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Abstract: This research presents a new beam finite element capable of predicting static and dynamic
behavior of beam structures with bending-torsion coupling. The model here derived establishes a
relation between the bending and torsional nodal degree of freedom of a two node beam element. The
equilibrium equations are derived neglecting the non-linear terms while the stiffness and mass matri-
ces are derived with Galerkin’s method. The shape functions are obtained considering Timoshenko’s
hypothesis and the torsional moment constant along the element. The model has been validated
through numerical and experimental results for static and dynamic simulation. The comparison
revealed a relative difference mostly lower than 5% for static deformations and natural frequency
prediction, while the Modal Assurance Criterion (MAC) confirmed the consistency with numerical
and experimental results in terms of mode shape similarity.

Keywords: beam element; modal analysis; bending-torsion coupling; Galerkin’s method

1. Introduction

Thin-walled beams with orthotropic composite materials or stiffened panels are widely
used in many engineering applications, ranging from wind energy production to aerospace
and other industry fields where light structures are required.

Structures subjected to aerodynamic loads can present instability phenomena, known
as divergence and flutter. This is even more critical with very slender shapes such as high
aspect ratio wings and wind turbine blades [1–5]. These phenomena occur due to the
interaction between fluid and structure causing bending and torsion which, at a certain
speed, can reach high amplitudes and thus compromise the structure. However, one of
the possible solutions, is to combine aerodynamic couplings with material couplings and
mitigate these instabilities or shift them at an higher speed [6–8].

Such couplings can be achieved with specific material or stiffener orientation along
the beam; however, finding the optimal orientation can be demanding in terms of time
and computational costs. For this reason, a beam finite element (FE) capable to include
bending-torsion coupling in its formulation can be an excellent tool during preliminary
design phases.

Many examples of this class of finite elements are present in literature, each one
addressing a specific kind of coupling, shape or analysis. Dokumaci in 1987 [9] found
the exact solution for coupled bending-torsion vibration of a uniform beam having single
cross-sectional symmetry. Hasemi and Richard [10] developed a Dynamic Finite Element
(DFE) for free vibration analysis of bending-torsion coupled beams which uses the exact
solutions of the differential equations governing the uncoupled vibrations as basis functions
for frequency dependent shape functions derivation. Then Mohri et al. [11] investigated a
numerical model able to study the behavior of thin-walled beams with open cross section.

Aerospace 2023, 10, 142. https://doi.org/10.3390/aerospace10020142 https://www.mdpi.com/journal/aerospace

https://doi.org/10.3390/aerospace10020142
https://doi.org/10.3390/aerospace10020142
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com
https://orcid.org/0000-0003-0557-2086
https://orcid.org/0000-0003-4842-3320
https://orcid.org/0000-0002-1463-9660
https://doi.org/10.3390/aerospace10020142
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com/article/10.3390/aerospace10020142?type=check_update&version=1


Aerospace 2023, 10, 142 2 of 28

This model included flexural–torsional coupling and was tested for large deformations load
cases. Cestino et al. [12] developed a nonlinear beam model, capable of simulating the un-
conventional aeroelastic behavior of flexible composite wings. More recently Babuska [13],
used a weak-form approach to derive a bend-twist coupled composite laminate beam ele-
ment. Bending-torsion couplings can be achieved also with Functionally Graded Materials
(FGM), relevant work on this topic has been performed by Nam et al. [14] who developed
a first order shear deformation theory beam model to study the mechanical static bending,
free vibration, and buckling behavior of the variable thickness FGM beams. More recently
Dung et al. [15] used a new shear deformation theory-type hyperbolic sine functions to
carry out the free vibration analysis of the rotating functionally graded graphene beam
resting on elastic foundation taking into account the effects of both temperature and the
initial geometrical imperfection. A solution technique for beams with bending-torsion
couplings has been proposed by Banerjee et al. [16] who derived the differential equations
of motion using Hamilton’s principle and developed the dynamic stiffness matrix from the
solution of the differential equations for harmonic oscillatory motion. However, Banerjee’s
solution considers only inertial coupling while the finite element derived in this work
includes the effects of structural coupling.

In the present research, a beam finite element with bending-torsion coupling (BTCE)
is derived. The model here developed establishes a relation between bending and torsion
in presence of material coupling. A suitable set of shape function is obtained applying
the beam element boundary conditions, then the stiffness and mass matrices for the finite
element have been calculated adopting Galerkin’s method starting from the governing
equation of motion. The present model has been applied to an aluminum beam with
oriented stiffeners described in [17,18]. The BTCE performances have been tested for the
linear static problem with three load cases in cantilever configuration and for modal analysis.
The results have been compared with a finite element model solved with NASTRAN.
The results of the modal analysis have been compared also with previously published
experimental results [18]. The BTCE capabilities for modal analysis have been tested
also for a 5 MW horizontal axis wind turbine (HAWAT) blade developed by the National
Renewable Energy Laboratory (NREL) [19] and for a cantilever graphite/epoxy box beam
structure described in [20,21] with different layups. This allowed to verify the accuracy of
the model here described for structures with variable cross-sectional properties and for
composite structures. The present model showed good accuracy for the static problem
solution and for the computed natural frequencies and high similarity in the represented
mode shapes.

This paper is organized as follows. In Section 2, the structural model is described with
particular attention to the governing equations and the closed single cell section model.
Section 3 presents the shape functions derivation followed by the procedure applied to
obtain the stiffness and mass BTCE matrices. In Section 4 three applications for the BTCE
are presented with validation purposes. The results of the validation are presented and
discussed in Section 5, while the conclusions are outlined in the sixth and last section of
this work.

2. Structural Model

The beam behavior can be described through four displacements: the elongation u(x, t),
the in-plane transverse displacement v(x, t), the out-of-plane transverse displacement w(x, t)
and the torsional rotation ψ (x, t) in the Cartesian global coordinate system (x, y, z).

The dynamics of the beam in the axial direction will be omitted from hereinafter to
focus only on the in-plane and out-of plane displacement and torsion of the beam. However
the elongation equation for a circumferentially asymmetric stiffness (CAS) configuration,
does not present any coupling term, for this reason the stiffness and mass matrices cor-
responding coefficients does not differ from the classical Timoshenko’s beam and can be
easily included in the matrices here derived. The expressions for forces and moments
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resultants reported in Equation (1) were obtained following the same approach used by
Cestino et al. [17] and considering only the linear terms.

Mx
My
Mz

 =

C11 C12 0
C12 C22 0
0 0 C33


ψ′

−w′′

v′′

 (1)

With the convention: C11 = GJt; C22 = EIy; C33 = EIz; C12 = K; the governing
equations can be derived accordingly to [17,22–24] as:

mv̈ + EIzv′′′′ = 0
mẅ + EIyw′′′′ − Kψ′′′ = 0
ρIpψ̈− GJtψ

′′ + Kw′′′ = 0

(2)

Equation (2) consider only linear terms and no damping condition. EIy and EIz are
the bending stiffness with the respective axis, K represent the bending-torsion coupling
coefficient, GJt is the torsional stiffness, m = ρAL is the mass of the beam, ρ is the material
density and Ip is the polar moment of inertia of the beam section.

The coupled configuration considered in this work is a thin walled beam with closed
single cell section. The coupling effect can be given by the oriented composite material
or oriented stiffeners, both can be considered as orthotropic materials [25] and therefore
they have a laminate stiffness matrix associated. According to the Classical Laminate
Theory (CLT), the stiffness matrix can be divided in three sub-matrices called A, B and D
where A represent the laminate extensional stiffness, B is the bending-stretching coupling
stiffness and D is the laminate bending stiffness. This configuration needs specific relations
to compute the coefficients reported in Equation (1) which follow the CAS configuration.
The CAS stiffness coefficient are computed with Equation (3a–e), with Ω representing the
area enclosed by the mid line of the contour section according to the classical Bredt theory:

C00 =
∮

A∗11ds (3a)

C11 =
4Ω2∮ (

1/A∗66
)
ds

+ 4
∮

D∗66ds (3b)

C12 = 2Ω

∮ (
A∗16/A∗66

)
zds∮ (

1/A∗66
)
ds
− 2

∮
D∗16

dy
ds

ds (3c)

C22 =
∮

z2

(
A∗11 −

A∗216
A∗66

)
ds +

[∮ (
A∗16/A∗66

)
zds
]2∮ (

1/A∗66
)
ds

+
∮

D∗11

(
dy
ds

)2
ds (3d)

C33 =
∮

y2

(
A∗11 −

A∗216
A∗66

)
ds +

[∮ (
A∗16/A∗66

)
yds
]2∮ (

1/A∗66
)
ds

+
∮

D∗11

(
dz
ds

)2
ds (3e)

A∗ij and D∗ij are the coefficient of the reduced laminate extensional stiffness matrix
and reduced laminate bending stiffness matrix respectively. They are obtained from the
coefficients of matrices [A] and [B] in case of symmetric lamination with Equation (4)
according to [17].

