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Abstract: Aerodynamic characteristics of revolving wing models were investigated to assess the
validity of the normal force model. Aerodynamic force and torque measurements were conducted
for six wing planforms (with aspect ratios of 2 and 3, and area centroid locations at 40%, 50%, and
60% of the wing length) at three different Reynolds numbers (0.5 × 104, 1 × 104, and 1.5 × 104) and
three thickness-to-chord ratios (3%, 4%, and 5%). Both early and steady phase measurements were
extracted for a range of angles of attack relevant to insect flight. It was shown that the so-called
“normal force” model conveniently captures the variation of the lift and drag coefficients along the
first quadrant of angles of attack for all cases tested. A least squares best fit model for the obtained
experimental measurements was used to estimate the key parameters of the normal force model,
namely the lift curve slope, the zero-lift drag coefficient, and the peak drag coefficient. It was shown
that the knowledge of only the lift curve slope and the zero-lift drag coefficient is sufficient to fully
describe the model, and that clear trends of these two parameters exist. Notably, both parameters
decreased with the increase in area centroid location. For instance, for steady measurements and
on average, the lift curve slope for a wing with an area centroid location at 40% span was 15.6%
higher compared to an area centroid location at 60% span. However, the increase in the zero-lift drag
coefficient for wings with a lower area centroid location had a detrimental effect on aerodynamic
efficiency assessed via glide ratio. Wings with a lower area centroid location consistently led to
a lower glide ratio regardless of the change in aspect ratio, thickness-to-chord ratio, or Reynolds
number. Increasing the aspect ratio decreased the zero-lift drag coefficient but generally had a
slighter increasing effect on the lift curve slope. Increasing the Reynolds number within the range
experimented decreased both the lift curve slope and the zero-lift drag coefficient. Finally, the effect
of the thickness-to-chord ratio was mainly pronounced in its effect on the zero-lift drag coefficient.

Keywords: revolving wings; flapping wings; insect flight; aerodynamics; experiments

1. Introduction
1.1. Revolving Wing Experiments

Insect wing experimental aerodynamics has been a hot topic of research at the interface
between aerospace engineering and insect flight biomechanics within the last couple of
decades [1]. Some of the first studies to perform aerodynamic force measurements on
small insects dates back to 1990 [2,3]. A few years later, an important contribution to our
understanding of how insect wings manage to sustain augmented aerodynamic forces
via the formation of a stable leading-edge vortex (LEV) was demonstrated using flow
visualization techniques around a hawkmoth mechanical model [4,5]. Great strides were
then taken in a complete three-degrees-of-freedom (DoF) experimental rig designed at
the University of California, Berkeley [6], which accelerated the design and development
of similar experimental setups in this expanding field [1]. In fact, the last two decades
have witnessed hundreds of experimental studies for both revolving and flapping wing

Aerospace 2023, 10, 388. https://doi.org/10.3390/aerospace10050388 https://www.mdpi.com/journal/aerospace

https://doi.org/10.3390/aerospace10050388
https://doi.org/10.3390/aerospace10050388
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com
https://orcid.org/0000-0002-4252-1635
https://doi.org/10.3390/aerospace10050388
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com/article/10.3390/aerospace10050388?type=check_update&version=1


Aerospace 2023, 10, 388 2 of 25

setups at low Reynolds numbers relevant to insect flight. For a detailed review on the
progress in that area, the reader is referred to [1]. However, the majority of previous
experiments have considered specific Reynolds numbers (Re) and wing planform shapes
that are either geometric (such as rectangular or trapezoidal) or nature-inspired. As a result,
the range of Reynolds numbers and wing morphologies considered has typically been
limited to specific cases. In fact, a more systematic approach of varying the investigated
experimental cases is needed, which would then enable an improved and more holistic
understanding of insect flight. As such, this paper attempts to achieve such an approach to
provide a more comprehensive dataset that fills some of the gaps that exist between the
current experiments.

The simple revolving wing motion of one-DoF experimental rigs provides a useful
means to simulate the translational phase of an insect flapping wing stroke [7,8]. Some
of the primary aerodynamic mechanisms of insect flight can be captured during this
revolving motion, and phase-averaged measurements can be used to calculate aerodynamic
force coefficients during different stages of the wing revolution. In fact, lift-augmenting
aerodynamic mechanisms, inherent in insect flight, have been found to be a result of the
revolving nature of the motion [9], increasing force coefficients beyond values typically
reported from conventional fixed-wing aerodynamics for similar wing geometries and flow
conditions [10–12]. In particular, the two aerodynamic mechanisms found in insect-like
flight that can be captured within a revolving wing setup are the “absence of stall” resulting
from the LEV formed on the wing upper surface [13–16] and the “added mass” mechanism
resulting from the inertial transients during the initial wing acceleration phase. However,
most of experimental studies that adopted a revolving wing setup have focused on the
absence of stall mechanism and the development of the LEV. Interestingly, the rapid increase
in angle of attack of an insect wing at the start of the translational phase was originally
thought to explain the development of LEVs [17,18]. However, LEVs have been observed
for steadily revolving insect wings as well [9,14,19,20]. Furthermore, the translational phase
of an insect wing stroke can comprise up to 90% of the insect wing stroke cycle [21], where
the wing can typically maintain a near-constant angle of attack [22,23]. This is especially
true for symmetric wing kinematics associated with hovering flight [13,24], and hence the
translational phase is responsible for the majority of lift generation. Because of the previous
reasons, revolving wing experiments, being able to provide a fair representation of the
translational phase of insect flight, have gained lots of traction as a simple yet representative
means to assess the primary absence of stall aerodynamic mechanism within that phase.

