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Abstract: In this paper, to make an interceptor intercept a maneuvering target, a parallel approaching
guidance law is developed. In order to estimate the target maneuver more accurately and reduce its
influence on the guidance accuracy, a distance-scalar disturbance observer is employed. Specifically,
the estimation accuracy of the designed observer is not affected by the relative distance. Finite-
time prescribed performance is employed to ensure that the line-of-sight angular rate is capable
of converging to a predetermined small region within the specified finite time. All signals of the
interception system can guarantee an ultimately uniformly boundedness, as proven by Lyapunov
stability theory. Finally, the function of the parallel approaching guidance law is demonstrated using
numerical simulation.

Keywords: finite-time prescribed performance control; nonlinear disturbance observer; parallel
approaching guidance

1. Introduction

With an increasingly complex flight environment and drastic target maneuvers, an
interceptor is required to intercept the target accurately. This presents a great challenge for
the interceptor. The guidance process is generally divided into initial guidance [1], mid-
course guidance [2], and terminal guidance phases [3]. The phase that mainly determines
the interception accuracy is the terminal guidance phase (TGP). As such, guidance law for
the TGP has become a significant supporting technology in guaranteeing the interception
success and performance of an interception system.

Generally, the objectives of the interception in the TGP are to avoid the escape of
the target and to achieve the minimum miss distance [4]. To achieve these objectives,
many works have been reported. Proportional navigation guidance (PNG) laws for non-
maneuvering targets were proposed in [5,6]. Reference [7] proposed a PNG law using
delayed line-of-sight angular rate (LOSAR) information. Recently, parallel approaching
guidance (PAG), a promising strategy that keeps the LOSAR at zero, has received increased
attention [8]. Under PAG, the interceptor possesses a flatter interception trajectory and,
thus, requires less normal acceleration than the target. However, it still is a challenge to
address unknown maneuvers of the target, and more research efforts are necessary.

To address the interception issue of maneuvering targets, many methods have been
reported. To ensure a low sensitivity to the target maneuvers and other unknown factors, a
proportional-integral (PI) control-based guidance law was adopted [9]. According to the
H∞ robust control theory, the H∞ guidance law [10,11] was used to solve the problem of
intercepting a maneuvering target. In addition, an adaptive sliding mode guidance law was
developed for the interception of high-speed and maneuvering targets [12,13]. However, all
of the above were passive disturbance rejection methods. The robustness of these systems
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was realized at the expense of their nominal performance. When a system requires high
performance, the aforementioned methods may struggle to meet the requirements.

Meanwhile, the active disturbance rejection method can efficiently estimate bounded
unknown disturbances and compensate for observed disturbances, to reduce their impact
on the system [14]. Due to its advantages, the active disturbance rejection method is suitable
for a system with good control accuracy. Among these methods, a nonlinear disturbance
observer (NDO) is an effective method that has been used in a lot of systems [15–18].
Furthermore, the NDO was used in a guidance system to estimate unknown target maneu-
vers [19–21]. However, the target maneuvers were treated as compound disturbances in
the above works. With the relative distance decreasing rapidly during an interception, the
estimation accuracy will be affected. In light of all of these factors, further research efforts
to design an NDO with higher estimation accuracy are necessary.

In addition, during the interception of maneuvering targets, some constraints should
be taken into consideration, to ensure the system performance. It is usually required that
the line-of-sight angle (LOSA) remains within a bounded area, to guarantee the target
remains in the seeker’s sight of view. To fulfill this requirement, some remarkable research
results for an interceptor have been reported. An event-triggered (ET) backstepping-based
guidance law was employed to ensure the LOSAR remained at zero [8]. SMC was adopted
to intercept a maneuvering target with a terminal LOSA constraint [19–22]. Nevertheless,
the above works only considered the steady-state performance of the systems. More studies
to simultaneously guarantee a steady state and transient performance are necessary.

As far as this is concerned, the prescribed performance control (PPC) proposed in [23]
can ensure the tracking error remains zero. Its maximum convergence time and the maxi-
mum overshoot do not exceed the preset values, which makes the transient performance
better. Because of this feature, PPC has been employed to solve various kinds of control
problem [24–27]. In particular, PPC was used to stabilize the LOSA and its rate [28]. How-
ever, the traditional PPC guarantees that the system is stabilized as the control time goes
to infinity. It is not an ideal method for solving control problems with a requirement for
the convergence time, such as in interception. Recently, finite-time prescribed performance
control (FPPC) was proposed to solve this problem [29–31]. But the disadvantage of FPPC
is that too large an overshoot makes the transient performance insufficient. To solve this
problem, a novel FPPC that can adjust its bounds adaptively according to the positive or
negative of the initial error was proposed, with a small overshoot [32].

