independently,
and then make a timely judgment and assessment of the system conditions based on the
input testing data.

After obtaining multiple different IMFs under different noises, the five component
IMFs that are related to the original signal are selected for PCA dimension reduction. Then,
the GRU network is trained. The relationship between the EMD-GRU method classification
results and environmental noises is shown in the Figure 13. The black dotted block in
the figure represents the EMD-GRU method. In order to compare the effect of its anti-
noise resistance, three methods are adopted as a comparison group to compare the noise
performance of this method. This includes the blue block which represents the FFCNN1D
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method [38], the GAN [39] method is represented by the green stars, and the traditional
LSTM network is represented by the red dots. The LSTM network structure does not use
EMD or PCA dimension reduction. The comparison of the diagnostic results of these four
model structures in different noise environments is shown in Figure 13.
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As can be seen from the Figure 13, in the four methods, the EMD-GRU method has the
best effect to resist noise. When the noise is over 70 dB, these four methods can maintain a
high accuracy which is over 90%. When the noise is from 70 dB to 50 dB, the fault diagnostic
accuracy of the 1DFFCNN and LSTM methods have fallen rapidly. When the noise SNR
is equal to 50 dB, the accuracy rate of the 1DFFCNN is reduced to less than 80%, and
the accuracy of the LSTM method drops to less than 70%. At the same time, the GAN
method and the EMD-GRU method also have a better classification. The accuracy of the
two methods are above 90%. When the SNR of the environment noise reaches 40 dB, the
accuracy of the GAN method begins to decline rapidly, but the EMD-GRU method still has
a good classification ability in this noise environment. The accuracy of its classification can
reach more than 85%. When the SNR of the noise environment reaches 30 dB, the accuracy
of the EMD-GRU method also begins to decline and the accuracy is near 70%, but it is
still higher than the accuracy of the other three methods. When the environmental noise
reaches 20 dB, the accuracy of the three comparison methods is less than 40%, and these
three fault diagnostic methods can not be applied to aircraft hydraulic systems. However,
the diagnostic accuracy of the EMD-GRU method remains around 60%, which has a certain
diagnostic effect.

The simulation results show that the EMD-GRU method can resist strong environmen-
tal noise when the SNR is over 30 dB, and this method can still run stably in a high-noise
environment. Therefore, this method is suitable for the fault diagnosis of aircraft hydraulic
systems, and has a wide range of actual application potential.
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4.5. Comparison between EMD-GRU Method with Various Other Fault Diagnostic Methods

In order to compare the fault diagnostic effects of the EMD-GRU method and different
fault diagnostic methods in different noise environments, five common machine learning
models are selected for comparative studies. These models include three traditional ma-
chine learning models, back propagation (BP), support vector machine (SVM) [40], and
random forest (RF) [41], as well as two deep learning models, namely convolutional neural
network (CNN) [42] and long short-term memory (LSTM) [43].

Among them, the BP neural network is an early traditional shallow neural network
algorithm, and the BP network structure adopted in this article is a four-hidden layer
structure. We choose the splicing fusion method to stitch the signal of the eight channels,
generate an input signal with a length of 40,000 sample points, and train the BP network.
The first hidden layer nodes are set to 2400, the second hidden layer nodes are set to
512, the third hidden layer nodes are set to 128, and the output layer nodes are set to
6. In addition, we use the ReLU activation function. For the structure and parameter
setting of the other four methods, refer to the literature. The simulation mainly compares
the diagnostic results in three different states: no-noise environment, low-noise (70 dB)
environment, and high-noise (40 dB) environment. The simulation results are shown in
Table 9.

Table 9. The simulation results of different environment noises.

Algorithm
Accuracy/%

Without Noise SNR = 70 dB SNR = 40 dB

BP 73.88 59.53 35.91
SVM 65.26 55.25 36.53
RF 75.52 66.95 44.77

CNN 82.98 79.41 50.66
LSTM 92.56 90.44 54.47

EMD-GRU (this article) 98.25 95.29 89.29

The simulation results show that, in an environment without noise, the accuracy of
the EMD-GRU algorithm aircraft hydraulic system fault diagnosis is the highest. Compare
to the three classic machine learning algorithms, BP, SVM, and RF, the accuracy rate of the
EMD-GRU method is relatively high, and the accuracy of GRU is 23.05% higher than that
of SVM. Compared to the deep learning methods, the accuracy of the CNN method has
the lowest accuracy, and while the LSTM does not use EMD and PCA, its accuracy rate is
higher than the CNN.

In a low-noise environment (SNR = 70 dB), the accuracy of the diagnosis of each
method decreases, but the decline in the deep learning methods is not obvious. In the
traditional machine learning methods, the decline in the accuracy of the RF is relatively
not obvious, but the BP and SVM have obvious decreases. At this time, the accuracy of the
EMD-GRU is still higher than 95%, which has a good classification effect.

In a high-noise environment (SNR = 40 dB), the advantage of the method proposed in
this article is obvious. The accuracy of the EMD-GRU method can still be maintained at
about 90%. The accuracy of the other methods decreases significantly. The accuracy of the
EMD-GRU method is 64% higher than the BP network. The accuracy of other deep learning
models in a high-noise environment also drops to nearly 60%; thus, these deep learning
methods can perform fault diagnosis at this time, but the results of the fault diagnosis
cannot be guaranteed.

Through the above simulation results and analysis, the EMD-GRU method proposed in
this article can effectively resist environmental noises and perform accurate fault diagnosis
in a noisy environment. Judging from the simulation results, this method can be diagnosed
stably in the case of 40 dB environmental noise, and the accuracy is near 90%. The EMD-
GRU method provides an effective solution to solve the fault diagnosis of an aircraft
hydraulic system in a noisy environment.
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5. Conclusions

In this paper, an EMD-GUR method was proposed to deal with the fault diagnosis of
an aircraft hydraulic system in different noisy environments. First, the aircraft hydraulic
system was constructed by the AMESIM, and a normal state and five fault states were
considered. Eight different signals of six states were collected by AMESIM simulation.
Second, the EMD and PCA methods was used for preprocessing of the eight-channel
signals, and five IMFs were selected as the input features for fault diagnosis in the LSTM
networks. Then, three different inner structures of the LSTM networks were presented.
The whole structures of the three LSTM methods were designed, and the main parameters
were provided. At last, the flow chart of the EMD-LSTM fault diagnostic method for
the aircraft hydraulic system was presented. Third, the fault diagnostic results of the
three LSTM methods were obtained through simulation, and the simulation results show
that the internal structure of the GRU as the LSTM network is more suitable for the fault
diagnosis of aircraft hydraulic systems; thus, the research on anti-noise performance was
based on the EMD-GRU. Fourth, the structure and the parameters of the EMD-GRU were
optimized to choose the best structure and parameters for our research on fault diagnosis in
different noisy environments. Fifth, Gaussian white noise with different SNRs were added
to the 8-channel signals, and the simulation results of different noisy environments are
presented. Then, a comparison between the EMD-GRU method with various of other fault
diagnostic methods was performed using simulation, and the results show the method
in this article has a better performance in a high-noise environment. In summary, the
EMD-GRU method is a suitable fault diagnostic method of the aircraft hydraulic system
under a noisy environment.

For the EMD-GRU method proposed in this article, the fault diagnostic accuracy can
reach more than 90% in the 40 dB noise environment. However, when the noise is higher
than 20 dB, the fault diagnostic accuracy cannot be guaranteed. In future work, the fault
diagnostic methods of the aircraft hydraulic system in a higher-noise environment will
be considered.
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