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Abstract: In the realm of non-cooperative space security and on-orbit service, a significant challenge is
accurately determining the pose of abandoned satellites using imaging sensors. Traditional methods
for estimating the position of the target encounter problems with stray light interference in space,
leading to inaccurate results. Conversely, deep learning techniques require a substantial amount of
training data, which is especially difficult to obtain for on-orbit satellites. To address these issues,
this paper introduces an innovative binocular pose estimation model based on a Self-supervised
Transformer Network (STN) to achieve precise pose estimation for targets even under poor imaging
conditions. The proposed method generated simulated training samples considering various imaging
conditions. Then, by combining the concepts of convolutional neural networks (CNN) and SIFT
features for each sample, the proposed method minimized the disruptive effects of stray light.
Furthermore, the feedforward network in the Transformer employed in the proposed method was
replaced with a global average pooling layer. This integration of CNN’s bias capabilities compensates
for the limitations of the Transformer in scenarios with limited data. Comparative analysis against
existing pose estimation methods highlights the superior robustness of the proposed method against
variations caused by noisy sample sets. The effectiveness of the algorithm is demonstrated through
simulated data, enhancing the current landscape of binocular pose estimation technology for non-
cooperative targets in space.

Keywords: non-cooperative targets; stray light interference; vision-based pose estimation; self-
supervised transformer network

1. Introduction

As human exploration and development of outer space advances, countries demand
higher levels of space technology [1]. Some of the key challenges in the aerospace field are
spacecraft rendezvous and docking, on-orbit capture and repair of malfunctioning satellites,
and space debris removal [2]. These challenges require the ability to perform rendezvous,
docking, and capture of non-cooperative targets [3]. However, this task depends on the
relative pose measurement of non-cooperative targets, which is difficult to achieve due to
the poor quality of space images. Space images often have low contrast and texture and are
affected by stray light in space. Non-cooperative targets lack artificial markers and feature
cursors for auxiliary measurement, making it hard to obtain geometric, grayscale, depth,
and other information about the target surface [4]. Various factors limit the availability of
samples, which poses problems and challenges for attitude measurement.
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There are various methods to achieve the pose measurement of non-cooperative tar-
gets, depending on the sensors used. These methods include visual target measurement,
scanning laser radar measurement, non-scanning three-dimensional laser imaging measure-
ment [5], pose measurement method based on multi-sensor fusion [6], and so on. The visual
measurement method uses a camera to obtain the target image. This method is simple and
does not require complex structures or too many devices. It can measure the target with
only a camera and a computer, but it requires high computing power. Binocular vision
can calculate the target distance and real size using the principle of triangulation, which is
more suitable for the pose measurement of space non-cooperative targets [7]. However,
this method also requires that the pose estimation algorithm can detect and process image
feature information. Moreover, the optical images are more vulnerable to stray light, which
affects the recognition and detection of space targets and indirectly leads to the scarcity of
data set samples.

Currently, deep learning methods have been applied to various fields beyond image
recognition, and the Transformer model is a rising star in the field of non-cooperative
target detection and recognition. After the introduction of the Transformer structure from
natural language processing to computer vision, it has broken the limited receptive field
constraint of CNN. It has gained significant attention due to its advantages, such as not
requiring proposals like Faster R-CNN, not using anchors like YOLO, not needing centers
or post-processing steps like NMS, as in CenterNet, and directly predicting detection boxes
and classes. The Backbone, as a feature extraction network, primarily extracts relevant
information from images for subsequent stages. The role of the Neck is to fuse and enhance
the features extracted by the Backbone before providing them to the Head for detection.
The Head employs the previously extracted features to predict the position and class of
objects [8]. As a target detection method, DETR transformed Transformers into the field
of object detection, opening up new research avenues [9]. YOLOS is a series of ViT-based
object detection models with minimal modifications and inductive biases [10]. Additionally,
DETR has various related variants. To address the slow convergence issue of DETR, re-
searchers proposed Deformable DETR and TSP-FCOS and TSP-RCNN [11,12]. Deformable
DETR uses deformable convolution to effectively solve the slow convergence and low
detection accuracy for small objects in sparse spatial positioning. ATC primarily alleviates
redundancy in the attention maps of DETR and the problem of feature redundancy as
the encoder deepens. It is evident that the Transformer network in the Neck section has
mature research solutions that can significantly enhance accuracy. Furthermore, in the
context of non-cooperative target issues, appropriate modifications can prevent the loss
of information when reading patch information. This approach can retain more feature
information, considering the scarcity of information sources.