Absence of stall is dependent upon the stable attachment of the LEV at high angles of
attack [25]. Coriolis accelerations, a strong indicator of the revolving nature of the flow, act
to stabilize the LEV [20,26–31] through spanwise transportation of the LEV vorticity via
spanwise flow [19,32]. An established indicator of the stability of the LEV is the Rossby
number, defined as the ratio of radius of gyration to the mean wing chord [19,33]. However,
this definition means that the aspect ratio and wing chord distribution will affect the Rossby
number value. Hence, these parameters are often coupled, which has been noted to lead to
contradicting findings due to the difficulty of studying each parameter in isolation. For
example, Lee et al. [9] found that the lift coefficient increased with an increase in aspect
ratio due to the reduction of three dimensional effects of the wing, while an increase in
Rossby number decreased the lift coefficient due to the resulting LEV instability. As such, it
is important when assessing findings to understand the whole aerodynamic picture as well
as the consequences due to all relevant parameters in a collective fashion. That said, it is
typically observed that, for an increase in the Rossby number, the observed lift coefficient
monotonically decreases due to the decrease in spanwise pressure gradient that fosters
the spanwise flow over the wing surface [30]. This spanwise flow in insect-like flight,
initially observed by Maxworthy [34] and later by Ellington [4], prevents LEV shedding by
transporting the vorticity to the wing tip vortex, otherwise growth in size and strength of
the LEV results in LEV shedding and a reduction in overall lift production [35].
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Within revolving wing experiments, the wing motion can be divided into distinct
phases relating to unique flow characteristics. After transient peak forces subside, a
sustained period of vortex attachment persists for revolving wings with a low Rossby
number. In fact, a coherent LEV develops rapidly and persists for a large travel distance,
which was found in studies to be around ten revolutions around the center of rotation [36].
Smith et al. similarly found that the initial flow structures were retained for wings with
a low Rossby number, where vorticity shed into the tip vortex soon after the end of the
acceleration phase helped to stabilize the LEV [31]. Conversely, a Rossby number increase
has an adverse effect on lift due to LEV instability [9]. In fact, the Rossby number affects the
flow structures in the period following acceleration but persists in the following revolutions.
Regardless of the value of the Rossby number, a decrease in lift force beyond ~270◦ of the
revolving motion is typically observed [7,8,19].

Spanwise flow, a main contributor to the stability of the LEV, is also a function of the
Reynolds number [12]. At low Reynolds numbers (e.g., Re = 160), spanwise flow has been
reported to be very weak [16]. In fact, Birch et al. [37] observed an absence of the spanwise
flow at Reynolds numbers of 120, citing the possibility of a critical Reynolds number for
which spanwise flow becomes apparent. However, a stably attached LEV was still observed.
Phillips and Knowles [12] documented studies with Re > 500 that all exhibited spanwise
flow. Shyy and Liu [38] investigated three Reynolds numbers (10, 120, and 6000) and found
that the shape of the LEV varies from a cylindrical shape connecting to the tip vortex for
the lowest Reynolds number to a conical shape breaking down before the wingtip for the
highest Reynolds number. As such, a weaker vortex at a lower Reynolds number better
maintains vortex structure, in contrast to at higher Reynolds numbers, where stronger
LEVs are formed but are inherently less stable [38]. Note that a stable LEV can generally
be attained by draining the vorticity at a rate equal to the vorticity being generated [39].
That said, the strong vorticity buildup is typically shed by an insect wing at the end of
each half-stroke during wing rotation [40], however, this buildup of vorticity for revolving
wings can persist, producing instabilities and possible vortex bursting.

1.2. Normal Force Model

Apart from the detailed flow structures associated with revolving wings, perhaps the
most valuable outcome from these experiments is the drag polar (i.e., lift and drag coeffi-
cient values) for the different wings and flow conditions considered. These coefficients are
particularly useful as they enabled the whole research stream of quasi-steady aerodynamic
modelling, which represents a simple yet convenient mathematical tool to evaluate the
aerodynamic performance of insect-like wings. Remarkably, the aerodynamic coefficient
trends obtained from revolving (and also flapping) wing experiments are best represented
by simple trigonometric functions based on the so-called “normal force” model [14]. In
fact, the normal force model has traditionally been used to represent the lift coefficient of
two-dimensional wings that do not suffer from stall at high angles of attack [14]. However,
it was later found to also offer the best representation of the quasi-steady aerodynamics
of insect-like revolving wings [15,41]. In fact, at high angles of attack, beyond the typical
angles of conventional stall, measurement agreement with the normal force model has been
recently used as a strong indicator for judging the presence of stable leading-edge vortices.

While the normal force model has several mathematical representations depending
on the adopted assumptions, as will be later discussed in this paper, the most convenient
form is:

CL(α) = CLα sin(α) cos(α) (1)

CD(α) = CD,0 + CL(α) tan(α) (2)

where CL and CD are the lift and drag coefficients during the translational revolving/flapping
motion; α is the geometric angle of attack; CLα is the 3D wing lift curve slope at the vicinity
of small angles of attack; and CD,0 is the zero-lift drag coefficient of the wing (occurring at
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zero angle of attack when assuming a symmetric wing section, typically a flat plate). Over
the past two decades, all collected measurements from either experimental or numerical
set-ups have been consistent in demonstrating the sin(2α) trend for the lift coefficient and
the tan(α) relation between the lift and the drag (e.g., [6,37,42–46]). However, there is
currently limited understanding of how the two parameters, CLα and CD,0, vary with dif-
ferent morphologies and flow conditions. As mentioned previously, this is mainly because
previous efforts were always concentrating on specific cases rather than on the trends of
such parameters over a relevant parameter space. Although this practice may be justified
from a biological point of view where the flight behavior of a specific species is under
consideration, there is a need to capture the variation in these two parameters over an
adequate parameter space range. Such investigation will have valuable consequences not
only on our understanding of the underlying physics, but also when using such relations
within design models to create bio-inspired concepts.

It is worth mentioning at this stage that the value of the lift curve slope parameter,
CLα, is probably more important to evaluate compared to the zero-lift drag coefficient, CD,0.
This is mainly because the lift curve slope not only is the sole parameter that defines the lift
coefficient amplitude but also, given the normal force model formula, is the only definer of
the second term of the drag coefficient relation, which represents the primary contributor to
the total drag value. That said, and despite its relatively low contribution to the total drag,
the zero-lift drag coefficient is still influential to some important aerodynamic performance
metrics such as the glide ratio (lift-to-drag coefficient ratio, typically used to assess aerody-
namic efficiency). While the glide ratio is generally considered to be independent of wing
shape and is simply a function of angle of attack, this is only mathematically true when the
zero-lift drag coefficient is neglected [47]. In fact, at lower angles of attack, the deviance in
glide ratio values is largely attributable to CD,0, whose value is not only dependent on the
wing planform shape but also its thickness-to-chord ratio as well as the operation Reynolds
number. That said, no previous studies have considered quantifying the influence of the
thickness-to-chord ratio and/or Reynolds number on the zero-lift drag coefficients in a
consistent fashion.

The current study aims to assess the validity of the normal force model used to rep-
resent the lift and drag characteristics of insect-like revolving wings based on detailed
analysis of experimental measurements for a representative range of wing morphologies
and flow conditions. The explicit relation between lift and drag based on the normal
force model is assessed, and we show that the knowledge of drag characteristics alone
is sufficient to define lift characteristics over the first quadrant of angle of attack values.
Moreover, a more convincing approach, based on a least squares fitting method, to extract
the values of the lift and drag parameters from experimental measurements is proposed.
Finally, values of the two key parameters, CLα and CD,0, for representative wing models
with morphological variations of aspect ratio, area centroid location, and thickness-to-
chord ratio over a Reynolds number range between 5000 and 15,000 are obtained allowing
a better understanding of how the values of these two parameters vary. As such, the
results of this work are expected to provide useful data for the values of the main aero-
dynamic parameters (and their variation for different morphologies and flow conditions)
that can be employed within future quasi-steady models for either design or performance
evaluation purposes.