A∗11 = A11 −
A2

12
A22

A∗16 = A16 −
A12 A26

A22
A∗66 = A11 −

A2
26

A22

D∗11 = D11 −
D2

12
D22

D∗16 = D16 −
D12D26

D22
D∗66 = D11 −

D2
26

D22

(4)
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The present work focuses mainly on thin walled closed single cell beam with oriented
stiffeners. This configuration presents an appreciable level of bending-torsion coupling
and it is the archetype for classical aerospace structures such as wing-boxes. However,
the present formulation can be applied to any configuration where the stiffness coefficients
Cij are known. In this case they have been computed considering the CAS model, but in
case of a single lamina, the stiffness coefficient can be computed according to [26] or [27] as
reported in [13].

3. Finite Element Derivation

The beam finite element represented in Figure 1 is a two node element with six degrees
of freedom per node. As previously specified, the presented BTCE model follows the CAS
configuration, thus the axial degree of freedom is not included and the nodal degrees of
freedom are reduced to five for each node. The governing Equation (2) can be rewritten as:

ρA
∂2v
∂t2 + EIz

∂2

∂x2

(
∂2v
∂x2

)
= fv

ρA
∂2w
∂t2 + EIy

∂2

∂x2

(
∂2w
∂x2

)
− K

∂

∂x

(
∂2ψ

∂x2

)
= fw

ρIp
∂2ψ

∂t2 − GJt
∂

∂x

(
∂ψ

∂x

)
+ K

∂

∂x

(
∂2w
∂x2

)
= fψ

(5)

Figure 1. Beam Element reference system with dimensions, nodal degrees of freedom and resultants.

Galerkin’s method can be adopted to find the element stiffness and mass matrices.
The method proceed from the partial differential equations of motion (5), where q, s and
t are the maximum spatial partial derivative order for w, v and ψ respectively. To apply
Galerkin’s method v(x, t), w(x, t) and ψ(x, t) must be expressed in a series of functions
with one or more terms. For the case here considered this means:
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

v(x, t) =
N
∑
j=i

ξ j(t)φvj(x)

w(x, t) =
N
∑
j=i

ξ j(t)φwj(x)

ψ(x, t) =
N
∑
j=i

ξ j(t)φψj(x)

(6)

According to [28], in order to be acceptable for Galerkin’s method, these functions φj
must have the following characteristics:

• Each function must satisfy all boundary conditions.
• Each function must be respectively at least q, s, t times differentiable.
• If more than one function is used, they must be chosen from a complete set of functions.
• The set of function must be linearly independent.

Once the shape functions are defined, the set of functions must be multiplied by a
residual function and integrated over the beam length. By doing this and imposing zero as
solution of the Equation (7), the error between the shape function and the equation of the
problem is minimized. ∫ L

0
φjRedx = 0 (7)

The result of this procedure are the discrete equations of motion written in the form:

[M]{ξ̈}+ [K]{ξ} = {F} (8)

3.1. Shape Functions

The approximate solution for the principal variables of the problem, v, w and ψ can be
expressed as polynomials, which present all the characteristics required for the Galerkin’s
method, the boundary conditions are listed in Table 1.

v(x) = c1 + c2x + c3x2 + c4x3

w(x) = c5 + c6x + c7x2 + c8x3

ψ(x) = c9 + c10x + c11x2

(9)

Table 1. Boundary conditions for a two-nodes element.

x = 0 x = L

v = v1 1 v = v2 2

v′ = θz
1 3 v′ = θz

2 4

w = w1 5 w = w2 6

w′ = −θ
y
1 7 w′ = −θ

y
2 8

ψ = ψ1 9 ψ = ψ2 10

M′x = 0 11

Boundary conditions (1–8) in Table 1 gives the classical Hermite’s polynomials for
v(x) and w(x) while boundary conditions (9–11) in Table 1 results in the Equation (10c)
for ψ(x) .

v(x) =
[

1− 3
x2

L2 + 2
x3

L3

]
v1 +

[
x− 2

x2

L
+

x3

L2

]
θz

1 +

[
3

x2

L2 − 2
x3

L3

]
v2 +

[
− x2

L
+

x3

L2

]
θz

2 (10a)
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w(x) =
[

1− 3
x2

L2 + 2
x3

L3

]
w1 −

[
x− 2

x2

L
+

x3

L2

]
θ

y
1 +

[
3

x2

L2 − 2
x3

L3

]
w2 −

[
− x2

L
+

x3

L2

]
θ

y
2 (10b)

ψ(x) =
[
1− x

L

]
ψ1 +

[
6K

GJtL3

(
x2 − Lx

)]
w1 +

[
3K

GJtL2

(
Lx− x2

)]
θ

y
1

+
[ x

L

]
ψ1 +

[
6K

GJtL3

(
Lx− x2

)]
w2 +

[
3K

GJtL2

(
Lx− x2

)]
θ

y
2

(10c)

Equations (10) can be rewritten as product of an array of the shape functions times the
degrees of freedom column matrix. The member of the matrices {N(x)} are reported in
Table 2. 

v(x) = {Nv(x)}{qv}T

w(x) = {Nw(x)}{qw}T

ψ(x) = {Nψ(x)}{qψ}T

(11)

where {qv}, {qw} and {qψ} are defined as:
{qv} = {v1, θz

1, v2, θz
2}

{qw} = {w1, θ
y
1 , w2, θ

y
2}

{qψ} = {ψ1, w1, θ
y
1 , ψ2, w2, θ

y
2}

(12)

Table 2. Shape Functions for Bending-Torsion Coupled Beam Element.

{Nv(x)} {Nw(x)} {Nψ(x)}

Nv1

[
1− 3

x2

L2 + 2
x3

L3

]
Nw1

[
1− 3

x2

L2 + 2
x3

L3

]
Nψ1

[
1− x

L

]
Nv2

[
x− 2

x2

L
+

x3

L2

]
Nw2 −

[
x− 2

x2

L
+

x3

L2

]
Nψ2

[
6K

GJtL3

(
x2 − Lx

)]
Nv3

[
3

x2

L2 − 2
x3

L3

]
Nw3

[
3

x2

L2 − 2
x3

L3

]
Nψ3

[
3K

GJtL2

(
Lx− x2)]

Nv4

[
− x2

L
+

x3

L2

]
Nw4 −

[
− x2

L
+

x3

L2

]
Nψ4

[ x
L

]
Nψ5

[
6K

GJtL3

(
Lx− x2)]

Nψ6

[
3K

GJtL2

(
Lx− x2)]

The terms reported in Table 2 are similar to the terms obtained in [13] with a different
approach. In particular, the terms Nw2 and Nw4 present an opposite sign. This difference
reflects on the subsequent algebraical manipulation determining mayor discrepancies in
the reported matrices and in the FE behavior.