Therefore, this paper proposes the application of deep learning methods Transformer
to the problem of spatial target feature detection and recognition while considering ex-
ternal interference factors present in space missions in Figure 1. It fully leverages the
characteristics of CNN models to enhance accuracy and sensitivity to small-scale features.
Through improved network structures, it further refines the algorithm for non-cooperative
target pose estimation in scenarios with limited sample sizes. Validation and comparative
experiments are conducted using satellite sample data generated in a virtual environment
with strong noise interference, confirming the reliability of the proposed algorithm under
conditions of limited data volume.
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Figure 1. Overview of our Self-supervised Improved Transformer Network (STN). Our network
model achieves the pose estimation capability of small sample data sets under the influence of stray
light through self-supervised learning through changes in the network structure.

2. Related Work

The pose estimation methods can be mainly categorized into two categories: traditional
methods and deep learning methods. For non-cooperative targets captured by binocular
optical cameras, there have been many studies addressing the issue of stray light and
small-sample training.

2.1. Traditional and Deep Learning Methods

To acquire target model information in noisy environments, some traditional research
methods transform pose estimation problems into template matching problems, utilizing
essential matrices for pose initialization. Pose calculation involves image filtering, edge de-
tection, line extraction, and stereo matching. A three-dimensional model of non-cooperative
micro and nanosatellites is reconstructed using a stereo vision system [13]. Subsequently, a
method based on feature matching estimates the target’s relative pose, followed by ground
experiments to assess the algorithm’s accuracy. Segal S et al. [14] employ the principles
of binocular vision measurement and utilize an Extended Kalman Filter to track and ob-
serve target feature points, achieving pose measurement for non-cooperative spacecraft.
Finally, a trial system for estimating non-cooperative target poses is constructed. However,
non-cooperative images often vary in quality, and traditional methods suffer significant
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accuracy reduction with blurry or smoothly-edged targets, making them inadequate for
complex non-cooperative target measurements. Despite proposing algorithms based on
horizontal and vertical feature lines to derive fundamental matrices without using paired
point information, the reliance on high-quality imagery contradicts the scarcity of suit-
able non-cooperative target image datasets. As a result, these methods face significant
limitations in practical applications.

Deep learning methods do not depend on the target model, do not need manual
feature design, and have better generalization abilities when the training data are adequate.
Li K et al. [15] proposed a method that outperforms the heatmap and regression-based
methods and improves the uncertainty prediction. Zhu Z et al. [16] suggested an al-
gorithm that can effectively suppress interference points and enhance the accuracy of
non-cooperative target pose estimation. Despond F T [17] used a novel convolutional
model to estimate the relative x, y and attitude of the target spacecraft. Deep learning
methods are more versatile and robust for different targets and scenarios than traditional
methods and can be more effectively applied to non-cooperative pose estimation.

2.2. Small-Sample Training

To address the challenge of pose estimation for non-cooperative space targets with
limited real samples, researchers have also turned to deep learning methods and conducted
a series of studies. As the most mature image processing networks, neural network
approaches have been widely employed in non-cooperative target pose estimation, forming
the basis for numerous improved and optimized algorithms capable of addressing various
scenarios. Pasqualetto Cassinis L et al. [18] present a fusion of convolutional neural network-
based feature extraction and the CEPPnP (efficient Procrustes perspect-n-points) method,
combined with Extended Kalman Filtering for non-cooperative target pose estimation.
Hou X et al. [19] introduce a hybrid artificial neural network estimation algorithm based
on dual quaternion vectors. Ma C et al. [20] propose a Neural Network-Enhanced Kalman
Filter (NNEKF), innovatively improving filter performance using the virtual observation
of inertial characteristics. Huan W et al. [21] employ existing object detection networks
and keypoint regression networks to predict 2D keypoint coordinates, reconstructing a
3D model through multi-viewpoint triangulation and minimizing 3D coordinates with
nonlinear least squares to predict position and orientation. Li Xiang et al. [22] designed a
non-cooperative target pose estimation network based on the Google Inception Net model.