Based on the above motivation, this work proposes a PAG law to intercept a maneuver-
ing target using FPPC. A target maneuver is estimated using a distance-scalar disturbance
observer (DSDO), whose estimation accuracy is not affected by the relative distance. The
objective is to stabilize the LOSAR in the specified finite time and to ensure a minimum
distance. The contributions and advantages of this study are summarized in the following:

1. FPPC is used to stabilize the LOSA to a small enough neighborhood of a given
constant within a given time, so as to make the LOSAR converge to a small enough
neighborhood of the origin within a given time. In this way, the time of the interception
is shortened. With the help of the FPPC technique, there is a small overshoot in the
convergence process;

2. A DSDO is employed to estimate a target unknown maneuver without estimating the
relative distance. Consequently, the estimation accuracy of the DSDO is improved.
The estimation is introduced into the control input, so as to reduce the adverse
influence on the interception accuracy;

3. The system stability is analyzed, which shows that the LOSAR and the estimation
error are uniformly ultimately bounded (UUB). The effectiveness of the PAG law
proposed is ensured.

The arrangement of sections is as follows: The relative kinematics equations in two
dimensions are introduced in Section 2. The DSDO and the FPPC-based PAG law are
proposed in Section 3. The the ability of the signals of the interception system to guarantee



Aerospace 2023, 10, 936 3 of 19

the UUB is proven in Section 4. To illustrate how the PAG law works, simulation results
are given in Section 5. Finally, the conclusions are given.

2. Problem Formulation and Preliminaries

In order to simplify the derivation, both the interceptor and the target are considered
as mass points. Both gravity and the aerodynamics model for them are ignored. Specifically,
the interceptor and the target are denoted by the symbols of ‘i’ and ‘t’, respectively, and a
schematic diagram is provided in Figure 1. To describe the relative motion dynamics, the
relative states consist of the LOSA γ ∈ R, the LOSAR v ∈ R, the relative distance d ∈ R,
and the relative velocity vi−t ∈ R. θi ∈ R is the interceptor’s flight-path angles (FPA).
θt ∈ R is the target’s FPA. The velocities of the interceptor and the target are represented
by vi and vt, respectively. Both vi and vt are assumed to be constants. All of these are
normal components contained in the horizontal plane and can be measured by the seeker
of the interceptor.

Figure 1. Relative motion between the interceptor and the target in a two-dimensional system.

In a horizontal plane without air and gravity, the relative kinematical equations for
the interceptor–target are given as [33]

vi−t = ḋ = vt cos(θt − γ)− vi cos(θi − γ)

v = γ̇ =
1
d
(vt sin(θt − γ)− vi sin(θi − γ))

(1)

The kinematical equations for the interceptor are given as [33]
θ̇i =

ai

vi

ẋi = vxi = vi cos θi

ẏi = vyi = vi sin θi

(2)

where xi ∈ R and yi ∈ R denote the x-coordinate and y-coordinate of the interceptor,
respectively. The velocities along xi and yi are vxi ∈ R and vyi ∈ R, respectively. The
variable ai ∈ R denotes the interceptor’s acceleration normal to its velocity. All of these are
normal components contained in the horizontal plane.
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In the same way, the kinematical equations of the target are given as [33]
θ̇t =

at

vt

ẋt = vxt = vt cos θt

ẏt = vyt = vt sin θt

(3)

where xt ∈ R and yt ∈ R denote the x-coordinate and y-coordinate of the target, respec-
tively. The velocities along xt and yt are vxt ∈ R and vyt ∈ R, respectively. at ∈ R represents
the target’s normal acceleration. It is important to point out that all the states mentioned
above, except the target’s acceleration at, can be measured by the seeker of the interceptor.
All of them are normal components contained in the horizontal plane.

Considering (1), (2), and (3), the derivative of v is given as [34]

v̇ =
−2vi−t

d
v−

ai cos(θi − γ)

d
+

at cos(θt − γ)

d
(4)

Thus, the relative kinematic equations are rewritten as [34]
γ̇ = v

v̇ =
−2vi−t

d
v−

ai cos(θi − γ)

d
+

Ω
d

(5)

where Ω = at cos(θt − γ) is the target’s acceleration normal to the LOSAR. Because at is
unmeasurable, Ω is treated as a disturbance of the system.