3.2. Stiffness and Mass Matrices Derivation

The approximating solution for Equation (5) can be written as:
v(e) = Nv1v1 + Nv2θz

1 + Nv3v2 + Nv4θz
2 = {Nv(x)}{qv(t)}T

w(e) = Nw1w1 + Nw2θ
y
1 + Nw3w2 + Nw4θ

y
2 = {Nw(x)}{qw(t)}T

ψ(e) = Nψ1ψ1 + Nψ2w1 + Nψ3θ
y
1 + Nψ4ψ2 + Nψ5w2 + Nψ6θ

y
2 = {Nψ(x)}{qψ(t)}T

(13)
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Substituting the approximating solution (13) into the governing Equation (5), the ex-
pressions for three residual functions are obtained:

Re
v = ρA

∂2v(e)

∂t2 + EIz
∂2

∂x2

(
∂2v(e)

∂x2

)
− fv

Re
w = ρA

∂2w(e)

∂t2 + EIy
∂2

∂x2

(
∂2w(e)

∂x2

)
− K

∂

∂x

(
∂2ψ(e)

∂x2

)
− fw

Re
ψ = ρIp

∂2ψ(e)

∂t2 − GJt
∂

∂x

(
∂ψ(e)

∂x

)
+ K

∂

∂x

(
∂2w(e)

∂x2

)
− fψ

(14)

Multiplying the residual functions (14) times the respective shape functions matrices
and imposing the integral over the element length equal to 0, the following expressions
are obtained: ∫ L

0
{Nv}Re

vdx = 0 (15a)

∫ L

0
{Nw}Re

wdx = 0 (15b)

∫ L

0
{Nψ}Re

ψdx = 0 (15c)

Which can be rewritten as:

∫ L

0
{Nv}ρA

∂2v(e)

∂t2 dx +
∫ L

0
{Nv}EIz

∂2

∂x2

(
∂2v(e)

∂x2

)
dx−

∫ L

0
{Nv} fvdx = 0 (16a)

∫ L

0
{Nw}ρA

∂2w(e)

∂t2 dx +
∫ L

0
{Nw}EIy

∂2

∂x2

(
∂2w(e)

∂x2

)
dx−

∫ L

0
{Nw}K

∂

∂x

(
∂2ψ(e)

∂x2

)
dx−

∫ L

0
{Nw} fwdx = 0 (16b)

∫ L

0
{Nψ}ρIp

∂2ψ(e)

∂t2 dx−
∫ L

0
{Nψ}GJt

∂

∂x

(
∂ψ(e)

∂x

)
dx +

∫ L

0
{Nψ}K

∂

∂x

(
∂2w(e)

∂x2

)
dx−

∫ L

0
{Nψ} fψdx = 0 (16c)

Integrating two times by parts the second member of Equation (16a–c) and one time
the third member of Equation (16b,c), Equation (16a–c) become Equation (17a–c). More
details concerning the boundary conditions can be found in Appendix A.

∫ L

0
{Nv}ρA

∂2v(e)

∂t2 dx +
∫ L

0
{Nv}′′EIz

(
∂2v(e)

∂x2

)
dx =

∫ L

0
{Nv} fvdx +


−Ty

1
−Mz

1
Ty

2
Mz

2

 (17a)

∫ L

0
{Nw}ρA

∂2w(e)

∂t2 dx +
∫ L

0
{Nw}′′EIy

∂2w(e)

∂x2 dx−
∫ L

0
{Nw}′′K

∂ψ

∂x
dx =

∫ L

0
{Nw} fwdx +


−Tz

1
−My

1
Tz

2
My

2

 (17b)

∫ L

0
{Nψ}ρIp

∂2ψ(e)

∂t2 dx +
∫ L

0
{Nψ}′GJt

∂ψ(e)

∂x
dx−

∫ L

0
{Nψ}′K

∂2w(e)

∂x2 dx =
∫ L

0
{Nψ} fψdx +



−Mx
1

0
0

Mx
2

0
0


(17c)

where Ty
1 , Ty

2 , Tz
1 , Tz

2 , Mz
1, Mz

2, My
1 , Mz

2, Mz
1 and Mx

2 are the nodal loads of the beam
finite element associated to the boundary conditions. Substituting the expression of the
approximate solutions (13) into Equation (17a–c), one obtains:
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∫ L

0
ρA{Nv}{Nv}{q̈v}dx +

∫ L

0
EIz{Nv}′′{Nv}′′{qv}dx =

∫ L

0
{Nv} fvdx +


−Ty

1
−Mz

1
Ty

2
Mz

2

 (18a)

∫ L

0
ρA{Nw}{Nw}{q̈w}dx +

∫ L

0
EIy{Nw}′′{Nw}′′{qw}dx−

∫ L

0
K{Nw}′′{Nψ}′{qψ}dx =

∫ L

0
{Nw} fwdx +


−Tz

1
−My

1
Tz

2
My

2

 (18b)

∫ L

0
ρIp{Nψ}{Nψ}{q̈ψ}dx +

∫ L

0
GJt{Nψ}′{Nψ}′{qψ}dx−

∫ L

0
K{Nψ}′{Nw}′′{qw}dx =

∫ L

0
{Nψ} fψdx +



−Mx
1

0
0

Mx
2

0
0


(18c)

Equations (18) can be rewritten in the matrix form as follows:

[Mv]{q̈v}+ [Kv]{qv} = {pv}+


−Ty

1
−Mz

1
Ty

2
Mz

2

 (19a)

[Mw]{q̈w}+ [Kw]{qw} − [Kwψ]{qψ} = {pw}+


−Tz

1
−My

1
Tz

2
My

2

 (19b)

[Mψ]{q̈ψ}+ [Kψ]{qψ} − [Kψw]{qw} = {pψ}+



−Mx
1

0
0

Mx
2

0
0


(19c)

The equations in the matrix form can be combined to obtain the beam finite element
stiffness and mass matrices [K] and [M]. The matrices present in Equation (19) are reported
in Appendix A alongside the procedure to obtain the matrices [K] and [M].

4. Validation

The first structure (Test Case 1) considered for the validation was a L = 1200 mm long
aluminum beam with a closed single cell section of dimensions b = 50 mm and h = 40 mm.
The beam consisted in two panels with a thickness s = 2 mm with stiffeners oriented at
α = 25◦ (Figure 2) and with an height hs = 4 mm. The stiffened panels are bonded onto two
c-shaped spars with constant section of 20× 40 mm and a thickness s = 2 mm. The initial
100 mm of the length are used to constrain the beam so that the useful length is 1100 mm.
The beam was the same used by [17,18] and it was made with a 6060 aluminum alloy with
the mechanical properties reported in Table 3.

The BTCE model was obtained assembling 10 two-nodes beam elements with the
presented formulation for a total length of 1100 mm, the degrees of freedom of the first node
has been imposed equal to zero for the cantilever configuration. The number of elements
has been chosen as a compromise between accuracy, resolution and position of the nodes
with respect to their experimental counterparts. To determine the stiffness coefficients (1),
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reported in Table 4, the stiffened panels were considered as laminates with the stiffeners
reduced to an equivalent single layer according to [17,18,29].

The equivalent single layer mechanical properties reported in Table 5 were computed
with Equations (20) according to [25] and considering: Es = 58, 000 MPa the Young’s
modulus of the stiffener, bs = 3 mm the dimension of the stiffener base, Ns = 6 the number
of stiffeners and ds = b/Ns = 8.33 the distance between the stiffeners. The in-plane
transverse shear-deformation parameter is defined as τs

y = ks
yGs/Es with ks

y = 5/6 the
in-plane shear correction factor and Gs = 21, 805 MPa the shear modulus of the stiffener.
The equivalent mass density was obtained imposing the thickness of the equivalent layer
equals to the height of the stiffeners keeping the total mass constant following the procedure
reported in [18].

E11 =

(
Esbs

ds

)
el−12

; E22 = 0; ν12 = 0; G12 =
τs

y

4

(
Esbs

ds

)
el−12

; G13 = 0; G23 = 0 (20)

MID-THICKNESS LINE

Figure 2. Aluminum Beam dimensions with mid-thickness line of the section, from [18] used under
Creative Commons CC-BY license.

The reference numerical model for Test Case 1 is a TETRA4 FE model (Figure 3) of
the aluminum beam already described. The structure has been constrained at one end
imposing the nodal displacements and rotations equal to 0 for the first 100 mm of the length
as depicted in Figure 3C. The loads for the static analysis validation have been applied to
the center of an MPC connected to all the nodes of the end section of the beam (Figure 3B).
The TETRA4 FE model is consistent with the model presented in [18] with the exception of
the constraint which, in the present work, include all the nodes of the first section in order
to be more consistent with the BTCE constraints. The static and modal analysis have been
performed with NASTRAN.

