
Citation: Spodniak, M.; Hovanec, M.;

Korba, P. Jet Engine Turbine

Mechanical Properties Prediction by

Using Progressive Numerical

Methods. Aerospace 2023, 10, 937.

https://doi.org/10.3390/

aerospace10110937

Academic Editor: Sergey Leonov

Received: 13 August 2023

Revised: 25 October 2023

Accepted: 30 October 2023

Published: 1 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

aerospace

Article

Jet Engine Turbine Mechanical Properties Prediction by Using
Progressive Numerical Methods
Miroslav Spodniak * , Michal Hovanec and Peter Korba

Faculty of Aeronautics, Technical University of Košice, Rampová 7, 04 121 Košice, Slovakia;
michal.hovanec@tuke.sk (M.H.); peter.korba@tuke.sk (P.K.)
* Correspondence: miroslav.spodniak@tuke.sk

Abstract: The propulsion system for an aircraft is one of its most crucial systems; therefore, its reliable
work must be ensured during all operational conditions and regimes. Modern materials, techniques
and methods are used to ensure this goal; however, there is still room for improvement of this complex
system. The proposed manuscript describes a progressive approach for the mechanical properties
prediction of the turbine section during jet engine operation using an artificial neural network, and it
illustrates its application on a small experimental jet engine. The mechanical properties are predicted
based on the measured temperature, pressure and rpm during the jet engine operation, and targets
for the artificial neural network are finite element analyses results. The artificial neural network
(ANN) is trained using training data from the experimental measurements (temperatures, pressure
and rpm) and the results from finite element analyses of the small experimental engine turbine
section proposed in the paper. The predicted mechanical stress by ANN achieved high accuracy in
comparison to the finite element analyses results, with an error of 1.38% for predicted mechanical
stress and correlation coefficients higher than 0.99. Mechanical stress and deformation prediction
of the turbine section is a time-consuming process when the finite element method is employed;
however, the method with artificial neural network application presented in this paper decreased the
solving time significantly. Mechanical structural analyses performed in ANSYS software using finite
element modeling take around 30–40 min for one load step. In contrast, the artificial neural network
presented in this paper predicts the stress and deformation for one load step in less than 0.00000044 s.

Keywords: turbine; jet engine; finite element method; artificial neural network; mechanical stress;
deformation

1. Introduction

The failure of jet engines has been an issue since the early days of aviation. Extensive
research on material science has ensured improvement in the field of mechanical strength
and extended the life of jet engine parts [1–3]. Mainly, parts in the hot section of a jet engine
are subjected to high loads due to the high temperatures, centrifugal forces, etc. [4]. The
critical part is the high turbine section where all the above-mentioned loads are applied [5,6].
The extreme heat emitted by the combustion exhaust gases has a major impact on the
turbine disc and blades stress and turbine life properties. To ensure high strength of
the turbine parts, the proper materials with high-performance material properties such
as Young’s modulus and thermal expansion coefficient have to be used [7]. There are
many scientific papers investigating the material properties impact on the operational
mechanical characteristics of gas turbines [8,9]. The progress in material science is focused
on progressive materials, for example, materials such as superalloys and thermal barrier
coatings that are used in gas turbines; these are described in many scientific articles [10–12].

The progress in material science is one of the ways in which aviation safety can
be increased; another is an appropriate novel design of the aircraft or jet engine parts.
The history of aviation shows that the accurate and proper design of the aircraft and jet
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engine parts is one of the crucial parameters in terms of safe aircraft operation. Jet engine
malfunction and failure can cause disaster. In the study of an aircraft engine high-pressure
turbine (HPT) first stage blade, the authors claimed that almost 50% of failures are located in
the damage of turbine blades and discs [13]. There are also other studies that have pointed
out the design of the aircraft parts, showing that an impropriate design can cause aircraft
parts failure [1,14–16]. There are many numerical and experimental ways for improving
aircraft engine reliability during development; however, it is essential to also monitor the
strength of the aircraft parts and their reliability during the operation [17,18].