The objective of this paper was to design the interceptor’s acceleration ai as a control
input that can guarantee v remains in a sufficiently small neighborhood to zero. In other
words, γ rapidly converges to a neighborhood of a suitable constant under the conditions
of the LOSA constraint and simultaneously satisfies the performance indexes of the state
and control input. Then, if the relative velocity is negative and the LOSAR is stabilized,
the interceptor will finally intercept the target [35]. Thus, to realize the PAG, we define the
tracking error as eγ = γ− γc where γc is the constant tracking command of γ.

The derivative of the tracking error eγ with respect to time is given as

ėγ = v (6)

because of the derivative of the tracking command, γ̇c is zero for achieving PAG.
In order to carry out follow-up work and take into account the real situation, we made

the following assumptions:

Assumption 1. The target’s normal acceleration at is continuous, bounded, and differentiable.

And at satisfies

∣∣∣∣∣diat

dti

∣∣∣∣∣ ≤ α, i = 0, 1, ..., where α > 0 is a constant;

Assumption 2 ([8]). For the system (5), the LOSAR is controllable when |θi − γ| 6=
π

2
. Thus, in

the guidance process, the LOSA γ and the FGA θi of the interceptor remain in the domain Π defined
by

Π =
{

γ, θi,∈ R : |θi − γ| 6= π

2

}
(7)

Remark 1 ([8]). The guidance system (5) is unavailable when the relative distance d→ 0. In the
TGP, considering the limitations of physical factors such as the interceptor seeker and the receiver
overload, there is a minimum distance dm; when d < dm, the guidance can be considered to end,
then the interceptor and the target rely on their own inertia to complete the final guidance task.
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Remark 2. Considering the field of view of the interceptor’s seeker and the performance of the
interception, the LOSA is required to be always in the feasible region Ξ = {γ ∈ R : γl ≤ γ ≤ γu},
where γl and γu are the lower and upper bounds of the region. In this feasible domain, the seeker
can measure the system state information at all times. If the LOSA is not in this region, this could
cause the escape of the target and thus cause the failure of the interception mission.

3. Finite-Time Prescribed Performance and DSDO-Based Guidance

In this section, PAG is realized using a DSDO and FPPC. The unmeasured target
maneuver is estimated by the DSDO and the estimation is fed forward into the system.
To improve the interception accuracy, an DSDO is designed whose estimation accuracy
is independent of the relative distance. A PAG law is proposed using the FPPC, so that
the LOSAR converges to the neighborhood of zero in a specified finite time. The rapid
performance and transient performance of the guidance system are ensured.

3.1. Finite-Time Prescribed Performance

The faster the LOSAR converges, the better the speed of the guidance system. There-
fore, FPPC is a suitable method for designing a PAG law. In view of the disadvantage of
a large overshoot affecting the performance, a finite-time performance function (FTPF) is
employed. Considering the seeker’s measurement area and the quality of the PAG, the
LOSA error eγ converges to a bounded region, constrained as follows:

ωl(t) < eγ < ωu(t) (8)

where ωl ∈ R and ωu ∈ R are the FTPFs. Due to the advantages of PPC, the tracking error
can be limited to the preset upper and lower bounds. During the whole guidance process,
the LOSA error eγ is limited to the FTPFs ωl and ωu; that is, ωl < γ− γc < ωu. Thus, the
LOSA is restricted between ωl + γc and ωu + γc. The LOSA is required to be within the
region Ξ to achieve a good performance for the guidance system, so the choice of FTPFs
should satisfy the inequality, which is given as

γl < ωl + γc < ωu + γc < γu (9)

Due to the advantages of PPC, the LOSA is maintained in the region Ξ during the
guidance process. The escape of the target is avoided.

The FTPFs ωl and ωu are chosen as [32]

ωl =

γ0[sign(eγ(0))− ρl ] exp
(
−τt

TF − t

)
− ρlγl,F, t ∈ [0, TF)

− ρlγl,F, t ∈ [TF, ∞)

ωu =

γ0[sign(eγ(0))− ρu] exp
(
−τt

TF − t

)
− ρuγu,F, t ∈ [0, TF)

− ρuγu,F, t ∈ [TF, ∞)

(10)

where ρl ∈ (0, 1), ρu ∈ (0, 1), γ0 > 0, γl,F > 0, γu,F > 0, τ > 0 and TF > 0 are the constants
to be determined, and eγ(0) is the initial value of the LOSA error. γl,F < γ0 and γu,F < γ0.
Correct choice of the above parameters is required to ensure that the inequality (8) is valid.