2. Methods
2.1. Experimental Setup

A one-degree-of-freedom experimental revolving wing rig, schematically presented
in Figure 1, was used to collect the measurements in this study. The experimental rig
consisted of a 1480 mm × 990 mm water tank that hosted the experiments. Wing models
were mounted axisymmetrically, as shown in Figure 1b, and were driven by a servo motor
(model: Dynamixel MX64-AT) mounted concentrically within the main rotating shaft,
meaning the output of the servo motor drove the wing models at the same rate without the
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need for additional mechanisms such as belts and gears. Given that the water tank was
rectangular in shape, the shorter side (990 mm) was considered for wall effects to inform
the maximum size of the wing models. Manar and Jones found no wall effects for tip
clearances between the wing tip and walls of 5–7 chord lengths up to a Reynolds number
of 10,000 within the first two revolutions [48]. This value was used in the first iteration
of the design for our wing models. Once manufactured, our own validation tests found
that no wall effects were present for all wing models within the first three full revolutions,
shown later when discussing force histories.
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Figure 1. (a) Schematic of the revolving wing rig employed in the current experimental campaign.
(b) Rendered view of the axisymmetric wing models mounted to angle of attack adjustment spur
gears and the load cell at the sensing frame origin (O).

The shelf design pictured in Figure 1a was implemented to ensure surface and ground
effects were also absent from the force and torque measurements. Five shelves spaced
40 mm apart provided discretized locations for which the wing models would be positioned
in the water tank. At the lowest point, the wings were positioned 80 mm from the tank
floor, and 100 mm from the surface at the highest point. By systematically repositioning the
wing model at each shelf position, the third shelf providing a wing position in the center of
the tank was determined to be minimally affected by both surface and ground effects. For
each shelf position, two wing configurations (representing the two extreme morphologies
of our experimental campaign: AR = 2, r̂1 = 0.4, and AR = 3, r̂1 = 0.6) were revolved in both
clockwise and counter-clockwise directions at an angle of attack value of 45◦, providing lift
vectors acting both upwards and downwards. The lift values measured in these upwards
and downwards directions were then used to assess the surface and ground effects, via
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assessing the residual differences in lift coefficient values for each shelf position. The least
residual difference was found to be produced from the third shelf position.

Six wing planform shapes were considered for measurements, based on the beta
chord distribution conceived by Ellington [49]. The planforms include two aspect ratios
(AR = 2 and 3) and three area centroid locations (r̂1= 0.4, 0.5, and 0.6), which encompass a
convenient range of insect wing planforms observed in nature [49,50] and are shown in
Figure 2. Three thickness-to-chord ratios (t/c = 3, 4, and 5%) and three Reynolds numbers
(Re = 5000, 10,000, 15,000) were also considered for these planform shapes, and form the
partial factorial matrix of experiments outlined in Table 1. Note that the morphological
parameters used throughout this paper are consistent with the definitions typically adopted
in the literature, such as in [51]. An aspect ratio of four was not considered in this study
because we wanted to assure that the probability of having a detached LEV (hence stalled
portions of the wing) was minimized, as such an effect can lead to an unfair comparison of
the aerodynamics, particularly when extracting the defining parameters of the normal force
model. This decision was based on recent experimental and numerical studies [26,52,53]
that clearly showed that at wing spanwise locations greater than 3.5 times the mean
geometric chord (measured from the center of rotation), the wing starts to exhibit local
stall. The thickness-to-chord ratios selected offer a convenient range of intermediate values
comparable to previous experiments in the literature, as documented in our previous
review work [1]. Although the measured thickness-to-chord ratios of real insect wings were
found to be of the order of 0.1% [49], very few studies have performed experiments at this
t/c magnitude (namely [54–56]) and all of these studies were concerned with the effects of
flexibility in their wing models. Note that the material selection was based on the desire
to maintain rigidity under aerodynamic loading, to avoid additional bending-induced lift
production (See Table 1).
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thickness-to-chord ratios. r̂2,o f f set values are used as the characteristic length scale for aerodynamic
characterization, e.g., Reynolds number and force coefficient calculations. Due to symmetry consider-
ation, only one side of the propeller-like wings is shown.
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Table 1. Manufactured wing models with main morphological variables and materials considered.
* Variables defined by other parameters.

Material t/c (%) t (mm) c (mm)
* [t/(t/c)] AR R (mm)

* [AR × c]
Joffset

^
r1

^
r2

^
r2,offset

^
r3,offset

Laser-
cut

acrylic
5 3 60

2 120 0.092
0.4 0.476 0.509 0.554
0.5 0.559 0.589 0.626
0.6 0.639 0.665 0.691

3 180 0.061
0.4 0.476 0.498 0.546
0.5 0.559 0.579 0.618
0.6 0.639 0.656 0.684

3D
Printed

PLA
4 2 50

2 100 0.110
0.4 0.476 0.515 0.559
0.5 0.559 0.594 0.630
0.6 0.639 0.670 0.695

3 150 0.073
0.4 0.476 0.502 0.550
0.5 0.559 0.583 0.621
0.6 0.639 0.660 0.687

Laser-
cut

stainless
steel

3 2 66.7

2 133 0.083
0.4 0.476 0.505 0.552
0.5 0.559 0.586 0.624
0.6 0.639 0.663 0.689

3 200 0.055
0.4 0.476 0.495 0.545
0.5 0.559 0.577 0.617
0.6 0.639 0.655 0.682

It was desired to extend our measurements to capture lower Reynolds number values
in the order of 102; however, that was not possible with the force/torque load cell available,
as achieving such a Reynolds number requires the use of mineral oil/glycerin solutions
with which our load cell is incompatible. That said, the Reynolds number range considered
in this study still spans a range representative of flows around bumblebee-like wings up to
hummingbird-like wings. Note that it was essential to ensure precise simultaneous control
on both the thickness-to-chord ratio and aspect ratio. This was achieved through evaluating
the mean geometric chord value, c, that would achieve the desired thickness-to-chord ratio
for a given wing thickness, t. For this mean geometric chord value, the wing length, R, was
then identified to enable the desired aspect ratio. In other words, varying the thickness-to-
chord ratio simply has the effect of increasing or decreasing the wing length for a given
aspect ratio, and changes to the mean geometric chord length were made to accommodate
different wing thicknesses, which were determined by material strength properties and
the manufacturing method, as outlined in Table 1. Figure 2 shows an illustration of the
18 wing planforms measured in the current study.