A second validation test case (Test Case 2) without structural coupling has been
considered to asses the capability of the BTCE model to represent the dynamic behaviour of
beam structures with span-wise variable stiffness and inertia properties. The case study is
a NREL 5 MW HAWT blade described by Jonkman at. altri in [19]. The structure is 61.5 m
long with a total mass of 17.740 kg, the cross-sectional stiffness properties are reported in
Figure 4.
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(A)

(C)(B)

Figure 3. (A) TETRA4 FE model, (B) Detail of the MPC for free end load application, (C) Detail of the
constrained nodes.

Table 3. Al6060 mechanical and physical properties.

Property Value

Young’s Modulus, E [MPa] 58,000
Shear Modulus, G [MPa] 21,805
Poisson’s ratio, ν 0.33
Mass Density, ρ [kg/dm3] 2.66

Table 4. Beam Section Stiffness Coefficients (Test Case 1).

Coefficient Value [N mm2]

C11 5.79 × 109

C22 1.41 × 1010

C33 2.17 × 1010

C12 1.44 × 109

Table 5. Equivalent Single Layer Material Properties.

Property Value

Longitudinal Young’s Modulus, E1 [MPa] 20,888.36
Trasverse Young’s Modulus, E2 [MPa] 0
Shear Modulus, G12 [MPa] 1636.03
Poisson’s ratio, ν 0
Mass Density, ρ [kg/dm3] 0.99

The wind turbine blade properties are defined in [19] for 49 sections along its axis,
which have been considered as location for the nodes of a BTCE model with 48 ele-
ments. The nodal displacements of the first node have been imposed equal to zero for the
cantilever configuration.

The CAS cantilevered box beam described in [20] has been considered as third test
case for the validation of the present model (Test Case 3). The structure is a graphite/epoxy
beam with geometry and material properties reported in Table 6. The cross sectional
stiffness of the BTCE have been computed with Equation (1) for two different six layers
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layups, with fibers oriented at 30 and 45 degrees. The BTCE model was obtained assembling
10 two-nodes elements and imposing the degrees of freedom of the first node equal to zero.
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Figure 4. Cross-Sectional Stiffness properties of NREL 5 MW HAWT blade [19] (Test Case 2).

Table 6. CAS cantilever graphite/epoxy box beam properties from [20] (Test Case 3).

Property Value

Width [mm] 24.21
Depth [mm] 13.46
Length [mm] 762
Ply thickness [mm] 0.127
E11 [GPa] 142
E22 = E33 [GPa] 9.8
G12 = G13 [GPa] 6.0
G23 [GPa] 4.83
ν12 = ν13 0.42
ν23 0.5

4.1. Static Analysis Validation

The linear static problem (21) for the numerical models of Test Case 1 is solved
considering the three load cases summarized in Table 7 with different forces and torques
applied at the free end of the beam which, in the BTCE model, correspond to the last node
of the structure.

The BTCE model results were compared with the TETRA4 FE model results com-
puting the relative difference of nodal displacement and torsion with Equation (22) and
representing the nodal deformations along the beam.

In order to verify the correct behavior of the beam element in case of uncoupled
conditions, the deformations have been computed also considering the coefficient C12 = 0
and the results have been compared with the analytical solution derived with the principle
of virtual work (PVW). The deformation at the free end in this case were computed with

the following equations: wTz =
TzL3

3C22
, wMy = −

MyL2

2C22
, ψMx =

MxL
C11

.

[KT ]{d} = {P} (21)
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Rel.Di f f .% =

∣∣∣RTETRA4/Exp − RBTCE

∣∣∣
RTETRA4/Exp

· 100 (22)

Table 7. Load cases for linear static analysis, loads applied at the free end of the beam (Test Case 1).

Name Value

Load Case 1 Tz = 500 [N]
Load Case 2 My = 5 ∗ 104 [N mm]
Load Case 3 Mx = 5 ∗ 104 [N mm]

4.2. Modal Analysis Validation

To assess the validity of the model derived, a modal analysis of the BTCE model has
been performed for the three test cases described. The linear elastic eigenvalue problem (23)
has been solved computing the corresponding eigenvectors solution of Equation (24) and
giving a graphical representation of the results.

det
(
[KT ]−ω2

n[MT ]
)
= 0 (23)

([KT ]−ω2
n[MT ])φn = 0 (24)

The BTCE model has been preliminary tested for the uncoupled modal analysis
of Test Case 1 imposing C12 = 0 and comparing the natural frequencies obtained with
the analytical solution present in [28], where the natural frequencies are computed with
Equations (25) and (26) for bending and torsion modes respectively.

ωi = (αiL)2

√
C22/33

mL4 (25)

ωi =
(2i− L)π

2L

√
C11

ρIP
(26)

where L is the length of the beam, m is the mass per unit length, i is the number of the mode
and the non dimensional product αiL assumes the value 1.8719, 4.69409 and 7.85476 for the
1st, 2nd and 3rd bending mode respectively according to [28]. To obtain the corresponding
frequency values expressed in Hertz, the ωi were divided by 2π.

The results of the modal analysis for the BTCE model (Test Case 1) considering
the coupling term has been validated with the TETRA4 FE model and with previously
published experimental results collected with a laser Doppler vibrometer modal analysis
described in [18]. The experimental setup represented in Figures 5 and 6, consisted of an
electrodynamic shaker and a Polytec PSV-500 scanning head with control box, the excitation
of the test piece was obtained through a periodic chirp signal. The experimental data
collected by a load cell and by the scanning head have been post-processed with the
Polytec software.

The dynamic behavior of the BTCE model has been compared in terms of predicted
natural frequencies and mode shapes. The accuracy for the obtained natural frequencies
was assessed computing the relative difference with Equation (22). The similarity between
the FE models and the experimental mode shapes have been evaluated with the Modal
Assurance Criterion (MAC).

MAC is a statistical indicator used to quantifying the similarity between two sets
of mode shapes, a value equals to 1 indicate complete similarity, while 0 indicates no
correlation between the modes investigated [30,31]. Equation (27) have been applied to
the mode shapes computed with the model presented and a TETRA4 FE model to obtain
the MAC matrices. The comparison has been performed also on the experimental mode
shapes presented by Patuelli et altri [18]. In this case, the comparison involved only the
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component of the eigenvector observed during the physical test, that is, the out-of-plane
components along z-axis.

MACij =
|ΦiT

A Φ
j
B|2(

ΦiT
A Φ

j
A

)(
ΦiT

B Φ
j
B

) (27)

A modal analysis has been performed also for the NREL 5 MW HAWT blade and
for the CAS graphite/epoxy box beam with two different layups. The natural frequencies
obtained with the BTCE model have been compared with numerical and experimental
results reported in [32–34] for Test Case 2 and in [20,21] for Test Case 3.

Figure 5. Experimental Setup Scheme, from [18] used under Creative Commons CC-BY license.

Test Piece

Shaker and Load Cell

Scanning Head

Constraint

PC

Control Box and 

Signal Amplifier

Figure 6. Experimental Setup for Test Case 1.

5. Results and Discussion

The results of the analysis described are reported in this section. The deformation along
the z-axis and the torsion computed for the static analysis of Test Case 1 are reported in
Figures 7–9 for each load case, while the relative differences for nodal displacements and tor-
sion angles are summarized in Table 8. The results of the modal analysis for the BTCE model
of the aluminum beam are reported in Figure 10 while the natural frequencies obtained
have been compared with analytical, numerical and experimental results in Tables 9–11
respectively. A converge study on the natural frequency is reported in Figure 11. Numerical
and experimental mode shapes are reported in Figures 12–17, while MAC matrices for the
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mode shapes comparison are reported in Figure 18. The comparison of BTCE model results
for Test Case 2 and for Test Case 3 are reported in Tables 12 and 13 respectively.