Remark 3. The parameter τ determines the convergence speed of the FTPFs. The specified finite
time TF determines the convergence time of the LOSAR. In this way, the speed of the guidance
system is ensured.
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Because of the requirement to ensure that the LOSA error can converge before the end
of the guidance, attention should be paid to the selection of TF. The time-to-go of the PAG
is given as

tttg =
dm − d(t)

vm−t
(11)

where dm is the minimum distance.
To make the LOSA error converge to a suitable time, the value of TF is approximately

chosen as
TF = frtttg0 (12)

where tttg0 is the initial value of the time-to-go and fr ∈ (0, 1) is a suitable constant.

Remark 4. Since the signs of the FTPFs are related to the initial LOSA error, the sign of the LOSA
error eγ remains unchanged in the process of realizing the PAG. This will not only give the system a
smaller overshoot but also facilitates the seeker in measuring information during the interception
process. This improvement in the measurement quality plays a pivotal role in the improvement in
the interception accuracy.

To proceed further, the derivatives of ωl and ωu with respect to time are given as

ω̇l =


−γ0τTF

(TF − t)2 [sign(eγ(0))− ρl ] exp
(

τ
−t

TF − t

)
, t ∈ [0, TF)

0, t ∈ [TF, ∞)

ω̇u =


−γ0τTF

(TF − t)2 [sign(eγ(0))− ρu] exp
(

τ
−t

TF − t

)
, t ∈ [0, TF)

0, t ∈ [TF, ∞)

(13)

The second-order derivatives of FTPFs are given as

ω̈l =


γ0
(
τ2T2

F − 2τTF(TF − t)
)

(TF − t)4 (sign(eγ(0))− ρl) exp
(

τ
−t

TF − t

)
, t ∈ [0, TF)

0, t ∈ [TF, ∞)

ω̈u =


γ0
(
τ2T2

F − 2τTF(TF − t)
)

(TF − t)4 (sign(eγ(0))− ρu) exp
(

τ
−t

TF − t

)
, t ∈ [0, TF)

0, t ∈ [TF, ∞)

(14)

Based on the design flow of the prescribed performance, we convert eγ into the
unconstrained error υ, which is expressed as [32]

υ = ln

(
eγ −ωl

ωu − eγ

)
(15)

where υ satisfies lim
eγ→ωl

υ = −∞, lim
eγ→ωu

υ = ∞. Considering that the Θ(eγ) = ln

(
eγ −ωl

ωu − eγ

)
is a monotonically increasing function of the LOSA error, any LOSA error eγ ∈ (ωl(t), ωu(t))
uniquely corresponds to an unconstrained error υ ∈ (−∞, ∞). The task of controlling the
constrained error can be transformed into the task of controlling unconstrained error. In
this regard, controlling an unconstrained error greatly reduces the difficulty of control.
There is no need to worry about interception failure due to an excessive absolute value
of LOSA.

The derivative of υ respect to time is given as
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υ̇ = η

(
ėγ +

(ω̇l − ω̇u)eγ + ω̇uωl −ωuω̇l

ωu −ωl

)

= η

(
v +

(ω̇l − ω̇u)eγ + ω̇uωl −ωuω̇l

ωu −ωl

) (16)

with η =
ωu −ωl

(eγ −ωl)(ωu − eγ)
.

Now, the objective to converge the constrained v to the neighborhood of zero is
transformed into stabilizing the unconstrained error υ.

3.2. Distance Scalar Disturbance Observer

Generally speaking, the unknown target maneuver is usually treated as the compound

disturbance $ =
Ω
d

. However, when the interceptor nears the target, due to the extremely
small relative distance, the derivative of the compound disturbance $ will approach infinity.
Obviously, the estimation accuracy is seriously affected. Therefore, we project the target
acceleration into the LOS coordinate frame and estimate the target’s acceleration normal to
the LOSAR Ω by designing an DSDO. The estimation accuracy is better, regardless of the
relative distance.