Careful consideration was needed for the size of the wing models, not only for the
mitigation of wall effects, but also to ensure that the offset-based advance ratio, Jo f f set, is
representable of hovering flight, i.e., Jo f f set ≤ 0.1 [1,7,57,58]. The offset-based advance ratio
is the advance ratio effect created due to the wing root offset from the center of rotation,
and is defined as:

Jo f f set =
ΩRo

Ω(R + Ro)
=

Ro

R + Ro
(3)

where Ω is the rotational velocity; Ro and R represent wing offset from the center of rotation,
and wing length, respectively. For more discussions on the implications of the offset-based
advance ratio, the reader is referred to further studies [1,57]. Note that the offset inherent
in the current experimental rig is 11 mm, and is the smallest offset of any previously
designed one-DoF experimental rig without impeding the flow near the wing root, such as
by mounting the models directly to the main rotating shaft (as in the rigs from [59,60]). The
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Reynolds number was achieved by calculating the measurement rotational velocity at the
second moment of wing area based on the following relation:

Re =
ρ
(

Ωr̂2,o f f setR
)

c
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are the density and viscosity of water, respectively, whereas r̂2,o f f set is the
non-dimensional radius of second moment of wing area that accounts for the wing root
offset. Table 1 shows the morphological quantities of each measurement configuration.

An ATI NANO 17-IP68 load cell was affixed to the base of the main rotating shaft,
which in turn attaches to the wing models. The resolution of the load cell was 1/320 N
for force measurements, and 1/64 N.mm for torque measurements. Drag was resolved
from the measured torque, whereas lift was obtained directly from the measured force in
the z axis direction. Owing to the resolution (minimum detectable level) of the respective
measurements, the signal-to-noise ratio was approximately 20 and 75 times higher for drag
than for lift at α = 45◦ and 0◦, respectively, fairly assuming the same level of noise for each
measurement. At higher angles of attack, this difference increased further. However, this
simply illustrates the differences in the observed force history plots but does not indicate
any differences in experimental accuracy. In fact, for both lift and drag measurements, the
standard deviation between repeat tests was, at its greatest, within 3.3% of the mean.

For three revolutions of each experimental run, force and torque measurements were
free from wall and ground/surface effects, due to careful monitoring of the size of the
wing models for the given size of the experimental rig and tank. Error analysis was
performed for twelve experiments in four configurations with identical test parameters,
i.e., three tests per configuration. The four configurations were controlled by varying the
rotation direction and flipping the angle of attack between positive and negative values.
Figure 1b visualizes the rendered wing model that shows the direction of the force vectors.
The first two configurations were achieved by reversing the run direction (clockwise and
counterclockwise) providing resultant drag-induced torque of opposing signs that was
useful to observe any eccentric aerodynamic forces due to slight misalignment. Similarly,
the last two configurations were achieved by testing for α and –α providing lift of opposing
signs that enabled assessment of any differences in ground and surface effects, as previously
discussed. The force vectors for each test configuration were averaged and the difference
between the magnitudes of the four test cases was found to be no more than 2.4%.

2.2. Data Acquisition

A 12-bit rotary encoder embedded in the servo motor allowed precise actuation of
the revolving wing models. The acceleration range of the servo motor ranged from 0 to
2180◦/s2. For each experimental run, the two axisymmetric propeller-like wing models
were accelerated, from rest, at an acceleration of 1004◦/s2 that ramped the servo motor to
allow the wings to reach its steady rotational frequency (Ωsteady). This acceleration value,
obtained via extensive tests, was deemed sufficiently high to capture the transient signals
in the inertial dominated region, but also not too high to overload the force sensor. The
angular displacement profiles for the fastest and slowest moving wings (by rotational
frequency) are shown in Figure 3.
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Figure 3. Example angular displacement profiles of the fastest and slowest wings, at Re = 10,000.
Different motion phases for each wing are demonstrated by arrows. Solid lines show what has been
inputted to the motor and dotted lines show what has been measured with an external rotary encoder
to check satisfactory operation of the servo motor.

Forces were sensibly assumed to act equally on each wing, i.e., both wings forming the
propeller. Justification for symmetrically loaded wing models was assessed by evaluating
force measurements in the x and y directions (see directions in Figure 1). No observed
spanwise net forces or eccentric aerodynamic loading confirmed that the wing models
were mounted rigidly and axisymmetrically. Lift and drag coefficients were obtained from
the conventional formulae, where the characteristic velocity is defined by the rotational
velocity at the second moment of wing area—analogous to the velocity term in the Reynolds
number equation (Equation (4)). The lift coefficient was calculated from the measured
average lift force, L, acting in the z axis direction. The drag coefficient was calculated
from the measured average torque, Q, at the center of pressure, r̂cp, acting about the z axis.
Coefficients in the early and steady phases of wing motion were calculated individually in
an identical fashion, where the only difference was the period over which the lift/torque
measurements were averaged, as indicated later in this section. As such, the lift and drag
coefficients, CL and CD, were calculated from:

CL =
L

ρ(r̂2, o f f setR)
2Ω2Rc

(5)

CD =
Q

ρ(r̂3,o f f setR)
3Ω2Rc

(6)

The programmable servo motor (Dynamixel MX64-AT) was controlled via an in-house-
built LabVIEW code. The target acceleration and velocity were selected for each wing
model and the LabVIEW program sent instruction packets via serial communication to the
servo. An external encoder (Bourns 512 Pulse Incremental Mechanical Rotary Encoder)
was used to check that the target motion had indeed been achieved, see Figure 3. The same
in-house LabVIEW code simultaneously recorded the force and torque measurements. Raw
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data were collected from an ATI NANO 17-IP68 force/torque sensor at a sample rate of
1 kHz via two differential input channels, for lift force and drag-induced torque. Data
analysis consisted of signal conditioning using a Butterworth low-pass filter, with a cut-off
frequency of 30 Hz, which filtered out the natural frequency of the wing models and higher
harmonics, found by performing tap tests on the experimental rig, as well as the electrical
frequency noise at 50 Hz. Zero-phase digital filtering was used to process raw data in
forward and reverse directions, which resulted in zero phase distortion, hence negligible
phase lag in the output filtered signal.