5.1. Static Analysis Results

The results of the linear static analysis for the load cases presented in Table 7 obtained
for the BTCE model here derived have been compared with the numerical results of a
TETRA4 FE model with the same load configuration for Test Case 1. Vertical deflection
and torsion angle results have been collected and represented in Figures 7–9. The results
reveal a good correlation between the two numerical model considered for each load case,
showing the capability of the BTCE to correctly represent the bending-torsion coupling
effect given by the stiffeners in presence of a static load.
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Figure 7. Load Case 1 Results Comparison (Test Case 1), (A) Deflection along z-axis, (B) Torsion Angle.
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Figure 8. Load Case 2 Results Comparison (Test Case 1), (A) Deflection along z-axis, (B) Torsion Angle.
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Figure 9. Load Case 3 Results Comparison (Test Case 1), (A) Deflection along z-axis, (B) Torsion Angle.

The values of the deformations at the free end of the beam are reported in Table 8,
the relative difference is computed with Equation (22) considering the result of the TETRA4
model as reference value. The relative difference is computed also for each node along
the beam and the mean value is reported in the last column of Table 8. In the same table
also the results of the deformation at the free end of the beam for the uncoupled case
(C12 = 0) are reported, the reference values for the comparison are computed with the
PVW. The comparison shows a difference lower than 5% for the load cases considered
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with a slightly higher value for the torsion angle computed for load case 3. This could
be caused by an overestimation of the torsional stiffness C11 computed with Equation (1).
The approximation introduced when the cross section of the beam is reduced to its mid
thickness line can affect the final stiffness of the beam. The results for the uncoupled
configuration are in line with the analytical formulation.
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Figure 10. BTCE Modal Analysis Results with eigenvectors components along z and y-axis and
rotational component along x-axis (Test Case 1).

5.2. Modal Analysis Results

The results of the modal analysis for Test Case 1 obtained with the procedure described
in the previous section have been compared with experimental, numerical and analytical
results. The frequencies computed considering the bending and torsion uncoupled (C12 = 0)
are reported in Table 9 while the frequencies obtained with the TETRA4 FE model are
reported in Table 10. The experimental results have been acquired by Patuelli et al. [18]
with a laser Doppler vibrometer according to the procedure described in [35] and reported
in Table 11 for a comparison. The second and fourth mode do not present experimental
frequency value or mode shape. Due to the nature of the acquisition, the experimental
modal analysis did not include the in-plane modes since the focus was on the bending-
torsion coupling effect which does not affects the neglected modes.

The comparison with the analytical frequencies confirmed the consistency of the model
for the uncoupled case with a negligible relative difference. Moreover, the comparison with
numerical results revealed that there is good agreement between the present theory and
the TETRA FE model, with relative error lower than 5% for most of the natural frequencies
computed. The natural frequency of the 6th mode present an higher relative difference
of 9.29%.
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Figure 11. BTCE Modal Analysis Results convergence study. (Test Case 1).
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Figure 12. First Mode Shape Comparison between BTCE, TETRA4 and Experimental [18] results
(Test Case 1).

1.5

1

0.5

0

�0.5

�1

�1.5

0 200 400 600 800 1000 1200

x [mm]

v
BTCE

v
TETRA4

Figure 13. Second Mode Shape Comparison between BTCE and TETRA4 results (Test Case 1).

The correlation with experimental results is generally good, with a relative error
around 5% or lower for the 1st and the 5th mode, but with a considerably higher difference
for the 3rd and the 6th mode. There are mainly two reason for the difference in natural
frequencies values. As already stated before, the approximation introduced when the cross
section of the beam is reduced to its mid thickness line affect the stiffness coefficients,
but also the inertia properties of the beam. Moreover, the experimental results are affected
by a constraint condition impossible to replicate for the beam element. The beam was
clamped between two steel blocks applying pressure on the upper and lower face of the
first 100 mm of the beam. With this configuration, the first section of the beam was not
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fully constrained which is the condition applied to the BTCE section when imposing all the
degrees of freedom equals to zero for the first node.
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Figure 14. Third Mode Shape Comparison between BTCE, TETRA4 and Experimental [18] results
(Test Case 1).
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Figure 15. Fourth Mode Shape Comparison between BTCE and TETRA4 results (Test Case 1).
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Figure 16. Fifth Mode Shape Comparison between BTCE, TETRA4 and Experimental [18] results
(Test Case 1).
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(B)(A)

Figure 18. (A) MAC matrix for TETRA4-BTCE mode shapes comparison; (B) MAC matrix for
Experimental [18]-BTCE Z component of mode shapes comparison (Test Case 1).

Table 8. Static Analysis Results Comparison for Load Case 1, 2 and 3 and analytical comparison for
the uncoupled configuration (Test Case 1).

Static Analysis Results Comparison

Load Case 1

TETRA4 BTCE Rel. Diff. [%] Mean Rel. Diff. [%]

w [mm] 15.77 16.09 2.06 1.49
ψx [rad] 5.68 × 10−3 5.45 × 10−3 4.13 3.50

(C12 = 0) PVW BTCE Rel. Diff. [%]
w [mm] 15.69 15.69 0

Load Case 2

TETRA4 BTCE Rel. Diff. [%] Mean Rel. Diff. [%]

w [mm] −2.13 −2.19 2.84 3.18
ψx [rad] 1.03 × 10−3 0.99 × 10−3 4.23 3.65

(C12 = 0) PVW BTCE Rel. Diff. [%]

w [mm] −2.14 −2.14 0

Load Case 3

TETRA4 BTCE Rel. Diff. [%] Mean Rel. Diff. [%]

w [mm] 0.57 0.54 4.13 3.18
ψx [rad] 9.24 × 10−3 9.74 × 10−3 5.39 5.48

(C12 = 0) PVW BTCE Rel. Diff. [%]
ψx [rad] 0.95 × 10−2 0.95 × 10−2 0
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Table 9. Natural frequencies [Hz] comparison for uncoupled BTCE model (C12 = 0) and analytical
results (Test Case 1).

Analytical Results Comparison

Mode Analytical [28] [Hz] Num. BTCE [Hz] Rel. Diff. [%]

1 36.31 36.31 0
2 45.02 45.02 0
3 227.55 227.57 7.20 × 10−3

4 282.10 282.12 7.20 × 10−3

5 410.88 411.31 1.03 × 10−1

6 637.18 628.34 2.54 × 10−2

Table 10. Natural frequencies [Hz] comparison of a TETRA4 FE model and a coupled bending-torsion
BTCE model (Test Case 1).

Numerical Results Comparison

Mode Num. TETRA4 [Hz] Num. BTCE [Hz] Rel. Diff. [%]

1 36.73 35.85 2.40
2 47.11 45.02 4.44
3 219.57 224.51 2.25
4 285.29 282.12 1.11
5 399.36 411.47 3.03
6 574.83 628.24 9.29

Table 11. Natural frequencies [Hz] comparison of experimental results and a coupled bending-torsion
BTCE model (Test Case 1).

Experimental Results Comparison

Mode Experimental [18] [Hz] Num. BTCE [Hz] Rel. Diff. [%]

1 34.53 35.85 3.82
2 - 45.02 -
3 206.900 224.51 8.5
4 - 282.12 -
5 390.25 411.47 5.43
6 571.10 628.24 10.00

Table 12. Natural frequency comparisons for the different beam theories and results for NREL 5 MW
HAWT blade [32–34] in the flap-wise (F) and edge-wise (E) directions of a single blade without an
aerodynamic force (Test Case 2).

Mode BTCE Rayleigh [32] B Modes [32] FAST [32] [33] [34] Timoshenko [32] Bernoulli [32]
[Hz] [Hz] [Hz] [Hz] [Hz] [Hz] [Hz] [Hz]

1 0.68 F 0.68 0.69 0.68 0.67 0.68 0.67 0.68
(0%) (1.44%) (0%) (1.49%) (0%) (1.49%) (0%)

2 1.09 E 1.11 1.12 1.10 1.11 1.10 1.09 1.11
(1.80%) (2.68%) (0.91%) (1.80%) (0.91%) (0%) (1.80%)

3 1.95 F 1.98 2.00 1.94 1.92 1.98 1.95 3.05
(1.51%) (2.5%) (0.52%) (1.56%) (1.51%) (0%) (36%)

4 4.04 E 4.10 4.12 4.00 3.96 3.99 3.98 3.91
(1.46%) (1.94%) (1.00%) (2.02%) (1.25%) (1.51%) (3.32%)

5 4.51 F 4.45 4.69 4.43 4.43 4.66 4.42 4.21
(1.35%) (3.84%) (1.81%) (1.81%) (3.28%) (2.04%) (7.13%)
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Table 13. Comparison of frequencies (Hz) with numerical results from [20] and experimental data
from [21] (Test Case 3).