Applications of the proposed MEGNN-based method to PHM 2010 milling TCM
dataset and experiments demonstrate it outperforms three DL-based methods (CNN,
AlexNet, ResNet) under small samples [23]. Pan T et al. [24] proposed a generative adver-
sarial network (GAN), which is considered a promising way to solve the problem of small
samples. Ma et al. [25] proposed a face recognition method based on sparse representation
of deep learning features. This method first extracts face features using deep CNN and
then classifies the obtained face features by sparse representation. Experiments prove
that this method has higher recognition accuracy, which can improve by 6–60% compared
with traditional methods, can effectively cope with the interference caused by intra-class
changes, such as lighting, pose, expression, and occlusion, and has a greater advantage
when encountering small sample problems. Despite the application of deep learning
methods to space target scenarios, their efficacy is still hampered by the scarcity of actual
samples, often relying on simulation datasets for training, leaving room for improvement
in accuracy and methodology.

2.3. Stray Light

During the process of collecting space signals using optical sensors, non-target light
information is captured in the form of stray light, and such interference is challenging
to completely suppress or eliminate. Correlation methods can only reduce the impact of
stray light interference [26]. For complex space environments, many studies have also
incorporated methods for handling unique spatial noise. Yang Ming et al. [27] address
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the issue of significant lighting and Earth background effects on non-cooperative space-
craft attitude measurement in space, proposing an end-to-end attitude estimation method
based on convolutional neural networks with AlexNet and ResNet architectures. Com-
pared to using regression methods alone for attitude estimation, this approach effectively
reduces the average absolute error, standard deviation, and maximum error of attitude
estimation. Synthetic images used for network training adequately consider factors such
as noise and lighting in orbit. Additionally, Sharma S et al. [28] introduce the SPN (space-
craft pose network) model, which trains the network using grayscale images. The SPN
model consists of three branches, with the first using a detector to detect the boundary
boxes of the target in the input image and the other two branches using regions within
the 2D boundary boxes to determine the relative pose. The improvement in accuracy
methods also brings up another issue: the scarcity of samples in space target data. To
address the problem of small samples in space target data, the dataset of the target is built
using Unity3d2019 [29] software. To fully simulate the space lighting environment, the
brightness of simulated sunlight in the environment is randomly set, starry background
noise is randomly added, and data normalization is performed for data enhancement.
Jiang Zhaoyang et al. [30] designed a dual-channel neural network based on VGG and
DenseNet architectures to locate the pixel corresponding to feature points in the image
and provide their corresponding pixel coordinates, proposing a neural network pruning
method to achieve network lightweighting. Addressing the interference of space lighting
and the issue of small samples, Sharma S et al. [31] present a monocular image-based pose
estimation network. Phisannupawong T et al. and Chen B et al. [32,33] achieve 6-DOF
pose estimation for non-cooperative spacecraft using pre-trained deep models. Despite
Sonawani S et al. [34] being the first to create a dataset for non-cooperative targets using
a semi-physical simulation platform, overall, there has not been extensive research into
algorithms that simultaneously handle stray light and small sample sizes.

3. Materials and Methods

The data simulation in this paper is based on the Unity3d2019 [29] platform, creating
a simulated dataset of decommissioned space satellites. By modifying their position
and pose parameters, visible light simulated images from binocular vision are generated
while recording the target’s position and pose parameters to create the simulation dataset.
Furthermore, three simulation methods—stellar magnitude analysis, latitude and longitude
projection, and point spread function—are employed to construct target simulation images
under the influence of stray light in space. For the intelligent detection and recognition of
target features, SIFT feature points are utilized to stably describe local textures and shapes.
Leveraging scale and rotation invariance, it emphasizes capturing fine details in small-
scale features, effectively handling changes in target pose and partial occlusion situations,
and swiftly detecting target features. This approach facilitates the rapid and accurate
identification of target features for intelligent detection. The feature points on the input
side, taken as patches, are projected into fixed-length vectors and fed into the Transformer.
In subsequent encoders, based on the Transformer network as the foundational model,
modifications are made to the feedforward neural network. The fully connected layer is
replaced with a global average pooling layer from the CNN network, harnessing CNN’s
advantages to capture local features and enhance model generalization. Direct output is
obtained from the encoder layer, yielding the position and pose information of the satellite
in the photo.