The steady rotational frequency (Ωsteady) depends on the characteristic length (r̂2R) as
shown in Equation (4). As such, the distance travelled at r̂2R to reach Ωsteady is dependent
upon the magnitude of Ωsteady, r̂2, and R. In the current work, this distance was at maxi-
mum 0.9c. This distance is reasonable, since previous studies have indicated that for an
acceleration distance of up to 2c, the added mass region is preserved [61]. Moreover, for
most insects found in nature, the typical stroke amplitude ranges from 2–5c [45,62–64].

Figure 4 shows examples of the force histories measured for the fastest and slowest
moving wings considered in this study. While we could feasibly non-dimensionalise
the rotational amplitude by chord lengths travelled, force histories with respect to the
transition region between early and steady phases indicate an independence of angular
distance travelled, as highlighted in Figure 4. In fact, for all configurations considered, force
attenuation is always evident between 270 and 360◦, where the wing begins to encounter
its own wake. The acceleration phase was generally defined as 0–60◦. The so-called “early”
phase was then defined as the subsequent period of motion, up to 270◦. From 360◦ to the
end of the end of third revolution was considered as the “steady” phase. The transition
period between 270 and 360◦ was not included in order to segment the phases before
and after force attenuation, hence a greater degree of confidence can be provided that
the flow physics relate to the prescribed phases of wing motion. It is worth mentioning
that choosing to start the early phase at 60◦ ensured that the angular distance travelled to
reach the required steady revolving frequency was achieved for all cases measured. This
also helped minimize any potential flow unsteadiness effects after the inertial transient
peak. Other remarkable observations from the force histories in Figure 4 include an inertial
transient peak for all wing configurations in the acceleration phase. However, a second
local maxima can also be observed almost at the start of the early phase, after steady
rotational velocity has been reached.

Although the aerodynamic force coefficients from our experiments are not concerned
with the non-circulatory peak forces associated with the acceleration phase, our observa-
tions at lower acceleration rates revealed that the second local maxima, shown at the start of
the early phase in Figure 4, was suppressed for acceleration < 500◦/s2. This second maxima
has been observed throughout the literature for translating and rotating wings, and can
be attributed to the development of vortex structures including the root and tip vortex
(RV and TV) [65]. However, as a wing approaches the translating case, i.e., infinite Rossby
number, a second maxima, and subsequent peaks, are often observed due to shedding and
reformation of the LEV [66–68].

Force histories in the fourth revolution were truncated prior to data analysis. However,
as shown in Figure 4, a slight increase in the drag coefficient during the fourth revolution is
evident and this is likely a result of LEV and tip vortex interaction as well as possible tip
vortex suppression [69–71]. Note that the size of the wing models was carefully monitored
to ensure sufficient tip clearance from the tank walls to wing tips within the first three
revolutions. The decision to revolve the wing models for a full fourth revolution ensured
that the deceleration region was not captured. Furthermore, this choice meant that for
three revolutions of the wing models the lift and drag coefficient histories were free from
wall effects. Finally, it is worth mentioning that the differences in the observed signal-to-
noise ratios between the two wings shown in Figure 4 can be attributed to the rotational
frequency and resulting force magnitudes of each wing. However, as discussed previously,
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the standard deviation for all measurements was no greater than 3.3% of the mean between
repeat tests.
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Figure 4. Example force histories for wing models AR = 2, r̂1 = 0.4 and AR = 3, r̂1 = 0.6 (t/c = 5%,
Re = 10,000). (a) Drag coefficients are shown for both wing models as a function of rotational angle.
(b) Lift coefficient histories as a function of chord lengths travelled at the second moment of wing
area. (c) Drag coefficient histories shown instead as a function of chord lengths travelled at the second
moment of wing area. Average chord length for both wing models was 60 mm.

2.3. Extraction of Parameters for the Normal Force Model

This section discusses the mathematical representations of the so-called “normal force”
model and the best ways to extract the parameters of the model from the conducted
measurements. Full details of the physical picture upon which the model is based can be
found in [13,14]; however, briefly and as the name suggests, the model assumes that the
resultant aerodynamic force is acting normal to the wing chord, and this in turn requires:
(1) the wing to be infinitesimally thin, so that there is no chordwise component to the
integrated surface pressure force component; and (2) the skin friction component, due
to tangential chordwise force, to be small enough compared to the pressure component
normal to the chord. From a lift perspective, this leads to the very common representation:

CL(α) = CL,45 sin(2α) (7)

where CL,45 is the lift coefficient amplitude at a 45◦ angle of attack. Clearly,
Equation (7) becomes exactly the same as Equation (1) when CLα = 2CL,45. While this
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relation is mathematically correct, in practice, evaluating the lift curve slope based on solely
measuring the lift coefficient value at a 45◦ angle of attack may not be that accurate.

Since the normal force model explicitly assumes that the resultant force acts normal to
the chord, lift and drag forces are simply related by the tangent of the angle of attack as:

CD(α) = CL(α) tan(α) (8)

However, the above equation is usually modified to account for the missing skin
friction component via adding the CD,0 term as shown previously in Equation (2). This
way, the CL(α) tan(α) term accounts for the combined pressure and induced drag com-
ponents [72]. Both Equations (2) and (8) are interesting because they provide an explicit
yet simple relation between the lift and drag coefficients. As such, in theory, the equation
can be re-arranged to allow for the lift coefficient predictions to be deduced based on the
experimentally obtained measurements of drag alone.

Within the literature, e.g., [73], the drag coefficient relation has also been expressed in
terms of both CD,0 and CD,90, which are the drag coefficient values at 0◦ and 90◦ angles of
attack, respectively, as follows:

CD(α) = CD,0 + (CD,90 − CD,0) sin2(α) (9)

Given that operation at a 90◦ angle of attack is unlikely to take place, as most meaningful
flight operations occur at up to 45◦ angles of attack, we propose re-writing Equation (9)
as follows:

CD(α) = CD,0 + 2(CD,45 − CD,0) sin2(α) (10)

When comparing Equations (2) and (10) it becomes evident that, from a mathematical point
of view, CLα = 2(CD,45 − CD,0), and we will use the measurements obtained in this study
to demonstrate the validity of this relation.