Layup Mode BTCE [20] [21]

[30]6 CAS 1TV 20.20 19.92 20.96
(1.41%) (3.63%)

2TV 126.47 124.73 128.36
(1.40%) (1.47%)

1HB 35.108 37.62 38.06
(6.68%) (7.78%)

[45]6 CAS 1TV 15.63 14.69 16.67
(6.40%) (6.24%)

2TV 97.92 92.02 96.15
(6.41%) (1.84%)

1HB 25.41 25.13 29.48
(1.11%) (13.81%)

TV = Twisted Vertical bending. HB = Horizontal Bending.

The eigenvectors solution of Equation (24) for the BTCE model are graphically repre-
sented in Figure 10. Only the three components of the eigenvectors involved in the modes
investigated are represented, the in-plane component v, the out-of-plane component w,
and the torsional component ψx. The eigenvectors components have been normalized with
respect to the maximum value present among all the degrees of freedom for a given mode.

The eigenvectors depicted in Figure 10 highlight the coupling effect for the 1st, 3rd, 5th
and 6th mode where the 1st, 3rd and 6th mode are mainly bending modes with respect to
the y-axis and the 5th is mainly a torsional mode around x-axis. It is worth noting that the
2nd and 4th mode which are the bending modes with respect to the z-axis are correctly not
influenced by the coupling term C12 and result uncoupled. Similar observation can be made
for the comparison reported in Figures 12–17, where the mode shapes and the coupling
effects are in accordance with the results obtained for the TETRA4 model. Furthermore,
the mode shapes are in good agreement with experimental results for the z component of
the eigeinvectors reported in [18].

A convergence study on the computed natural frequencies has been performed consid-
ering a number of elements varying from 3 to 50. The results are represented in Figure 11 in
terms of natural frequency normalized with respect to the convergence value. It is possible
to observe that the first three natural frequencies converge rapidly with the increase in
the number of elements and their curves result coincident in Figure 11, while the fourth,
fifth and sixth mode require more elements to converge. However, the natural frequency
computed for Mode 6 with 10 elements is only 0.026% greater than the convergence value.

The MAC matrices computed for the mode shape comparisons are reported in Figure 18.
The BTCE model showed an excellent accordance with the TETRA4 model as reported in
Figure 18A. The results revealed a similarity between the 3rd and the 5th mode, which was
expected because the torsional mode (Mode 5) is coupled with bending through the coupling
term C12 = K in the stiffness matrix. This coupling effect generate a component along z-axis
for the 5th mode which is similar to the same component for the second bending mode
(Mode 3) as can be observed in Figures 14 and 16. The same coupling effects are observable
in the comparison with experimental results (Figure 18B), this is testified by the off diagonal
values related to the 3rd and the 5th mode. The similarity is higher because in this case only
the component of the eigenvectors along z-axis is considered. The relatively low similarity
between the 5th BTCE mode and the corresponding experimental mode is probably related to
the reduced number of acquisition points along the beam axis during the physical test.

The results of the modal analysis performed on the BTCE model of the NREL 5MW
HAWAT blade described in [19] are reported in Table 12. The results have been compared
with the natural frequency obtained with Rayleigh theory, with Timoshenko theory and
with Bernoulli theory reported in [32]. The values computed with the BTCE model have
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been compared also with the results obtained with two software developed by NREL [32],
B-Modes and FAST, with the results obtained by Jeong et al. [34] using BEM-ABAQUS
commercial software and with the results obtained by Li et al. [33] where a geometrically
exact beam theory was used.

The BTCE model showed great accordance with other beam theories and commercial
software results, with a relative difference below 5% for the computed natural frequencies.
The error is considerably higher when the BTCE model is compared to the Bernoulli theory,
however the natural frequency computed with the Bernoulli theory for the third and the
fifth frequencies are not in accordance with the other theories or commercial solvers.

The results of the modal analysis performed on the CAS graphite/epoxy box beam are
reported in Table 13. The natural frequency have been compared with numerical results
from [20] and experimental data reported in [21] computing the relative differences with
Equation (22).

The results are in good agreement with numerical and experimental results with a
relative difference with the BTCE model natural frequencies mostly lower than 7% for both
layups. Minor discrepancies can be observed for the for the first horizontal bending mode
frequency where the relative difference with the experimental result is equal to 13.81%

6. Conclusions

The derivation of a beam finite element for structures with bending-torsion coupling
was presented in this work. The shape functions have been derived consistently with
the equilibrium and kinematics equations while the stiffness and mass matrix have been
obtained through the Galerkin’s method. The matrices derived have been used to create a
BTCE model of a beam structure and solve the linear static and eigenvalue problems.

The present model was validated for the static case through the simulation of an
aluminum beam with stiffened panels and cantilever configuration for three different load
configurations applied at the free end of the beam. The oriented stiffeners consented to
achieve an appreciable bending-torsion coupling effect which was correctly represented by
the results of the static and modal analysis.

The results obtained from the static analysis have been compared with the results
of a TETRA4 FE model in the same configuration. The relative differences between the
maximum value of displacement and torsion angle computed for the BTCE and the TETRA4
model is below 5% for most of the load cases considered. The relative difference between
the two models along the length of the beam is mostly lower than 5%. Minor discrepancies
are induced by the approximation introduced when the cross section of the beam is reduced
to its mid thickness line which affect the stiffness coefficients.

The beam element has been validated also for the dynamic case with a modal analysis
in the cantilever configuration. The results obtained have been compared with experimental
results and with a TETRA4 FE model numerical results showing a relative error mostly
lower than 5% in terms of natural frequency value for the numerical comparison and higher
values for the experimental comparison, up to 10% in the worst case. These discrepancies
can be explained considering that the beam cross section was reduced to its mid thickness
line for the BTCE model. This introduced approximations that can affects also the inertia
properties of the beam. Moreover the constraints applied during the experimental tests
with a root section not perfectly constrained, could not be replicated with the beam element
where the same section is considered fixed.

The similarity between the mode shape obtained with the present theory have been
compared with the TETRA4 FE model and experimental mode shapes with the modal assur-
ance criterion. The computed MAC matrices showed great accordance between the sets of
mode shape compared, with minor discrepancies with the experimental results comparison
connected to a relatively low number of scanning points during the experimental tests.

The finite element has been tested for the modal analysis of a NREL 5MW HAWT
blade with variable cross-sectional properties and of a CAS graphite/epoxy cantilever box
beam with different layups. The natural frequencies have been compared with numerical
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and experimental results showing good accordance with the BTCE model and confirming
the compatibility of the new finite element with these classes of structures.

The coupled beam finite element is validated with numerical and experimental evi-
dence for different structures, where the coupling effect is given by oriented stiffeners or
oriented composite material. Moreover, the model is consistent with kinematics and equi-
librium equation and its application is not limited to box-section beams. The beam element
presented in this research can be extended for non-linear static and dynamic analysis and
used to solve aeroelastic problems with fluid-structure interactions or for aerodynamic
tailoring purposes.
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Appendix A

Appendix A.1. Boundary Conditions

The integration by parts of Equations (16) results in the following equations:

∫ L

0
{Nv}ρA

∂2v(e)

∂2t
dx +

∫ L

0
{Nv}′′EIz

(
∂2v(e)

∂x2

)
dx

=
∫ L

0
{Nv} fvdx− {Nv}EIz

∂

∂x

(
∂2v(e)

∂x2

)∣∣∣∣∣
L

0

+ {Nv}′EIz

(
∂2v(e)

∂x2

)∣∣∣∣∣
L

0

(A1a)

∫ L

0
{Nw}ρA

∂2w(e)

∂t2 dx +
∫ L

0
{Nw}′′EIy

∂2w(e)

∂x2 dx−
∫ L

0
{Nw}′′K

∂ψ(e)

∂x
dx

=
∫ L

0
{Nw} fwdx− {Nw}EIy

∂

∂x

(
∂2w(e)