During the operation of particular parts of the aircraft, they have to be properly mon-
itored. Nowadays, jet engines use modern software for health monitoring, which are
parts of the FADEC (full authority digital engine control) that are mainly used for engine
control [19,20]. The FADEC systems perform many functions in modern jet engines, for
instance, functions of gas generators such as the control of fuel flow, acceleration and
deceleration; control of turbine clearance; idle settings; etc. FADEC also ensures protection
against the engine exceeding the limits in terms of overspeed, power management, auto-
matic engine starting sequence, manual engine starting sequence, thrust reverser control,
etc. For these functions, FADEC uses many inputs gained from the sensors built into the
jet engine that monitor the temperatures, pressures, rpm, altitude, Mach number, physical
fan speed, physical core speed, ratio of fuel flow, corrected fan speed, corrected core speed,
burner fuel–air ratio, etc. In [21], the authors use 24 monitored inputs for their FADEC
study; the result of their research was the remaining life of the turbofan engine. These
measured parameters could be used to predict the mechanical properties. There have been
several studies on mechanical properties prediction, for example, one of them described the
stress prediction of the compressor disc-drum and the process of selecting and optimizing
the artificial neural network [21]. In [22], the remaining useful life was predicted by the
neural network. In [23], the authors used an artificial neural network (ANN) for fatigue
life prediction of a steam turbine rotor. The trend in the jet engine industry is to use new
algorithms for controls and methods application and new materials such as composites
for the fan section; special alloys for the compressor, combustion chambers and turbines,
etc. The presented paper combines modern mathematical approaches to create methods
suitable for modern engine health and mechanical strength monitoring.

The mechanical properties, namely deformation and stress, can serve as the inputs for
the remaining fatigue life prediction of a jet engine and can be used as a supplementary
parameter for health monitoring [23,24]. The main novelty of this paper is devoted to
the methodology, which represents the application of ANNs to predict the mechanical
properties of the turbine section. The surrogation of the finite element method (FEM) for
the mechanical properties prediction of the turbine section based on ANNs is used. The
FEM replacement by ANNs and its application on jet engines represent a modern approach.
The surrogate model is well known for its design optimization but not in the monitoring of
the jet engine [25]. The surrogate model used for monitoring health is the main novelty of
the proposed paper. There have already been many studies that have shown the fact that
an ANN consumes less time than FEM analysis [26–28]; therefore, it is a suitable approach
for jet engine health monitoring rather than FEM.

The hypothesis is to create a surrogate model of the jet engine turbine section using
the FEM results for mechanical deformation and stress prediction for jet engine health
monitoring in a short time and to use the results almost in real time. The main goal is to
create/use the methodology for a turbine surrogation model that can be used in further
research. The main goal of the methodology is to create a novel mathematical model for
the turbine section that will predict mechanical properties immediately during jet engine
operation based on the measured temperatures, rpm and pressures. The following sections
present the results of the study, the application of the methodology and its application on a
particular small jet engine, iSTC-21v [29].
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2. Materials and Methods

The study presented in this paper focuses on the prediction of mechanical stress and
deformation in a small jet engine. The novelty of the study is mainly in the prediction
of mechanical deformation and stress using an ANN during the jet engine operation.
The mechanical properties are predicted almost in real time, so the engine health can be
monitored using the actual data immediately.

2.1. The Methodology for Deformation and Stress Prediction

The FEM model predicts mechanical deformation and stress as a function of tempera-
ture, pressure and rpm, as prescribed in the FEM model. The FEM boundary conditions
are based on the coupled aero-structural CFD analyses. This means that, for each regime
according to the measured temperatures and pressures, CFD analyses are carried out to
calculate the temperature and pressures in the turbine section. CFD analysis results are
mapped into the FEM analyses using ANSYS software. The FEM model is evaluated for
70 different operating regimes of the experimental engine. The FEM model results are
used for training and validation of the ANN. In the running jet engine, the temperatures,
pressure and rpm are measured, and with these measured values, the trained ANN is used
to predict stress quickly, almost in real time. In other words, the ANN surrogate model is a
result of the FEM model data. The methodology is presented in Figure 1.
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Figure 1. The methodology for the mechanical properties prediction using numerical methods.