We now turn to extracting the values of the parameters appearing within the previously
discussed equations. For the purpose of this study, we are interested in the values of the
lift characteristic CLα (or CL,45) and the drag characteristics CD,0 and CD,45 (or CD,90). Here,
we decided to follow the common practice in evaluating CD,0 as the measured value of the
drag coefficient at 0◦ angle of attack. This was mainly because of the physical meaning of
attaining the measurement at 0◦ and how it correlates to skin friction. While we could have
done the same with the remaining aerodynamic parameters, i.e., recording the coefficient
values at the angles of attack of interest, this would not consider the random error that will
inevitably occur at the mid-range of angles of attack. Hence, any random error in these
critical measurement points would be propagated across the whole angle of attack range
(0–90◦). To improve the accuracy of extraction, we therefore considered a best fit curve
in a least squares sense that would best represent all the measurements within the whole
angle of attack range, shown in Figure 5. The best fit line would then be used to extract the
CLα (and hence CL,45) lift characteristic and the CD,45 (or CD,90) drag characteristic. Simply,
the relations described in Equations (1), (7), (9) and (10) were plotted over the datasets
obtained for each wing configuration and Reynolds number to enable a least squares fit.
Coefficients CL,45, CD,45, and CD,90 were thus defined from the least squares fit model of
each corresponding dataset. Note that the normal force best fit model shown in Figure 5
includes a 95% confidence interval shown by the shaded regions.
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Figure 5. Illustration of the techniques used to estimate the aerodynamic characteristics for an
example wing configuration (AR = 3, r̂1 = 0.5, t/c = 5%, Re =10,000). (a) Lift curve, and (b) drag
curve. (C.I. denotes confidence interval).

From a simple visual assessment of Figure 5, the least squares fit method provides
a convenient representation from which lift parameters extraction can be trusted. In
fact, over the measured angle of attack range between 0◦ and 90◦, the fit method closely
predicts the data point values within ~5% of the observed values. However, it is impor-
tant to consider the drag coefficient variation at high angles of attack with caution. If
Equation (9) is used to model drag based on the measured value of the drag coefficient
solely at 90◦, this will inevitably lead to a clear overprediction of the drag coefficient across
most of the angle of attack range (see blue line illustration in Figure 5b). This issue is mainly
due to the consistent observation among all cases measured that the drag coefficient values
start to overshoot at angles of attack > 70–80◦. Clearly, however, the least squares best
fit approach based on Equation (10) is more successful at predicting the drag coefficients
across most of the angle of attack range of relevance to insect flight. In other words, the
method employed here fits a sine-squared curve to the experimental drag data between
0 and 45◦. Since insects employ angles of attack ranging between 0◦ and 45◦ through
a flapping stroke [72], it is sensible to let the least squares fit to closely follow the drag
coefficient in this angle of attack range. This method is then used to extract CD,45. Hence,
this proposed approach actually implies that the measurements > 45◦ are obsolete but are
still shown here for completeness.

Finally, considering Equations (1) and (2), terms can be re-arranged to obtain an
expression for the so-called “glide ratio”, a measure of the aerodynamic efficiency of a
wing planform:

CL
CD

=
CLα sin(α) cos(α)

CD,0 + CLα sin2(α)
(11)

Clearly, when the contribution of skin friction drag tends towards zero, the glide
ratio simply tends to the well-known relation of the cotangent of the angle of attack. This
means that the presence of the zero-lift drag term enables effects such as morphology and
Reynolds number to influence the glide ratio via the lift curve slope and zero-lift drag
coefficient terms. However, once the skin friction contribution vanishes, the glide ratio
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becomes independent of morphology and Reynolds number and becomes solely a function
of the angle of attack.

3. Results
3.1. Planform Morphology Effect

In this section, the wing planform effect will be presented via demonstrating the
variation of the lift and drag coefficients throughout the first quadrant of angles of attack.
However, more discussions on the variation of the lift curve slope and the zero-lift drag
coefficient (the two key parameters required to define the normal force model) against
aspect ratio and area centroid location will be presented in the following sections in
conjunction with the effects of Reynolds number and thickness-to-chord ratio. Figure 6
shows the measured lift and drag coefficients (represented with circle markers) together
with the least squares fit models for all wing planforms considered at a Reynolds number
of 10,000 and thickness-to-chord ratio of 5%. Clearly, a monotonic decrease in the lift
coefficient with the increase in the area centroid location is apparent. This observation
agrees with previous analytical studies [13,72] that suggest that, for a revolving wing not
experiencing any form of stall, the maximum obtainable lift coefficient increases with a
decrease in area centroid location. For each configuration, and as expected from the time
histories of force coefficients previously discussed, the early phase consistently exhibited
higher force coefficients than that of the steady phase.
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Figure 6. Planform morphology effect on aerodynamic characteristics. This demonstration is for a
thickness-to-chord ratio of 5% and Reynolds number of 10,000. (Top row) Lift coefficient vs. angle of
attack. (Bottom row) Drag coefficient vs. angle of attack.

It is worth noting that a higher area centroid location can intuitively host the LEV
over a greater spanwise distance before reaching a critical size, equal to the local chord
length, where resultant shed vorticity affects the measured lift coefficient. Evidently, in
the current experiments, lower area centroid locations led to higher lift coefficients in
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both the early and steady phases, suggesting that the wing planforms considered did
not exhibit stall and the LEV structure remained coherent along the span. In addition to
agreement with analytical studies mentioned previously, this is also in line with recent
numerical studies [52,53] that have showed that a detached/broken LEV becomes apparent
at wing locations that are at 3.5–5 mean chord distance from the center of rotation (also, see
discussion in Section 2.1). Additionally, the higher wing tip velocity for r̂1 = 0.4 compared
to r̂1 = 0.6 (41% and 32% greater for AR = 2 and 3, respectively) may be responsible for
a greater spanwise pressure gradient that stabilizes the LEV during revolving motion.
However, such depiction needs confirmation in future experiments via a suitable means
of visualization, e.g., via particle image velocimetry. Finally, it is worth re-iterating that
our adoption of a least squares approach for the drag coefficient to best fit the data up to
45◦ angle of attack indeed provides excellent representation of the measurements in the
range of angles of attack relevant to normal flight operations, as can be seen in Figure 6. A
clear discrepancy is evident at >70–80◦ angles of attack; however, such a discrepancy is not
expected to have any practical implications.