∂x2

)∣∣∣∣∣
L

0

+ {Nw}K
(

∂2ψ(e)

∂x2

)∣∣∣∣∣
L

0

+ {Nw}′EIy

(
∂2w(e)

∂x2

)∣∣∣∣∣
L

0

− {Nw}′K
(

∂ψ(e)

∂x

)∣∣∣∣∣
L

0

(A1b)

∫ L

0
{Nψ}ρA

∂2ψ(e)

∂2t
dx +

∫ L

0
{Nψ}′GJt

(
∂ψ(e)

∂x

)
dx−

∫ L

0
{Nψ}′K

(
∂2w(e)

∂x2

)
dx

=
∫ L

0
{Nψ} fψdx + {Nψ}GJt

(
∂ψ(e)

∂x

)∣∣∣∣∣
L

0

− {Nψ}K
(

∂2w(e)

∂x2

)∣∣∣∣∣
L

0

(A1c)

The right part of Equations (A1a–c) can be rewritten to obtain the element nodal forces
and moments.
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∫ L

0
{Nv} fvdx +



Nv1

[
−EIz

∂

∂x

(
∂2v(e)

∂x2

)]∣∣∣∣∣
L

0

Nv2

[
−EIz

∂

∂x

(
∂2v(e)

∂x2

)]∣∣∣∣∣
L

0

Nv3

[
−EIz

∂

∂x

(
∂2v(e)

∂x2

)]∣∣∣∣∣
L

0

Nv4

[
−EIz

∂

∂x

(
∂2v(e)

∂x2

)]∣∣∣∣∣
L

0



+



N′v1EIz

(
∂2v(e)

∂x2

)∣∣∣L
0

N′v2EIz

(
∂2v(e)

∂x2

)∣∣∣L
0

N′v3EIz

(
∂2v(e)

∂x2
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0

N′v4EIz

(
∂2v(e)

∂x2

)∣∣∣L
0



(A2a)

∫ L

0
{Nw} fwdx +



Nw1

[
−EIy

∂

∂x

(
∂2w(e)

∂x2

)
+ K

∂2ψ(e)

∂x2
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L

0

Nw2
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−EIy

∂
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(
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L

0
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∂
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)
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]∣∣∣∣∣
L

0

Nw4

[
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∂x

(
∂2w(e)

∂x2

)
+ K

∂2ψ(e)

∂x2

]∣∣∣∣∣
L

0



+


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∂ψ(e)

∂x

)∣∣∣∣∣
L

0
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(
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

(A2b)

∫ L

0
{Nψ} fψdx +



Nψ1

[
GJt

∂ψ(e)

∂x
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∂x2
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L

0
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[
GJt

∂ψ(e)
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L

0
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L

0
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L

0
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[
GJt
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− K

∂2w(e)

∂x2
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L
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Nψ6
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L

0



(A2c)

Knowing that: 

−EIz
∂

∂x

(
∂2v(e)

∂x2

)
= Ty

EIz

(
∂2v(e)

∂x2
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= Mz

−EIy
∂

∂x

(
∂2w(e)

∂x2

)
+ K

∂2ψ(e)

∂x2 = Tz

−EIy
∂2w(e)

∂x2 + K
∂ψ(e)

∂x
= My

GJt
∂ψ(e)

∂x
− K

∂2w(e)

∂x2 = Mx

(A3)
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and that the shape functions and their derivatives assumes the following values for
the first node (x = 0) and the second node (x = L) of the element:

Nv1(0) = 1, Nv1(L) = 0, N′v1(0) = 0, N′v1(L) = 0
Nv2(0) = 0, Nv2(L) = 0, N′v2(0) = 1, N′v2(L) = 0
Nv3(0) = 0, Nv3(L) = 1, N′v3(0) = 0, N′v3(L) = 0
Nv4(0) = 0, Nv4(L) = 0, N′v4(0) = 0, N′v4(L) = 1

(A4)


Nw1(0) = 1, Nw1(L) = 0, N′w1(0) = 0, N′w1(L) = 0
Nw2(0) = 0, Nw2(L) = 0, N′w2(0) = −1, N′w2(L) = 0
Nw3(0) = 0, Nw3(L) = 1, N′w3(0) = 0, N′w3(L) = 0
Nw4(0) = 0, Nw4(L) = 0, N′w4(0) = 0, N′w4(L) = −1

(A5)



Nψ1(0) = 1, Nψ1(L) = 0
Nψ2(0) = 0, Nψ2(L) = 0
Nψ3(0) = 0, Nψ3(L) = 0
Nψ4(0) = 0, Nψ4(L) = 1
Nψ5(0) = 0, Nψ5(L) = 0
Nψ6(0) = 0, Nψ6(L) = 0

(A6)

Equation (17) are obtained.

Appendix A.2. Stiffness and Mass Matrices

[Kv] =
∫ L

0
EIz{Nv}′′{Nv}′′dx =

EIz

L3


12 6L −12 6L

4L2 −6L 2L2

12 −6L
4L2

 (A7)

[Kw] =
∫ L

0
EIy{Nw}′′{Nw}′′dx =

EIy

L3


12 −6L −12 −6L

4L2 6L 2L2

12 6L
4L2

 (A8)

[Kψ] =
∫ L

0
GJt{Nψ}′{Nψ}′dx =



GJt
L

0 0 −GJt
L

0 0

12K2

GJtL3 − 6K2

GJtL2 0 − 12K2

GJtL3 − 6K2

GJtL2

3K2

GJtL
0

6K2

GJtL2
3K2

GJtL
GJt
L

0 0

12K2

GJtL3
6K2

GJtL2

3K2

GJtL



(A9)

[Kwψ] =
∫ L

0
K{Nw}′′{Nψ}′dx =



0
12K

GJtL3 − 6K
GJtL2 0 − 12K

GJtL3 − 6K
GJtL2

− 1
L
− 6K

GJtL2
3K

GJtL
1
L

6K
GJtL2

3K
GJtL

0 − 12K
GJtL3

6K
GJtL2 0

12K
GJtL3

6K
GJtL2

1
L

− 6K
GJtL2

3K
GJtL

− 1
L

6K
GJtL2

3K
GJtL


(A10)
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[Kψw] =
∫ L

0
K{Nψ}′{Nw}′′dx =



0 − 1
L

0
1
L

12K2

GJtL3 − 6K2

GJtL2 − 12K2

GJtL3 − 6K2

GJtL2

− 6K2

GJtL2
3K2

GJtL
6K2

GJtL2
3K2

GJtL

0
1
L

0 − 1
L

− 12K2

GJtL3
6K2

GJtL2
12K2

GJtL3
6K2

GJtL2

− 6K2

GJtL2
3K2

GJtL
6K2

GJtL2
3K2

GJtL



(A11)

[Mv] =
∫ L

0
ρA{Nv}{Nv}dx =

ρAL
210


78 11L 27

−13L
2

2L2 13L
2

−3L2

2
78 −11L

2L2


(A12)

[Mw] =
∫ L

0
ρA{Nw}{Nw}dx =

ρAL
210


78 −11L 27

13L
2

2L2 −13L
2

−3L2

2
78 11L

2L2


(A13)

[Mψ] =
∫ L

0
ρA{Nψ}{Nψ}dx = ρIp


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2GJt
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K
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t
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t
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t
L
3

K
2GJt

KL
4GJt

6K2

5GJ2
t L

3K2

5GJ2
t

3K2L
10GJ2

t



(A14)

It is now possible to define the array q which include all the nodal degree of freedom
for a two node element as:

q = {v1, w1, ψ1, θ
y
1 , θz

1, v2, w2, ψ2, θ
y
2 , θz

2 } (A15)
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The finite element global stiffness matrix [K] and mass matrix [M] can be obtained
combining matrices (A7) to (A14) with the sum of the members involving the same degrees
of freedom.