3.1. Satellite Dataset Simulation

The software Unity3d2019 allows users to create and render realistic three-dimensional
models and animations for various purposes, such as design visualization, games, and
movies. It supports all standard 3D model formats, and it is convenient to capture virtual
views with specific angles for a 3D model via it. Thus, it is suitable for us to build the
synthetic dataset via it. The imagery in this paper features a dark background with an
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added point light source, creating a metallic reflection effect on the satellite’s surface.
The parameters for simulating the binocular camera are outlined in Table 1. During the
modeling process, factors such as the target’s size, shape, structure, and material are taken
into consideration. For the simulation, the target object is modeled as a cube with sides
measuring 4 m in length, topped with a hemisphere that stands 5.5 m above the cube’s
apex. The solar panels are set to a length of 18 m and a width of 6 m.

Table 1. Simulation of binocular camera parameters.

Parameter Left Camera Right Camera

focal length 20.8 mm 20.8 mm
full field of view 60◦ 60◦

sensor size 36 mm × 24 mm 36 mm × 24 mm
pixel numbers 1024 pixel × 1024 pixel 1024 pixel × 1024 pixel

baseline 2000 mm 2000 mm
simulation unit length 1000 mm 1000 mm

The satellite follows the described rotation and movement pattern, simultaneously
moving and rotating while recording position and orientation information.

The model rotates along the roll, pitch, and yaw axes, in turn, to capture the target
image from different orientations, which facilitates the recovery of the attitude information
and the assessment of the object’s spatial state in the later stage. Here is the rotation mode:

1. Maintain α and β angles unchanged, and rotate γ angle by 5 degrees each time,
completing a full rotation;

2. Keep α angle constant, increase β angle by 5 degrees, and rotate γ angle by 5 degrees
each time, completing a full rotation;

3. Maintain α angle constant, increase β angle by another 5 degrees, and rotate γ angle
by 5 degrees each time, completing a full rotation;

4. Continue until β angle completes a full rotation, and increase α angle by 5 degrees;
5. Repeat steps 1, 2, 3, and 4 while also increasing β angle by 5 degrees each time,

completing a full rotation.

The model’s position changes correspond to the image’s spatial coverage and depth
variation, which helps to recover the target’s location information in the subsequent process.
It also provides three-dimensional information for the reconstruction of binocular vision.
Here is movement pattern:

1 -> 2 -> 3 -> 4, with 1 moving from near to far, 2 moving horizontally only, 3 moving
from far to near, and 4 moving horizontally only. The front view is depicted in Figure 2a,
while the side view is illustrated in Figure 2b, with the camera represented by a circle and
the red arrows indicating the satellite’s trajectory.
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In the end, this paper generates a total of 373,248 images using binocular output with
dimensions of 72 × 72 × 72. Simultaneously, it outputs simulated satellite pose information
comprising position coordinates (3) and rotation angles represented by quaternions (4).

3.2. Stray Light Simulation

Stray light interference poses a significant challenge in space-based optical image
processing, leading to a degradation in image quality and accuracy. This paper employs
an effective approach for image simulation, enabling the generation of synthetic images
that incorporate stray light effects. These simulated images serve for the research and
evaluation of algorithms in the presence of stray light interference.

3.2.1. Moonlight Simulation

Moonlight typically manifests in imaging as a bright region gradually spreading
outward from a central point. Depending on the current CCD sensor’s capacity to suppress
moonlight, an influence on imaging is considered when the moonlight angle is less than
30 degrees. Let σ represent the angle between the observation platform’s line of sight r1,m
and the line r2,m connecting the observation platform to the center of the Moon, known as
the moonlight angle, as illustrated in Figure 3. For an observation platform orbiting the
Earth, the Moon can be treated as a point light source. It generates a Gaussian distribution
function’s diffusive effect with the corresponding image position as its center.
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Figure 3. Moonlight angle diagram. When the moonlight angle between the Moon position assumed
by the simulation and the observation position is less than 30◦, the image produced by the existing
CCD sensor will be affected by stray light.