The methodology is applied to a small experimental jet engine, iSTC-21v (Figure 2) [29].
The jet engine is a single-shaft engine with one stage of centrifugal compressor, combustion
chamber and one stage of axial turbine.

2.2. The Object of Interest: Small Jet Engine iSTC-21v

In this subsection, the object of interest is presented; it is a small experimental single-
shaft jet engine, with one stage of centrifugal compressor, combustion chamber and one
stage of turbine. The jet engine has a variable exhaust nozzle. The engine on a test bench is
used under laboratory conditions, as shown in Figure 2.
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Figure 2. Experimental small jet engine iSTC-21v in the laboratory on a test bench [29].

Figure 3 shows the measurement points of the iSTC-21v jet engine during the engine
testing run, and the following basic engine parameters were measured:

• Outside air temperature T0 (◦C) and atmospheric pressure P0 (Atm).
• Total air temperature at the inlet of the radial compressor T1C (◦C).
• Total air temperature at the outlet from the diffuser of the radial compressor T2C (◦C).
• Total gas temperature at the inlet of the gas turbine T3C (◦C).
• Total gas temperature at the outlet of the gas turbine T4C (◦C).
• Total pressure of air at the outlet of the compressor P2c (Atm).
• Total pressure of gases at the inlet of the gas turbine P3c (Atm).
• Fuel flow supply FF (1/min).
• Thrust Th (kg).
• Shaft speed of the turbine/compressor, n1 (rpm).
• Exhaust nozzle diameter A5 (mm) [29,30].
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In the presented surrogate model, the temperature T3c, pressure P3c, temperature T4c
and rpm are used.

One single run that takes almost 3 min (178 s) is shown in Figure 4, where the rpm,
temperatures T3c and T4c and pressure P3c are plotted. In Figure 4, 70 regimes are shown
from the run according to each regime, and these values are used as boundary conditions
for the analyses. The CFD analysis is performed to calculate the impact of temperatures
and pressure on the turbine [5]. The results from the CFD are mapped in transient thermal
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analyses to calculate the temperature fields. These transient thermal analyses define the
relationship between temperatures, pressures and mechanical stress. Transient thermal
analysis results are used in mechanical stress analyses for 70 regimes (black dots on lines
in Figure 4), and 35 regimes are used for training the surrogate ANN model and 35 for
its validation.
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2.3. The Finite Element Models and ANN Surrogate Model Description

The FEM model of the turbine section is created using ANSYS Workbench 2022 [31]
software, and it is shown in Figure 5. The turbine section consists of the turbine disc,
turbine blades and fir tree root; for the FEA (finite element analysis) purposes, the cyclic
region is extracted (Figure 5) in order to make the solution process faster and more efficient.
Thus, the FEM consists of a single-blade cyclic region of a turbine blade, disc and lock. The
boundary conditions (BCs) are applied according to the specific operational regimes of
the iSTC-21v jet engine. The cyclic symmetry is defined by the pre-meshed cyclic region
(shown in red in Figure 5) [25]. The turbine section is divided into 27 regions. The rotational
velocity is defined in a cylindrical coordinate system according to the measured rpm during
the experimental measurement, and it is shown by a red arrow in Figure 5. The axial
movement is eliminated by 0 displacement in the axis, simulating the attachment of the
turbine disc into the jet engine rotor shaft.
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Figure 5. The FEA model with BCs of the iSTC-21v experimental jet engine turbine section.

The FEA are performed using ANSYS Workbench software for the 70 operational
regimes of the jet engine. For the FEA results illustration, one regime is postprocessed:
ANSYS APDL [31], which is presented in the result section of this paper.