3.2. Reynolds Number Effect

Reynolds number effects are assessed in this section to determine their influence on
the lift curve slope and zero-lift drag coefficient. Note that, as discussed previously, these
two parameters are sufficient to determine the whole lift and drag behavior within the
first quadrant of angles of attack for insect-like revolving wings. Hence, for brevity, the
whole variation of the lift and drag coefficients against angle of attack will not be presented.
Figure 7 shows the variation of CLα and CD,0 with aspect ratio and area centroid locations
for the measured Reynolds numbers of 5000, 10,000, and 15,000. To ensure compactness
of the data presented, in this demonstration, the aerodynamic forces and torques for all
thickness-to-chord ratios at each Reynolds number have been averaged for each respective
wing configuration. Note that we demonstrate the lift curve slope values as ratios of π.
This is to allow easy comparison of the measured values to the well-known theoretical
lift curve slope value of thin airfoils, i.e., 2π. The lift curve slope values are presented for
both early and steady measurements; however, the measurement phase (whether early or
steady) does not influence the zero-lift drag coefficient. Finally, there is generally acceptable
consistency in the variations of the early and steady measurements (i.e., difference is
mainly in the amplitude), hence the focus of the discussions will be on variations of the
steady measurements.
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Given that the Reynolds number is usually acknowledged to influence the zero-lift
drag, we will start our discussion by considering the influence of Re on CD,0. At relatively
higher Reynolds numbers, it is a typical practice in the literature to neglect CD,0, irrespective
to the wing planform shape [7,13]. However, our measurements show clear differences in
the zero-lift drag coefficient value against variations of both the Reynolds number and the
wing planform. In fact, the zero-lift drag coefficient, from our measurements, shows a clear
decrease in value with the increase in the Reynolds number, area centroid location, and
aspect ratio (See Appendix A for a line-plot version of Figure 7). These observations are
consistent in each case. However, the area centroid location shows the greatest and most
distinct influence.

The general trend of decrease in CD,0 value with the increase in Reynolds number is
intuitive given that viscous effects decrease as the Reynolds number increases. Furthermore,
our observations show consistency with Lentink et al., who observed a monotonic decrease
in CD,0 with the Reynolds number for a fruit-fly-like wing model [74]. In fact, their study
showed a much greater difference in CD,0 between Re = 1400 to 110 than for Re = 14,000 to
1400. While the Reynolds number range of their study is more extended than that tested
here, the same trend is confirmed among the wider wing morphologies considered in this
study. An average increase in CD,0 for all wing morphologies of just 1.4% was observed
between Re = 15,000 and 10,000, compared to an average increase of 5.4% going from
Re = 10,000 to 5000.

The lift curve slope, CLα, follows very similar trends to the zero-lift drag coefficient
in that increasing Reynolds number and area centroid location generally decreases CL,α
(See Appendix A for a line-plot version of Figure 7), however, the effect of aspect ratio is
less pronounced. The lift curve slope decrease for an increasing Reynolds number may
be attributed to a possible form of turbulent mixing, where lower Reynolds numbers
enable more coherent flow structures. However, this will need confirmation via future flow
visualization experiments. Our current steady measurements show an average increase
of 2.2% in CLα with the increase in AR from 2 to 3. Strikingly, this effect is considerably
less influential than the Reynolds number (average increase of 23.6% as Re decreases from
15,000 to 5000) and area centroid location (average increase of 15.6% as r̂1 decreases from 0.6
to 0.4). The reason for this observed behavior may be the result of the previously discussed
differing effects, i.e., an increase in aspect ratio reduces three-dimensional effects on the
wing that in turn increases the lift curve slope, as typically known from conventional
fixed-wing aerodynamics. However, this is also associated with an increase in the Rossby
number, that generally decreases the lift coefficient due to LEV instability and the decrease
in spanwise pressure gradient. In fact, such a trend for revolving wings against aspect ratio
has been observed through previous studies (e.g., [9]), with Usherwood and Ellington [46],
for example, observing very little difference in the lift coefficient as a result of the change in
aspect ratio for the hawkmoth-like wing models they investigated, particularly at low AR
(AR = 2.26 and 3.17).

3.3. Thickness-to-Chord Ratio Effect

Thickness-to-chord ratio effects are assessed in this section to determine their influ-
ence on the key parameters of the normal force model: CLα and CD,0. Figure 8 shows
the variations of these two parameters against the thickness-to-chord ratio as well as
the other wing morphological variables r̂1 and AR (See Appendix A for a line-plot ver-
sion of Figure 8). The aerodynamic measurements have been averaged for all Reynolds
numbers for each respective wing configuration, similar to the method adopted in the
previous section.
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It is worth noting that the materials selected to realize the wing models with different
t/c values (see Table 1) may have an effect on the resulting CD,0 values, as the surface
roughness of 3D printed PLA, used for the t/c = 4% wing models, was higher than that
of the laser-cut acrylic and stainless steel. Due to manufacturing constraints, we were not
able to unify the material used; however, it would be prudent to test different materials
with the same thicknesses in the future to determine whether there is any influence on
the observed values in Figure 8. Moreover, to minimize any fluid–structure interaction
effects, it is important to ensure that the wing material and cross-section geometry enable a
rigid structure under aerodynamic loading. Given the manufacturing constraints, our wing
constructions varied based on the thickness-to-chord ratios investigated. Tip deflections of
wings during experiments were always visually monitored to ensure no significant bending
took place. Moreover, an Euler–Bernoulli beam model was employed to ensure minimal
levels of wing deformation under maximum aerodynamic loading. That said, adopting
different constructions could likely have some effect on the wings’ response to fluid flow,
and future experiments should always consider minimizing such effects.

An increase in CD,0 with t/c can generally be observed across the wing configurations
(See Appendix A for a line-plot version of Figure 8); however, similar to Figure 7, the area
centroid location had a greater effect for the ranges considered in this study: on average
of all cases considered, reducing the non-dimensional area centroid location from 0.6 to
0.4 increased the skin friction drag coefficient by 75% compared to an increase of 19.6%
when increasing t/c from 3 to 5%. On the other hand, the lift curve slope variation with the
thickness-to-chord ratio is generally not as clear as was shown for the Reynolds number
effect, suggesting the change in Reynolds number had a clearer influence on the lift curve
slope than the thickness-to-chord ratio. In fact, the clearest trend shown here is that of the
area centroid location, where a lower area centroid location consistently outperforms the
higher values. Note that the Rossby number increases for wings with a higher radius of
second moment of wing area (hence higher area centroid location). However, the influence
of varying the radius of second moment of wing area on the Rossby number is smaller
compared to the influence of the aspect ratio.

3.4. Relation between Lift and Drag Characteristics

In this section, we attempt to demonstrate that the lift and drag parameters within
the normal force model are indeed related. Figure 9 provides such a demonstration using
the experimentally measured lift curve slope, zero-lift drag coefficient, and drag coefficient
value at 45◦ angle of attack, with all these three parameters being extracted based on the
least squares fit method discussed in Section 2.3. All measurements for the different cases
(various planforms, thickness-to-chord ratios, and Reynolds numbers) considered are on
or close to the solid black diagonal line where our proposed relation between the lift and
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drag parameters CLα = 2(CD,45 − CD,0) is satisfied. In fact, the slopes of the best fit lines
presented via the solid blue and red lines shown in Figure 9 are 1.05 and 0.98 for the early
and steady measurements, respectively, showing satisfactory equivalence between CLα and
2(CD,45 − CD,0). This demonstrates that the normal force model (hence the formation of a
stable LEV that leads to prevention of stall) is established for the cases measured. However,
a more interesting conclusion from this illustration, despite its simplicity, is that with the
values of CD,45 and CD,0 being solely measured/known, the values of both the lift and drag
coefficients within the first quadrant of angle of attack become fully defined.
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Figure 10 shows the variation of the glide ratio for the different wing morphologies,
Reynolds numbers, and thickness-to-chord ratios from early and steady measurements.
To demonstrate each effect independently, averaged plots are presented in Figure 10. For
example, in Figure 10b, values of the lift curve slope and zero-lift drag coefficient used to
inform the plots are averaged for the different aspect ratios and thickness-to-chord ratio
cases involved.