[K] =



12EIz

L3 0 0 0
6EIz

L2 −12EIz

L3 0 0 0
6EIz

L2

K1 0 K2 0 0 −K1 0 K2 0

GJt

L
K
L

0 0 0 −GJt

L
−K

L
0

K3 0 0 −K2 −K
L

K4 0

4EIz

L
−6EIz

L2 0 0 0
2EIz

L
12EIz

L3 0 0 0 −6EIz

L2

K1 0 −K2 0

GJt

L
K
L

0

K3 0

4EIz

L



(A16)

with

K1 =
12(EIyGJt − K2)

GJtL3 K2 =
6(K2 − EIyGJt)

GJtL2

K3 =
4EIyGJt − 3K2

GJtL
K4 =

2EIyGJt − 3K2

GJtL

(A17)

[M] =



13ALρ

35
0 0 0

11AL2ρ

210
−9ALρ

70
0 0 0 −13AL2ρ

420

M1 −
IpKρ

2GJt
M2 0 0 M3 −

IpKρ

2GJt
M4 0

IpLρ

3
IpKLρ

4GJt
0 0

IpKρ

2GJt

IpLρ

6
IpKLρ

4GJt
0

M5 0 0 −M4
IpKLρ

4GJt
M6 0

AL3ρ

105
13AL2ρ

420
0 0 0 −AL3ρ

140
13ALρ

35
0 0 0 −11AL2ρ

210

M1
IpKρ

2GJt
−M2 0

IpLρ

3
IpKLρ

4GJt
0

M5 0

AL3ρ

105



(A18)

with

M1 =
6IpK2ρ

5GJ2
t L

+
13ALρ

35
M2 = −

3IpK2ρ

5GJ2
t
− 11AL2ρ

210
M3 = −

6IpK2ρ

5GJ2
t L

+
9ALρ

70

M4 = −
3IpK2ρ

5GJ2
t

+
13AL2ρ

420
M5 =

3IpK2Lρ

10GJ2
t

+
AL3ρ

105
M6 =

3IpK2Lρ

10GJ2
t
− AL3ρ

140

(A19)
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It is worth noting that if the configuration is uncoupled and K is equal to 0, the matrices
[K] and [M] are the standard Hermitian beam element uncoupled matrices.

References
1. Hansen, M.; Sørensen, J.; Voutsinas, S.; Sørensen, N.; Madsen, H. State of the art in wind turbine aerodynamics and aeroelasticity.

Prog. Aerosp. Sci. 2006, 42, 285–330. [CrossRef]
2. Hansen, M. Aeroelastic instability problems for wind turbines. Wind Energy 2007, 10, 551–577. [CrossRef]
3. Patil, M.; Hodges, D. Flight Dynamics of Highly Flexible Flying Wings. J. Aircr. 2006, 43, 1790–1799. . [CrossRef]
4. Afonso, F.; Lobo do Vale, J.; Oliveira, É.; Lau, F.; Suleman, A. A review on non-linear aeroelasticity of high aspect-ratio wings.

Prog. Aerosp. Sci. 2017, 89, 40–57. [CrossRef]
5. Cestino, E.; Frulla, G.; Spina, M.; Catelani, D.; Linari, M. Numerical simulation and experimental validation of slender wings

flutter behaviour. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2019, 233, 5913–5928. [CrossRef]
6. Shirk, M.; Hertz, T.; Weisshaar, T. Aeroelastic tailoring—Theory, practice, and promise. J. Aircr. 1986, 23, 6–18. [CrossRef]
7. Kameyama, M.; Fukunaga, H. Optimum design of composite plate wings for aeroelastic characteristics using lamination

parameters. Comput. Struct. 2007, 85, 213–224. [CrossRef]
8. Weisshaar, T. Aeroelastic Tailoring of Forward Swept Composite Wings. J. Aircr. 1981, 18, 669–676. . [CrossRef]
9. Dokumaci, E. An exact solution for coupled bending and torsion vibrations of uniform beams having single cross-sectional

symmetry. J. Sound Vib. 1987, 119, 443–449. [CrossRef]
10. Hashemi, S.; Richard, M. A Dynamic Finite Element (DFE) method for free vibrations of bending-torsion coupled beams. Aerosp.

Sci. Technol. 2000, 4, 41–55. [CrossRef]
11. Mohri, F.; Ed-dinari, A.; Damil, N.; Potier-Ferry, M. A beam finite element for non-linear analyses of thin-walled elements.

Thin-Walled Struct. 2008, 46, 981–990. [CrossRef]
12. Cestino, E.; Frulla, G.; Marzocca, P. A Reduced Order Model for the Aeroelastic Analysis of Flexible Wings. SAE Int. J. Aerosp.

2013, 6, 447–458. [CrossRef]
13. Babuska, P.; Wiebe, R.; Motley, M.R. A beam finite element for analysis of composite beams with the inclusion of bend-twist

coupling. Compos. Struct. 2018, 189, 707–717. [CrossRef]
14. Nam, V.; Vinh, P.; Chinh, N.; Thom, D.; Hong, T. A New Beam Model for Simulation of the Mechanical Behaviour of Variable

Thickness Functionally Graded Material Beams Based on Modified First Order Shear Deformation Theory. Materials 2019, 12, 404.
[CrossRef]

15. Dung, N.; Tho, N.; Ha, N.; Hieu, V. On the Finite Element Model of Rotating Functionally Graded Graphene Beams Resting on
Elastic Foundation. Math. Probl. Eng. 2021, 2021, 1586388. [CrossRef]

16. Banerjee, J.; Su, H. Free Transverse and Lateral Vibration of Beams with Torsional Coupling. J. Aerosp. Eng. 2006, 19, 13–20.
[CrossRef]

17. Cestino, E.; Frulla, G. Analysis of slender thin-walled anisotropic box-beams including local stiffness and coupling effects. Aircr.
Eng. Aerosp. Technol. Int. J. 2014, 86, 345–355. [CrossRef]

18. Patuelli, C.; Polla, A.; Cestino, E.; Frulla, G. Experimental and Numerical Dynamic Behavior of Bending-Torsion Coupled
Box-Beam. J. Vib. Eng. Technol. 2022 . [CrossRef]

19. Jonkman, J.; Butterfield, S.; Musial, W.; Scott, G. Definition of a 5 MW Reference Wind Turbine for Offshore System Development;
National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2009. [CrossRef]

20. Armanios, E.; Badir, A. Free vibration analysis of anisotropic thin-walled closed-section beams. Aiaa J. 1995, 33, 1905–1910.
[CrossRef]

21. Chandra, R.; Chopra, I. Experimental-theoretical investigation of the vibration characteristics of rotating composite box beams.
J. Aircr. 1992, 29, 657–664. [CrossRef]

22. Nayfeh, A.; Pai, P. Linear and Nonlinear Structural Mechanics; John Wiley & Sons: Hoboken, NJ, USA, 2004. [CrossRef]
23. Hodges, D.; Dowell, E. Nonlinear Equations of Motion for the Elastic Bending and Torsion of Twisted Nonuniform Rotor Blades.

No. A-5711. 1974. Available online: https://ntrs.nasa.gov/citations/19750005242 (accessed on 29 November 2022).
24. Silva, M.; Glynn, C. Nonlinear Flexural-Flexural-Torsional Dynamics of Inextensional Beams. I. Equations of Motion. J. Struct.

Mech. 1978, 6, 437–448. [CrossRef]
25. Danzi, F.; Cestino, E.; Frulla, G.; Gibert, J. Equivalent plate model of curvilinear stiffened panels. In Proceedings of the M2D2017,

Albufeira, Portugal, 11–15 June 2017; pp. 553–568, ISBN 978-989-98832-7-7.
26. Kramer, M.; Liu, Z.; Young, Y.L. Free vibration of cantilevered composite plates in air and in water. Compos. Struct. 2013,

95, 254–263. [CrossRef]
27. Weisshaar, T.; Foist, B. Vibration tailoring of advanced composite lifting surfaces. J. Aircr. 1985, 22, 141–147. [CrossRef]
28. Hodges, D.; Pierce, G. Introduction to Structural Dynamics and Aeroelasticity; Cambridge University Press: Cambridge, UK, 2011.

[CrossRef]
29. Nemeth, M. NASA/TP-20—A Treatise on Equivalent-Plate Stiffnesses for Stiffened Laminated-Composite Plates and Plate-like Lattices;

Technical Report; NASA Langley Research Center Hampton, VA, USA, 2011.
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