The ANN is developed and trained using the FEA results and experimentally mea-
sured rpm, temperatures and pressures (input layer) using MATLAB software [32]
(Figure 6). The calculated FEA results, mechanical deformation and stress, are used in the
output layer. The architecture consists of one input layer with four neurons, one hidden
layer with ten neurons and one output layer with two neurons, and the ANN is shown in
Figure 6. In the input layer, the four neurons represent the measured rpm, temperature and
pressure of the iSTC-21v jet engine. The output layer has two neurons that represent the
mechanical properties (mechanical stress and deformation of turbine) that are obtained
from the FEA simulations in ANSYS Workbench.
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In the study, the scaled conjugate gradient backpropagation training algorithm is used
in order to train the surrogate model. As the training algorithm is scaled, a conjugate
gradient (SCG) for the supervised learning is used. This algorithm updates the weight and
bias values according to the scaled conjugate gradient method [33–35]. The algorithm is
able to train any ANN as long as its weight, net input and transfer functions have derivative
functions. In order to calculate derivatives of the performance with respect to the weight
and bias variables x, backpropagation was used [36].

The inputs (Figure 6, input layer) for the ANN measured from the experimental run
of a small experimental engine are shown in Table 1. The output layer consists of the FEA
results, namely mechanical deformation and mechanical stress (Figure 6). The first column
in Table 1 is the operational regime or load step, the second column represents the measured
rpm, the third column stands for the measured turbine section temperatures—T3c and the
fourth column is last of the three measured parameters. The fourth column is the measured
pressure in the turbine section. The second part of the inputs in Table 1 are the results from
the FEAs, so the total maximal deformation in mm and the maximal von Mises stress is
calculated in MPa. These 35 regimes are used for the ANN training process and are shown
in Table 1, and the other 35 regimes in the second half of Figure 4 are used to compare
predicted results by a surrogate ANN model and FEM deformations and stresses.

Table 1. The measured and calculated inputs for the ANN training process.

Regime RPM T3c P3c T4c FEA
Deformation FEA Stress

1 558 89.30 101,289.8 124.93 0.124 69.36
2 558 89.25 101,290.9 124.78 0.124 69.36
3 558 89.25 101,285.5 124.53 0.124 69.36
4 8368 81.09 103,915.3 117.08 0.137 83.23
5 12,662 60.55 107,964.6 74.96 0.141 64.87
6 19,641 881.30 126,341.9 652.55 0.333 667.78
7 31,746 896.22 173,515.5 744.10 0.337 699.56
8 38,650 862.16 218,992.6 581.55 0.375 827.38
9 41,037 907.30 240,131.1 486.71 0.387 849.50

10 40,574 899.81 233,450.1 450.14 0.383 842.70
11 40,704 910.25 234,975.5 443.15 0.385 844.09
12 38,205 833.65 206,537.3 430.95 0.372 826.25
13 36,381 852.21 198,581.7 419.18 0.362 783.73
14 36,008 845.65 197,067.2 421.01 0.358 775.17
15 36,117 851.71 198,305.2 423.88 0.363 794.54
16 37,755 866.72 212,386 439.23 0.371 811.97
17 38,131 874.80 213,906.5 436.11 0.373 816.07
18 37,783 862.07 211,341.3 428.03 0.371 801.87
19 37,858 863.04 212,391 427.01 0.371 814.85
20 39,624 894.53 227,341.2 439.05 0.380 833.73
21 40,029 896.94 229,540 439.90 0.381 837.52
22 40,126 890.70 229,021 438.84 0.380 838.44
23 39,996 891.62 228,563.6 437.43 0.380 837.35
24 41,792 925.94 247,162.6 448.40 0.394 860.81
25 41,957 915.61 24,7095 448.61 0.391 859.36
26 42,124 920.79 24,8787.8 447.52 0.393 862.45
27 41,820 919.52 24,6957.3 443.74 0.392 859.55
28 43,256 944.96 26,1480 452.51 0.407 886.22
29 43,921 940.74 26,5423.6 459.52 0.407 891.10
30 43,916 938.03 26,6028.8 458.27 0.407 890.47
31 44,112 944.02 26,9109.6 458.28 0.411 896.31
32 45,206 971.24 28,1054.2 464.25 0.420 920.45
33 45,926 981.85 28,7743.2 471.74 0.422 934.27
34 45,977 968.51 28,8586.4 472.26 0.421 930.91
35 46,035 979.07 28,8518.8 472.00 0.422 935.32
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3. Results

The results are partially represented by FEA results and partially by the results from
the ANN training and mechanical stress predicting processes.