3.2.2. Earth Atmosphere Radiation

The influence of atmospheric light on space-based visible light imaging primarily
stems from the fact that the nadir point of the observation platform is illuminated by the
Sun, causing the bright background, after undergoing atmospheric scattering, to enter
the observation platform’s field of view, leading to localized areas of brightness or the
presence of interference patterns. Based on the current CCD sensor’s capability to suppress
atmospheric light, assuming the off-axis angle is less than 22 degrees, atmospheric light’s
impact on imaging is considered. Let θ represent the angle between the observation
platform’s line of sight r1,e and the tangent line r2,e to the atmospheric boundary from the
observation platform, also known as the off-axis angle, as depicted in Figure 4.

Due to the Earth’s proximity to the observation platform, it cannot be simplified as
a point light source or parallel light; it must be treated as a surface light source. Hence,
it is necessary to divide the Earth’s surface into grids, as shown in Figure 5. In this
case, the problem becomes equivalent to multiple point light sources generating Gaussian
distribution functions’ diffusive effects at corresponding positions in the image.
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3.2.3. Background Starlight Simulation

Background starlight points are determined using a random function to generate vary-
ing sizes of bright points, similarly employing the diffusive effect of Gaussian distribution
functions. The Gaussian point spread function describes an optical system’s resolution
capability for point sources. Any point source will form an enlarged image point due to
diffraction after passing through an optical system.

f (x, y) =
(

2πσ1σ2

√
1 − ρ2

)−1
exp

[
− 1

2(1 − ρ2)

(
(x − µ1)

2

σ2
1

− 2ρ(x − µ1)(y − µ2)

σ1σ2
+

(y − µ2)
2

σ2
2

)]
(1)

By measuring the system’s point spread function [35], it becomes possible to more
accurately extract image information, as shown in Equation (1). The simulation results of
moonlight, atmospheric light, and starlight are illustrated in Figure 6.
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By measuring the system’s point spread function [35], it becomes possible to more 

accurately extract image information, as shown in Equation (1). The simulation results of 

moonlight, atmospheric light, and starlight are illustrated in Figure 6. 
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Figure 6. (a) Image on orbit; (b) simulation result.

3.3. Improved Transformer Network

Regarding the simulated images, to mitigate the effects of stray light, SIFT feature
detection is applied. Gaussian images are generated at different scales, and their differences
yield the DoG images. Leveraging the detection of local extrema, we can focus on fine
detail features, thereby minimizing the impact of blurred noise on the images. Ultimately,
the image’s feature points are obtained, and the top 5 pairs of feature matching points with
optimal accuracy are selected, constituting the data for a pair of photographs.

Transformer networks commonly employ absolute position encoding, assigning a
unique positional code to each patch, thus lacking translation invariance. Local perception
units utilize SIFT operators as a substitute for spatial convolution, introducing scale and
rotation invariance of the operator into the Transformer module. The 5-point algorithm
refers to how to obtain the essential matrix between the two images and then decompose
the corresponding rotation matrix when the internal parameters of the camera are known
and the 5 sets of image corresponding points between the two images are known. A method
for translating vectors. The 5-point algorithm was proposed by David Nister [36] in 2004
and has become a widely used method for image-based three-dimensional reconstruction.
Therefore, this article selects 5 pairs of points as input quantities and calculates pose
parameters through rotation matrices and translation vectors. Five sets of feature detection
results are utilized as input layers for the patches, as depicted in Figure 7. In this study,
the image’s feature point pairs are divided into patches, and each patch is projected into
a fixed-length vector before being fed into the Transformer. The subsequent encoder
operations mirror those of the original Transformer, effectively transforming the visual
problem into a sequence problem. Similarly, the algorithm requires the incorporation of
positional encoding without altering the vector dimensions.
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While Transformer networks exhibit notable flexibility and transferability due to their
modest inductive biases, they can encounter limitations in scenarios with limited data.
On the other hand, convolutional neural networks (CNNs) possess strong inductive bias
capabilities, including local sensitivity and translation invariance, which grant them high
performance in low-data scenarios. In light of these considerations, this study focuses
on improving the feedforward neural network within the Transformer architecture by
replacing it with a global average pooling layer from the CNN network. Through this
fusion, the strengths of both CNNs and Transformers are harnessed, overcoming their
respective limitations and transcending the constraints of receptive fields.