The DSDO is designed as{
Ω̂ = ẑ + nvd

˙̂z = n(vvi−t + aicos(θi − γ)− Ω̂)
(17)

where n > 0 is a constant, z is an intermediate variable, and z = Ω− nvd.
The derivative of z is given as

ż = Ω̇− nvḋ− ndv̇ (18)

Substituting (5) into (18) yields

ż = Ω̇ + n(vvi−t + ai cos(θi − γ)−Ω) (19)

The derivative of the disturbance Ω is given as

Ω̇ = ȧt cos(θt − γ)− at sin(θt − γ)
(
θ̇t − γ̇

)
(20)

and then, substituting (1) and (3) into (20) yields

Ω̇ =− sin(θt − γ)

vt
a2

t +
vtsin2(θt − γ)

d
at

− vi sin(θi − γ) sin(θt − γ)

d
at + ȧt cos(θt − γ)

(21)

Recalling that both vm and vt are constant and

∣∣∣∣∣diat

dti

∣∣∣∣∣ ≤ α, i = 0, 1, ..., it is obtained that

∣∣Ω̇∣∣ ≤ a2
t

vt
+

vt

d
α +

vi

d
α + α

≤
a2

t
vt

+
vt + vi + d

d
α

≤
α2

vt
+

vt + vi
dm

α + α

(22)
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Since the right side of the inequality sign consists of constant terms, the derivative of
the disturbance Ω̇ is bounded.

Considering the stability of the DSDO, the error of estimation is defined as

Ω̃ = Ω− Ω̂ (23)

The derivative of Ω̃ is developed as

˙̃Ω = Ω̇ + n(vvi−t + ai cos(θi − γ)−Ω)− n
(
vvi−t + ai cos(θi − γ)− Ω̂

)
= Ω̇− n

(
Ω− Ω̂

)
= Ω̇− nΩ̃

(24)

where Ω̇ is bounded and n > 0. Thus, the estimation error will converge to a bounded
region, and the designed DSDO can track the unknown disturbance.

Remark 5. This paper provides a design idea for target maneuver estimation that is not limited to
a two-dimensional coordinate system. When considering the interception problem of a maneuvering
target in a three-dimensional coordinate system, the target acceleration can still be projected onto
two components perpendicular to the line-of-sight (LOS) under the LOS frame. In this way, the
decoupling of the disturbance and relative distance is realized, and the decline in the estimation
accuracy is avoided when the interceptor is near the target.

3.3. Parallel Approaching Guidance Design

As above, the LOSA error eγ is converted to an unconstrained υ using an error trans-
formation function, and the projected target acceleration is estimated by the DSDO using
the system states. In order to achieve PAG, we use the system states and the estimation Ω̂
to design a PAG law that can stabilize υ and then input the PAG law into the interception
system. The structure of the interception system of this paper is shown in the Figure 2. Con-
sidering the principle of the PAG making the LOSAR remain zero, the PAG law is obtained
using the method of backstepping. To proceed further, we define z1 = υ, z2 = v − σc,
where σc is a virtual law to be designed. To stabilize the transformed error, just like in the

common stability analysis process, we define V1 =
1
2

z2
1, and its derivative is given as

V̇1 = z1η

(
v +

(ω̇l − ω̇u)eγ + ω̇uωl −ωuω̇l

ωu −ωl

)
= z1η

(
z2 + σc +

(ω̇l − ω̇u)eγ + ω̇uωl −ωuω̇l

ωu −ωl

) (25)

Figure 2. FPPC-based PAG system structure diagram.
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We design the stabilizing function σc as

σc = −
k1z1

η
− (ω̇l − ω̇u)eγ + ω̇uωl −ωuω̇l

ωu −ωl
(26)

where k1 > 0 is a constant. In fact, σc can be understood as the desired LOSAR, which can
stabilize υ.

Inserting (26) into (25) yields

V̇1 = −k1z2
1 + ηz1z2 (27)

We define the stability function as

V2 = V1 +
1
2

z2
2 (28)

To proceed further, the derivative of V2 is given as

V̇2 = −k1z2
1 + ηz1z2 + z2(v̇− σ̇c)

= −k1z2
1 + ηz1z2 + z2

(
−2vi−t

d
v +

1
d

Ω− σ̇c −
cos(θi − γ)

d
ai

) (29)

The derivative of the variable σc is given as

σ̇c =
k1υ̇η − υη̇

η2 − (ω̈l − ω̈u)eγ + (ωl −ωu)v + ω̈uωl −ωuω̈l

(ωu −ωl)

− (ω̇l − ω̇u)[(ω̇l − ω̇u)eγ + ω̇uωl −ωuω̇l ]

(ωu −ωl)
2

(30)

where η̇ =
ω̇l − ω̇u

(eγ −ωl)(ωu − eγ)
−

(v− ω̇l)(ω̇u −v)(ωu −ωl)

(eγ −ωl)
2(ωu − eγ)

2 .

To stabilize the transformed error and the LOSAR, we design the PAG law as

ai =
d

cos(θi − γ)

(
−2vi−t

d
v− σ̇c + k2z2 + ηz1 +

1
d

Ω̂ +
λ1z2

2d2

)
(31)

where
λ1z2

2d2 is the stability term, which will be mentioned below, and λ1 > 0 is a regula-
tion factor.