3.1. The Finite Element Analyses of the iSTC-21v Turbine Section

As already mentioned, the mechanical stress and total deformation from the static
structural analysis are calculated for seventy regimes, and three of these regimes are
described below. The CFD analyses are performed to define the relationship between
the temperatures, pressures and mechanical properties (deformations and stresses). The
results are mapped using ANSYS software, and transient thermal analyses are performed
(Figure 7); the results from these thermal analyses are used for the mechanical stress
analyses. Regime 35 is used to illustrate the results of the transient thermal analyses for
one cyclic region [33]. In Figure 7, the temperature fields can be seen for regime 35. The
solution time for the transient thermal analysis for one load step is 18.9 min.
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Figure 7. The transient thermal analysis results.

The FEA method is used to calculate mechanical deformation and stress for each
regime, and the results are used as an input for the ANN surrogate model. The total
deformation for the first regime is 0.4221 mm (Figure 8). The maximum von Mises stress
calculated by the ANSYS is 935.32 MPa (Figure 9). The solution time for the mechanical
stress analysis for one load step is 26.11 min. The solution time for one load step together
with the transient thermal analysis is 45.01 min and, for 70 regimes, is 52.51 h.
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3.2. ANN with Scaled Conjugate Gradient Backpropagation for Mechanical Properties Prediction

For the mechanical properties, the ANN with scaled conjugate gradient backpropa-
gation algorithms is trained using MATLAB software, as described in the Materials and
Methods section; in the following subsection, the results of the study are presented.



Aerospace 2023, 10, 937 10 of 17

The scaled conjugate gradient backpropagation training algorithm is selected for the
mechanical properties prediction. The ANN is described in Figure 6, and the results of
the training process are represented in Figure 10; the plot is also called a regression plot.
Figure 10 shows the relationship between the outputs of the training process and the targets.
In order to summarize the ANN inputs presented in Figure 6, the inputs in the input layer
are measured parameters during the engine experimental run: T3c, P3c, T4c and rpm,
while in the output layer are the results of the FEA, the calculated maximal deformations
and maximal mechanical stresses; in other words, the targets are the maximal stress and
displacement values. The training data are shown in Table 1 and are divided into three
groups: 70% of the data is for the training process, 15% is for the validation and 15%
belongs to the test process. The dividerand function is used in MATLAB software to divide
the input data for training, validation and the test process [37]. Normalization of the inputs
and targets is performed in MATLAB software using the mapminmax function [38,39].
The R value or coefficient of correlation is an important factor when the training process
is investigated, as it is an indication of the linear dependance between the outputs and
targets. The exact linear relationship between the outputs and targets is indicated when the
R value is equal to 1. If the R value is equal to the 0, then there is no relationship between
the outputs and the targets.
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Figure 10. The regression plots of the trained ANN with R values.

The R values are shown in Figure 10. The training data have an R value of 0.99988.
The R value for the validation process is 0.99986, the test process has an R value of 0.99989
and all the data are represented by an R value of 0.99987.