The enhanced feedforward network, compared to the traditional feedforward network
in the Transformer, employs global average pooling in lieu of fully connected layers, thus
retaining spatial and semantic information captured by the preceding layers, as depicted
in Figure 8. By stacking multiple decoder layers, the improved Transformer model effi-
ciently incorporates contextual information during output sequence generation, resulting
in significant performance gains across various sequence-to-sequence tasks. However, the
accumulation of errors in the decoder layers is addressed by transitioning to linear layer
output, mitigating the emphasis on sequence information and focusing on enhancing the
model’s accuracy.
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4. Results

To acquire a spatial dataset under different poses and lighting conditions, this study
employed Unity3D to generate images of decommissioned satellites with varying scales,
poses, and operational scenarios, as illustrated in Figure 8a. This data set is a dark back-
ground specular reflection sample taken by a binocular camera and output according to
the rotation mode. The three rotation angles are rotated by 5◦ to obtain a pair of binocular
satellite images, forming a total of 72 × 72 × 72 (373,248) groups with a resolution of
1024 × 1024 motion satellite data set. A size of 1024 × 1024 is frequently used for sample
images. For the grid size, there are three rotation angles with the same range from 0 to
360 degrees; each is resampled with 5 degrees as an interval; thus, it is 360/5 = 72. The
interval of 5 degrees is chosen practically since too small an interval leads to high com-
putation, and too large an interval results in low accuracy. Each sample image includes
both position coordinates (three values) and rotation angles represented as quaternions
(four values). To account for the effects of atmospheric and lunar illumination, Gaussian
point spread functions were utilized to simulate scattered light interference, generating
disturbance images, as depicted in Figure 8a,b.

The improved Transformer model was employed to perform inference validation
on the validation dataset, and the results, as indicated in Table 2, demonstrate favorable
training and detection outcomes. The following table presents a comparison of position and
pose errors obtained using different methods for localization and attitude estimation on
the simulated dataset. This research aims to evaluate the performance of these methods in
a simulated environment, thereby offering a reference for selecting appropriate techniques
for real-world positioning and navigation systems. In this table, pose accuracy is presented
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in the form of errors, representing the average distance between the estimated and actual
poses. It can be observed that the model presented in this paper maintains commendable
accuracy in both position and pose errors.

Table 2. Pose estimation accuracy results.

Applied Model Position Error Epos (%) Attitude Error Eatt (◦)

Model in this paper 0.958688 4.388
Transformer 1.163288 5.872
Fast R-CNN 1.080765 5.975

Yolov5 1.134575 5.504

Figure 9 presents a performance comparison of different pose estimation methods
under varying sample sizes. This study aims to assess the influence of different sample
quantities on pose estimation results and compare the stability and accuracy of different
methods across different sample counts. The x-axis in the graph represents the sample quan-
tity, while the y-axis represents a comprehensive performance metric for pose estimation,
which combines both positions and pose errors as defined by the formula in Equation (2).

E =

√√√√√ N
∑

i=1

[
f (Ei)− Epos

]2
+

N
∑

i=1
[ f (Ei)− Eatt]

2

2N
(2)
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Each pose estimation method is distinctively marked with different colors or line
styles in the chart to facilitate a visual comparison of their performance under varying
sample sizes. With an increase in sample quantity, the following trends are observable:
For most pose estimation methods, an increase in sample quantity generally leads to
gradual improvement in pose estimation performance. Fewer samples may result in
unstable estimates, whereas greater sample sizes enhance both the accuracy and stability
of the estimates. Different pose estimation methods may exhibit varying performance
across different sample counts. The proposed method in this paper demonstrates excellent
performance with fewer samples, while other methods might require a larger sample size
to achieve optimal performance in Figure 10.