In this way, the LOSAR is stabilized within the given time TF and remains in a small
enough neighborhood of zero until the end of guidance. The implementation mechanism
of the PAG is shown in Figure 3.

Figure 3. The implementation of PAG using FPPC.
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4. Stability Analysis

According to the principle of PAG, if the LOSA error and the estimation error can
guarantee UUB, the feasibility of the guidance law can be verified. In this section, the
stabilities of the LOSA error and the estimation error are analyzed. This analysis leads to a
theorem, as follows:

Theorem 1. For the system (5), in the presence of the DSDO (17) and the PAG law (30) based on
the FPPC, the signal z1, z2 and the estimation error Ω̃ are UUB and the PAG is realized when the
constants k1, k2, and n satisfy the conditions

k1 > 0

k2 > 0

n >
1

2λ1
+

λ2

2

(32)

where λ2 > 0 is a regulation factor.

Proof of Theorem 1. Considering the estimation error of the DSDO, we define the stability
function of the guidance system (5) as

V = V2 +
1
2

Ω̃2 (33)

To discuss the role of the PAG law in stabilizing the signals z1 and z2, we substitute
(31) into (29), and the derivative of V2 is rewritten as

V̇2 = −k1z2
1 − k2z2

2 +
z2

d
(
Ω− Ω̂

)
−

λ1z2
2

2d2
(34)

Using Young’s inequality, one has

V̇2 ≤ −k1z2
1 − k2z2

2 +
λ1z2

2
2d2 +

1
2λ1

Ω̃2 −
λ1z2

2
2d2

≤ −k1z2
1 − k2z2

2 +
1

2λ1
Ω̃2

(35)

As long as we can prove the boundedness of Ω̃, we can guarantee that z1 and z2 will
be stabilized. Taking the derivative of (33) and substituting (24) into it, we can obtain

V̇ ≤ −k1z2
1 − k2z2

2 +
1

2λ1
Ω̃2 + Ω̃ ˙̃Ω

≤ −k1z2
1 − k2z2

2 +
1

2λ1
Ω̃2 + Ω̃

(
Ω̇− nΩ̃

)
≤ −k1z2

1 − k2z2
2 −

(
n− 1

2λ1

)
Ω̃2 + Ω̃Ω̇

(36)

Using Young’s inequality, the inequality (36) becomes

V̇ ≤ −k1z2
1 − k2z2

2 −
(

n− 1
2λ1

)
Ω̃2 +

λ2

2
Ω̃2 +

1
2λ2

Ω̇2

≤ −k1z2
1 − k2z2

2 −
(

n− 1
2λ1
− λ2

2

)
Ω̃2 +

1
2λ2

Ω̇2

≤ −k1z2
1 − k2z2

2 −
(

n− 1
2λ1
− λ2

2

)
Ω̃2 +

1
2λ2

∣∣Ω̇∣∣2
(37)

where λ2 is a positive regulation factor.
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Taking into account the above proof of the boundedness of Ω̇, we substitute the proof
result (22) into (37). The derivative of the stability function V is rewritten as

V̇ ≤ −k1z2
1 − k2z2

2 −
(

n− 1
2λ1
− λ2

2

)
Ω̃2 +

1
2λ2

(
α2

vt
+

vt + vi

dm
α + α

)2

≤ −κV + C

(38)

where κ and C are given as

κ := min


λmin(k1)
λmin(k2)

λmin

(
n−

1
2λ1
−

λ2

2

)


C :=
1

2λ2

(
α2

vt
+

vt + vi

dm
α + α

)2

(39)

If k1, k2, and n satisfy the condition (32), according to (38) one has

0 ≤ V ≤
[

V(0)− C
κ

]
e−κt +

C
κ

(40)

where V(0) =
1
2

z2
1(0) +

1
2

z2
2(0) +

1
2

Ω̃2(0).
From the definition of the Lyapunov function V, we have [35]

|z1| ≤

√
2
[

V(0)− C
κ

]
e−κt +

2C
κ

|z2| ≤

√
2
[

V(0)− C
κ

]
e−κt +

2C
κ

∣∣Ω̃∣∣ ≤ √2
[

V(0)− C
κ

]
e−κt +

2C
κ

(41)

From (41), we can conclude that for any t ≥ T, we have |z1| ≤ D, |z2| ≤ D, and∣∣Ω̃∣∣ ≤ D where [35]