The trained ANN is used for mechanical stress and total deformation prediction, as is
shown in Figure 6. The results are compared between the calculations from the FEM results
calculated in ANSYS and the ANN trained using MATLAB software. In the following
figures, the mechanical deformation and mechanical stress are compared between the FEA
results and ANN results. The maximal deformation predicted by NN for 70 operational
regimes is shown in Figure 11 with a black line, and the brick-colored line is the plotted



Aerospace 2023, 10, 937 11 of 17

FEM results. The red vertical line divides the dataset into two parts: first, from 1 to 35, the
FEM results were also used for the ANN training process, and second, from 35 to 70, the
regimes were used for comparison between the FEM and ANN.
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shown in Figure 12. The comparison was made between the FEA results and the ANN
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Figure 13 represents the errors calculated between the FEA results and predicted
results using the surrogate ANN model; the maximal error for deformation occurs in
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regime 63, and its value is 3.74%. As can be seen in Figure 13, the majority of the results are
below 2%, apart from five regimes.
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Errors in mm for the deformations are calculated between the FEA and ANN results,
and these values are shown in Figure 14. The maximal difference is in regime 63, which is
0.009 mm.
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The ANN surrogate model, apart from deformations, also predicts the maximal me-
chanical stresses of the turbine section. As already mentioned, the model is trained based
on the FEA results and measured parameters (Table 1). A comparison of the study is
shown in Figure 15, where the maximal stresses from the analyses and maximal stresses
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from the ANN surrogate model can be seen. There are 70 regimes calculated in Figure 12:
35 regimes are used to train the ANN and 35 regimes to validate the results (comparing
the FEM and ANN results). The ANN predicted the mechanical properties for the whole
engine run for the 70 regimes in 0.00003 s. The red vertical line divides the dataset into
two parts: first, from 1 to 35, the FEM results were also used for the ANN training pro-
cess, and second, from 35 to 70, the regimes are used for comparison between the FEM
and ANN.
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Errors of the maximal stresses between the FEA and ANN results are in Figure 17. The
maximal percentage error reaches 2.57%.
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The maximal difference between the maximal FEA mechanical stress and maximal
stress calculated by the ANN surrogate model occurs in regime 12 and has a value of
19.21 MPa, as can be seen in Figure 18.
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4. Conclusions

The presented study in the paper shows the results of the progressive method for
mechanical properties prediction of the turbine section. During jet engine operation, it is
essential to ensure reliable work of the turbine section; in order to fulfil this requirement, the
jet engine’s health in terms of the maximal temperatures, pressures, rpms and mechanical
stresses have to be monitored. The results presented in this manuscript show a new
approach in terms of mechanical stress and deformation monitoring of the turbine section.
As already discussed in this manuscript, several methods have been applied for the creation
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of a novel method for turbine stress mechanical properties prediction using an ANN. The
following statements can be expressed based on the results.

1. Seventy FEM models were created, and 35 results were used for the training process
of the ANN.

2. The best training algorithm for the ANN and mechanical stress prediction is the scaled
conjugate backpropagation (SCG) algorithm. As shown in Figure 9, the maximal error
is 2.57% for the predicted mechanical stress. The ANN with SCG algorithm predicts
the maximal deformation with a maximal error of 3.74%.

3. The hypothesis stated in the Introduction section that it is possible to predict mechan-
ical properties using a surrogate model trained based on the FEA results has been
confirmed. Based on the results, it is possible to proclaim a quite accurate match
between the surrogate model and FEA results in deformation and stress prediction.
The accuracy of the prediction is also supported by the high R values (every R value
is higher than 0.99), as shown in Figure 11.

4. In future research, the results should be validated using experimental stress and strain
measurements; however, main goal of this paper was to apply numerical methods in
a 3D turbine section cyclic region to create preliminary surrogate models. According
to the measured temperatures, pressures and rpm, CFD models were created, and the
results were mapped into the mechanical analyses in order to define the relationship
between these parameters and the calculated stress.

5. It is possible to apply the trained ANN into the FADEC system and monitor mechani-
cal stress and deformation during jet engine operation, which ensures a higher level of
safety. This method also surrogates on some level the FEM analysis, which is not able
to predict mechanical stress as fast as the ANN. The ANN predicted the mechanical
properties for the whole engine run for 70 regimes in 0.00003 s; thus, one regime is
predicted by the ANN in a fraction of a second. In comparison, FEA takes several
hours for the prediction of one regime.
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