Aerospace 2023, 10, 997 12 of 14

Aerospace 2023, 10, x FOR PEER REVIEW 12 of 14 
 

 

Each pose estimation method is distinctively marked with different colors or line 
styles in the chart to facilitate a visual comparison of their performance under varying 
sample sizes. With an increase in sample quantity, the following trends are observable: 
For most pose estimation methods, an increase in sample quantity generally leads to grad-
ual improvement in pose estimation performance. Fewer samples may result in unstable 
estimates, whereas greater sample sizes enhance both the accuracy and stability of the 
estimates. Different pose estimation methods may exhibit varying performance across dif-
ferent sample counts. The proposed method in this paper demonstrates excellent perfor-
mance with fewer samples, while other methods might require a larger sample size to 
achieve optimal performance in Figure 10. 

  
Figure 10. The accuracy change diagram of the model under the change of sample number. 

5. Conclusions 
This paper proposes a hybrid network model that combines Transformer and CNN 

for pose estimation of non-cooperative targets under binocular camera settings. The ob-
jective is to address the challenge of maintaining accuracy in the presence of sparse image 
samples due to scattered light effects. The model capitalizes on the strengths of both net-
work architectures, capturing local and global information to enhance the network’s rep-
resentational capacity. Through experimentation, it is demonstrated that the network ex-
hibits high-precision detection capabilities in comparison to various alternatives. Further-
more, the network maintains its computational efficiency even with changes in data vol-
ume, achieving the desired enhancements proposed in this study and confirming the ef-
fectiveness of the algorithm. 

6. Future Work 
This paper proposes a novel pose estimation algorithm for non-cooperative targets 

in stray light interference environments. It addresses the challenge of identifying non-co-
operative targets without auxiliary markers, which is difficult for traditional algorithms. 
The algorithm suppresses noise through network input and maintains a certain accuracy 
of pose estimation even with reduced training data. The main contribution and signifi-
cance of this paper is that it provides a new idea and method for visual pose estimation of 
non-cooperative targets, as well as an effective solution for the application of deep learn-
ing in small sample problems. This research has important implications and inspirations 
for the fields of space exploration, satellite rendezvous and docking, space debris cleanup 
and other fields. 

Figure 10. The accuracy change diagram of the model under the change of sample number.

5. Conclusions

This paper proposes a hybrid network model that combines Transformer and CNN
for pose estimation of non-cooperative targets under binocular camera settings. The
objective is to address the challenge of maintaining accuracy in the presence of sparse
image samples due to scattered light effects. The model capitalizes on the strengths
of both network architectures, capturing local and global information to enhance the
network’s representational capacity. Through experimentation, it is demonstrated that the
network exhibits high-precision detection capabilities in comparison to various alternatives.
Furthermore, the network maintains its computational efficiency even with changes in data
volume, achieving the desired enhancements proposed in this study and confirming the
effectiveness of the algorithm.

6. Future Work

This paper proposes a novel pose estimation algorithm for non-cooperative targets
in stray light interference environments. It addresses the challenge of identifying non-
cooperative targets without auxiliary markers, which is difficult for traditional algorithms.
The algorithm suppresses noise through network input and maintains a certain accuracy of
pose estimation even with reduced training data. The main contribution and significance
of this paper is that it provides a new idea and method for visual pose estimation of non-
cooperative targets, as well as an effective solution for the application of deep learning in
small sample problems. This research has important implications and inspirations for the
fields of space exploration, satellite rendezvous and docking, space debris cleanup and
other fields.

However, this research also has some limitations and shortcomings that need to be
further improved and extended in future work. One of them is that the data set used
in this paper was obtained by simulation, which may lack generalization and fail to
cope with more complex real environments. Therefore, future work needs to collect and
construct more realistic data to verify and improve the robustness and adaptability of
the algorithm. Another one is that this research may not be real-time enough to meet the
real-time requirements of non-cooperative target on-orbit operations because it uses deep
learning and other methods. Therefore, future work needs to optimize and accelerate the
running speed and efficiency of the algorithm to adapt to higher real-time requirements.

In addition, this research also has some possibilities and potential for extension and
expansion. For example, future work can explore and verify different network structures
and parameters to improve the performance and accuracy of the algorithm. Alternatively,
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future work can use or develop more self-supervised learning techniques to overcome
the difficulties of small sample problems while also increasing the interpretability and
credibility of the algorithm. Alternatively, future work can compare and integrate the
algorithm with other visual pose estimation methods to achieve better pose estimation
effects and a wider range of application scenarios.
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