D =

√
2
[

V(0)− C
κ

]
e−κT +

2C
κ

(42)

Then, we have [35]

T = −1
κ

ln

 D2
1 −

2C
κ

2
[
V(0)− C

κ

]
 (43)

In addition, from (40) we can determine that

lim
t→∞

V ≤ C
κ

(44)

This means the signals z1, z2 and Ω̃ are UUB [18]. This completes the proof.
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5. Simulation Results

To prove the feasibility of the PAG law, three scenarios were considered in this sec-
tion. In addition, the guidance performances of the PAG law in the three scenarios were
compared with those of PNG. The selections of the initial system states and the controller
parameters are given in Tables 1 and 2. The simulation results for the three Scenarios were
as follows:

Table 1. The initial values of the guidance system states.

System States Initial Value

(xm0, ym0) (0, 0) (m)
(xt0, yt0) (3600, 3600) (m)

vm 530 (m/s)
vt 410 (m/s)

θm0
65π

180
(rad/s)

θt0 0 (rad/s)

γc
20π

180
(rad/s)

Table 2. The values of the controller parameters.

System States Initial Value

k1 3
k2 10
n 100
γ0 1.4543
ρl 0.85
ρu 0.55
TF 9.2
τ 1.89

γl,F 0.0471
γu,F 0.0727

Scenario 1 (Constant Acceleration): The acceleration of the target is given by at = 9 g.
Considering the target for a circular maneuver, at = 9 g, when ai = 0. It is apparent that the
LOSAR was not stabilized, and the minimum distance could not be reached, see Figure 4.
That means the interception was unsuccessful when ai = 0. Then, we fed the FPPC-based
guidance law into the system. From Figure 5, the DSDO could track the target’s maneuver
well using the designed PAG law. This means that the influence of the target maneuver
on the guidance accuracy could be compensated for well after the estimation of DSDO
was input into the system. From Figure 6a,c, both the tracking error and the LOSAR were
stabilized with the FPPC in the specified finite time TF. As can be seen in Figure 4a, the
overshoot of the tracking error was small. That means that the smooth change in LOSA
gave the system a good performance. If the relative velocity is negative, that is, vi−t < 0,
when the LOSAR remains in a small enough neighborhood of origin, PAG will be realized.
From Figure 6b, the relative velocity was negative when the LOSAR was stabilized. In
Figure 6d, the relative distance finally converged to the minimum distance. The miss
distance is shown in Table 3. The PAG law is presented in Figure 7. In addition, in Figure 8,
we can see the trajectories of both the interceptor and the target. Therefore, the effectiveness
of the PAG law was illustrated when the target performed a circular maneuver.
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a b

Figure 4. Signals of the interception system without guidance law in Scenario 1: (a) The LOSAR;
(b) The relative distance.

Figure 5. The disturbance and its estimation in Scenario 1.

a b

c d

Figure 6. Closed-loop signals of the interception system in Scenario 1: (a) The LOSA error; (b) The
relative velocity; (c) The LOSAR; (d) The relative distance.

Figure 7. The interceptor’s acceleration in Scenario 1.
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Figure 8. Engagement trajectory in Scenario 1.

Scenario 2 (Sine Acceleration): The acceleration of the target was set to at = 9 g sin(0.01t).
For the follow-up comparison, we considered a situation where ai = 0. It is apparent that
the LOSAR was not stabilized and the minimum distance could not be achieved, see
Figure 9. That means the interception was unsuccessful when ai = 0. From Figure 10, the
DSDO could track the target’s maneuver well using the PAG law. That means that the
influence of the target maneuver on the guidance accuracy could be well compensated
for after the estimation of DSDO was input into the system. From Figure 11a,c, both the
tracking error and the LOSAR were stabilized with the FPPC within the specified finite time
TF. As can be seen in Figure 11a, the overshoot of the tracking error was small. That means
that the smooth change in LOSA gave the system a good performance. From Figure 11b,
the relative velocity was negative when the LOSAR remained in the neighborhood of zero.
As seen in Figure 11d, the relative distance finally converged to the minimum distance. The
PAG law is shown in Figure 12. In addition, from Figure 13 we can see the trajectories of
both the interceptor and the target. Therefore, the effectiveness of the PAG law is illustrated.

a b

Figure 9. Signals of the interception system without guidance law in Scenario 2: (a) The LOSAR;
(b) The relative distance.

Figure 10. The disturbance and its estimation in Scenario 2.