At angles of attack ~30◦ and above, the effect of skin friction contribution can be safely
neglected as the glide ratio simply follows the cotangent of the angle of attack. However,
at lower angles of attack, Equation (11) deviates from this idealistic representation of the
glide ratio. The glide ratio in the region of lower angles of attack show a general increase
for lower thickness-to-chord ratios, higher area centroid location, and higher aspect ratio.
However, on the other hand, the effect of Reynolds number is less distinct. The grey region
in Figure 10 displays the angle of attack operation range at mid-half stroke, common to
many flapping wing insects [47]. In this angle of attack range and up to α = 90◦, the glide
ratio very closely follows the cotangent of the angle of attack—the highest theoretically
achievable glide ratio. Note that higher efficiency is achieved when a wing operates at
lower angles of attack, as the glide ratio of all wing configurations considered in this study
peaks at an α value of 10◦ or just below. However, while these lower angle of attack values
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lead to better aerodynamic efficiency, they do not allow sufficient lift force production,
hence insects usually operate at higher angles of attack.
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centroid location value at each Reynolds number; and in (c), all Reynolds number and aspect ratio
cases were averaged for each centroid location value at each thickness-to-chord ratio.
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The influence of area centroid location on CD,0 and hence on the glide ratio is clearly
evident from Figure 10. For steady measurements, when increasing the area centroid
location (r̂1 = 0.4–0.6), CD,0 decreases on average by 34% and 45% for AR = 2 and 3,
respectively. From a visual assessment of Figure 10, the skin friction drag coefficient clearly
affects the glide ratio in the region of small angles of attack (α ≈ 10o), and in fact plays a
larger role in reducing the glide ratio than the increased lift curve slope that results from
a decreasing area centroid location. However, the interesting point here is the different
influence the variation of r̂1 has on the different aerodynamic performance metrics. As
shown previously, having a lower r̂1 value leads to a considerable enhancement in the lift
curve slope value. This implicitly means an improvement in the efficiency of lift production
(i.e., a decreased induced power factor [75]). However, it is evident that decreasing r̂1 has
the opposite effect on the glide ratio, a metric usually adopted to assess the aerodynamic
performance as a whole.

4. Final Comments

The validity of the normal force model has been investigated for wing planforms of
varying area centroid locations and aspect ratios, operating at different Reynolds numbers
relevant to insect flight and with flat plate profiles with different thickness-to-chord ratios.
Lift and drag coefficients have been measured for these insect-like revolving wings in
the early and steady phases of wing motion, enabling the main lift and drag parameters
to be estimated. Our findings have shown that the normal force model is valid for all
wing configurations outlined in the current study, as it was able to conveniently represent
the measured data. Moreover, it was shown that the lift and drag parameters satisfy the
relation CL,α = 2(CD,45 − CD,0). Hence, knowledge of either (CLα and CD,0) or (CD,45 and
CD,0) is sufficient to allow full representation of the drag polar within the first quadrant of
angles of attack.

The lift curve slope values were influenced by the value of the area centroid location,
as opposed to a slight increase with aspect ratio. The observed increase in the lift curve
slope with a decreasing area centroid location was consistent for all wing models in both
phases of wing motion and can be attributed partly to the growth of the leading-edge
vortex. We postulate from the current findings and the recommendations in the literature
that throughout the steadily revolving wing motion, the presence of a spanwise pressure
gradient results in spanwise flow which acts to stabilize the leading-edge vortex. This likely
validates the increased lift coefficient for lower area centroid locations due to the difference
in wing tip velocity. In the ranges considered in this study, thickness-to chord ratio did
not show a clear conclusive effect on the lift curve slope values, whereas lower Reynolds
numbers showed an enhancing effect on the lift curve slope values.

It was shown that the zero-lift drag coefficient has a detrimental effect on the glide
ratio values used to assess the aerodynamic efficiency in the vicinity of small angles of
attack; however, such effect weakens up as the angle of attack increases till the glide
ratio values start to closely match the cotangent of the angle of attack. The tendency to
follow the cotangent plot beyond conventional stall angles of attack for all wing models
is sufficient proof of the presence and role of the LEV in lift augmentation, regardless of
wing shape. Despite the fact that lower area centroid location wings benefit from increased
lift curve slope values, the increase in the zero-lift drag coefficient has a negative effect
on the aerodynamic efficiency, assessed via glide ratio. Unlike the lift curve slope, the
increase in aspect ratio had a clear and consistent lowering effect on the zero-lift drag
coefficient. Similarly, lowering the Reynolds number or increasing the thickness-to-chord
ratio consistently increased the value of CD,0. While not demonstrated here, as the Reynolds
number is reduced to a value of O(102) and below, CD,0 values are expected to rise abruptly,
and it will therefore be prudent to include further results that consider these Reynolds
regimes in the future. Nevertheless, the thickness-to-chord ratios considered here are
typically greater than those observed in nature, and reducing this value further may
slightly counter the rise in CD,0 at lower Reynolds numbers.
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It will be useful to continue experimental research that considers minimizing the
coupling between aspect ratio and Rossby number, to understand specifically how each
parameter contributes to LEV stability and hence the influence on aerodynamic force pro-
duction. Additionally, it may well be interesting to provoke early shedding or detachment
of the LEV to establish whether its attachment alone is responsible for the augmented
forces, or whether reformation throughout the wing revolution is equally as significant.
However, early assumptions suggest that, from assessment of the force histories, stable
attachment may be more likely and the presence of tip vortices that drain the vorticity is
probable. In support, the increase in force histories in the fourth revolution suggests that
the tip vortices are suppressed beyond three revolutions, and wall effects become apparent.
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Appendix A

In this appendix, line plot versions of Figures 7 and 8 shown in the main text are
presented as Figures A1 and A2, respectively. While the information in the corresponding
figures remains the same, the main difference is in the visual style of presenting the
information. In fact, the amount of information contained within Figures 7 and 8 is
considerable enough that it was thought that another version of the same figures would
help to better expose the trends involved.
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