Scenario 3 (Square-Like Acceleration): The acceleration of the target at was given by a
square-like signal, the amplitude of the signal was 9 g, and the frequency was 0.3 rad/s.
Considering the target for a square-like maneuver when ai = 0, the LOSAR and the relative
distance were as shown in Figure 14. The interception was unsuccessful when ai = 0.
As seen in Figure 15, the DSDO could track the target’s maneuver well using the PAG
law. That means the influence of the target maneuver on the guidance accuracy could be
well compensated for after the estimation of the DSDO was input into the system. From
Figure 16a,c, both the tracking error and the LOSAR were stabilized using the FPPC within
the specified finite time TF. As can be seen in Figure 14a, the overshoot of the tracking
error was small. That means that the smooth change in the LOSA gave the system a
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good performance. From Figure 16b, the relative velocity was negative when the LOSAR
remained in a small enough neighborhood to zero. In Figure 16d, the relative distance
finally converged to the minimum distance. The PAG law is shown in Figure 17. In
addition, in Figure 18, we can see the trajectories of both the interceptor and the target.
Therefore, the effectiveness of the guidance law was illustrated when the target performed
a square-like maneuver.

a b

c d

Figure 11. Closed-loop signals of the interception system in Scenario 2: (a) The LOSA error; (b) The
relative velocity; (c) The LOSAR; (d) The relative distance.

Figure 12. The interceptor’s acceleration in Scenario 2.

Figure 13. Engagement trajectory in Scenario 2.

a b

Figure 14. Signals of the interception system without guidance law in Scenario 3: (a) The LOSAR;
(b) The relative distance.
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Figure 15. The disturbance and its estimation in Scenario 3.

a b

c d

Figure 16. Closed-loop signals of the interception system in Scenario 3: (a) The LOSA error; (b) The
relative velocity; (c) The LOSAR; (d) The relative distance.

Figure 17. The interceptor’s acceleration in Scenario 3.

Figure 18. Engagement trajectory in Scenario 3.

In order to illustrate the guidance performance of the PAG law designed in this paper,
we used the existing PNG method for a comparative analysis. The PNG law is given as [36]

ai = −kpnḋv (45)

where kpn ≥ 2 is the unitless coefficient of PNG. In this section, kpn = 5. Then, we input
the PNG law into the system (5) and compared its guidance performance with the PAG law
designed in this paper for Scenario 1, Scenario 2, and Scenario 3. The relative distance with
the PNG law (40) is shown in Figure 19.
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Figure 19. The relative distance with the PNG law in the three scenarios.

The guidance accuracies of the interceptor with the PNG law (40) and the PAG law
designed in this paper in the different scenarios are shown in Table 3.

Table 3. The guidance accuracies of the different guidance laws in the different scenarios.

Scenarios Miss Distance of PNG (m) Miss Distance of PAG (m)

Scenario1 0.6369 0.1579
Scenario2 3.419 0.5503
Scenario3 Miss 0.1219

Through comparing the precision of PNG and PAG in the different scenarios, it
was seen that the PAG law designed in this paper had a higher precision in the cases of
intercepting the three kinds of target maneuvers. The precision of PNG in the three cases
was inferior to that of the PAG. When intercepting a target performing a square wave
maneuver, the interceptor even missed the target. Therefore, it is not difficult to see that the
PAG law based on the FPPC had a stable accuracy when intercepting large maneuvering
targets. This is because the designed DSDO can estimate the target maneuver well, and the
FPPC is designed such that the LOSA error can be kept within the preset bounds during
the guidance process.

6. Conclusions

In this study, a PAG law for an interceptor using FPPC was proposed. To eliminate
the uncertainty of unknown maneuvering target acceleration, a DSDO was developed.
Specifically, the estimation accuracy of the DSDO was independent of the relative distance.
Then, in order to realize the PAG, the FPPC was used to ensure the LOSAR converged to the
neighborhood of zero within the specified finite time and to make it remain at zero during
the interception. In this way, the speed of the interception system was also improved. All
signals of the interception system could guarantee UUB, and the feasibility of the PAG law
is illustrated by the simulation results.
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Abbreviations
The following abbreviations are used in this manuscript:

TGP Terminal guidance phase
PNG Proportional navigation guidance
LOSAR Line-of-sight angular rate
PAG Parallel approaching guidance
PI Proportional-integral
NDO Nonlinear disturbance observer
LOSA Line-of-sight angle
ET Event-triggered
PPC Prescribed performance control
FPPC Finite-time prescribed performance control
UUB Uniformly ultimately bounded
FPA Flight-path angle
DSDO Distance-scalar disturbance observer
FTPF Finit-time performance function
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