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Abstract: In this study, an experimental investigation is performed on a scaled, all-movable horizontal
tail to study the aeroelastic behaviors induced by multiple free-plays. The dynamic response in wind
tunnel tests is measured by strain gauges, an accelerometer, and a binocular vision measurement
system. The obtained results indicate that the present aeroelastic system exhibits highly nonlinear
characteristics and undergoes two independent limit cycle oscillations (LCOs) induced by bending
free-play and torsion free-play, respectively. Further, various parametric studies are conducted to
evaluate the effects of the free-play angles, angle of attack, flow velocity, and gust excitation on the
LCOs. It is found that the value of free-play angle has no significant effect on the critical flow velocity
which leads to the occurrence of LCOs. The amplitude and frequency of LCOs increase with the
increasing free-play angle and flow velocity. Moreover, the horizontal tail experiences high-order
harmonic resonances when LCOs appear. Finally, the stability of limit cycles is analyzed based on the
gust excitation experiment. Overall, compared to an all-movable horizontal tail with single free-play,
the multiple free-plays system exhibits more complex dynamic behaviors. In this paper, the measured
results of the scaled model, which has a similar mass distribution and stiffness distribution as actual
aircraft, may be valuable for predicting such LCOs induced by multiple free-plays, and providing a
reference for the design of all-movable horizontal tail to prevent LCOs.

Keywords: multiple free-plays; aeroelasticity; all-movable horizontal tail; limit cycle oscillation; wind
tunnel test

1. Introduction

Nonlinear aeroelastic vibration is one of the major issues in aircraft design. Non-
linear vibration, characterized by limit cycle oscillation (LCO), can deteriorate the pilot
handling quality, weapon-aiming capability, and fatigue life. Various mechanisms are rec-
ognized to induce LCO, such as structural, aerodynamic, and geometric nonlinearities [1–5].
These nonlinearities and their aeroelastic effect were well reviewed by Breitbach [6] and
Lee et al. [7]. Among them, the structural nonlinearity caused by free-play is one of the
main mechanisms that ultimately results in such self-excited oscillations in dynamic sys-
tems [8–10]. Therefore, the characteristics of free-play-induced LCO, which has a significant
negative effect on the aeroelastic system, have been investigated extensively over the past
few decades [11–14]. Further, actuator and bearing are dominating sources of free-play
nonlinearity. Thus, assessing the impact of free-play on an all-movable horizontal tail,
which has a complex actuating system, is of great importance for aircraft design.

Great efforts have been devoted to the study on nonlinear aeroelastic responses of
all-movable horizontal tails with free-play [15,16]. Wu et al. [17] proposed a modeling
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method and an identification method, which were applied to an all-movable fin with
free-play nonlinearity and verified by a ground vibration test. Hu et al. [18] analyzed the
flutter and LCO responses of the horizontal tail by using an unstructured computational
fluid dynamics solver coupled with finite element modal solver. Kim et al. [19] used
the fictitious mass method to study the aeroelastic behavior of an all-movable wing with
free-play. It is generally recognized that the initial conditions affect the LCO behavior
significantly. Tang and Dowell [20] designed and constructed an all-movable horizontal tail
model with flexible bending and torsion stiffness. Their results, measured in wind tunnel
tests, indicated that the LCO amplitude increased with the flow velocity or free-play angle.
Ni et al. [21] found that for an all-movable horizontal tail with free-play, the LCO would
occur at a much lower flow velocity than that without free-play. Arévalo and García-
Fogeda [22] presented a time domain approach to the flutter analysis of a missile-type
wing/body configuration with free-play nonlinearity, and observed LCOs and chaotic
motion below the flutter speed. Kim and Lee [23] analyzed the nonlinear aeroelastic
response of a flexible airfoil with pitch free-play. LCOs and chaotic motion were observed,
and they were highly influenced by the pitch-to-plunge frequency ratio. In addition, some
studies showed that the free-play angle cannot be the only significant parameter involved
in the free-play criteria (MIL-A-8870). Chen et al. [24] presented the LCO characteristics
of a scaled horizontal tail model with free-play and angle of attack. They found that in
addition to the free-play angle, the angle of attack is also an important parameter affecting
the LCO. Chen and Lee [25] investigated the effect of the flight-loads on the LCO induced
by free-play. Their results suggested that, due to ignoring the loading condition, the
current military specification for free-play limit is probably too stringent. In fact, almost no
operational airplane with an all-movable horizontal tail meets this requirement. Moreover,
in a recent paper by Zhang et al. [26], it was demonstrated numerically that flap hinge
free-play combined with cubic pitching stiffness may lead to LCO at a flow velocity well
below the flutter speed of the linear system. In the absence of strong structural damping,
the combined nonlinearity may induce complex dynamic responses. The study by Tian
et al. [27] also showed that the all-movable fin with pitch and flap free-plays exhibited
more complex dynamic responses than that with single free-play nonlinearity.

Overall, the previous research provides some significant insights into all-movable
horizontal tail designs and free-play-induced LCO characteristics. However, most existing
studies on structural nonlinearity have focused on the single free-play system, and little
attention has been paid to the effect of multi-free-plays on the aeroelastic behaviors of the
all-movable horizontal tail.

This study is based on a scaled all-movable horizontal tail model that features the
following characteristics: multiple free-play angles are adjustable, and the beam-rib–skin
structure is similar to that used in actual aircraft. The present paper sheds light on the
effects of free-play angles, flow velocity, and gust excitation on LCO behavior. In Section 2, a
design method of the all-movable horizontal tail model with bending and torsion free-plays
is proposed. The details about the experimental setup and methodology are provided in
Section 3. In Section 4, discussions are provided to clarify the aeroelastic characteristics of
the single-free-play system and multi-free-plays system based on wind tunnel tests. Finally,
the main findings and conclusions are summarized in Section 5.

2. Experimental Model
2.1. The Principle of the Model

An experimental model with bending and torsion free-plays was constructed to
observe and measure the aeroelastic response of an all-movable horizontal tail with multi-
free-plays. The schematic of this horizontal tail is shown in Figure 1. It can be seen that the
horizontal tail was connected to the free ends of the bending leaf-spring and torsion leaf-
spring. Based on this, the model could carry out bending and torsion vibrations centered on
the spherical plain bearing. In addition, a bending free-play device and a torsion free-play
device were used to simulate the free-plays in the actuating system.
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pin was connected to the shaft through thread to achieve a tight fit. Additionally, the mid-
dle section of bending free-play pin was sheathed in connector A, while the diameter of 
the middle section of bending free-play pin was smaller than the inner diameter of con-
nector A to achieve a clearance fit. Similarly, the torsion free-play pin fit tightly with con-
nector B; see Figure 2b. Simultaneously, connector C and the middle section of the torsion 
free-play pin were in clearance fit. The torsion free-play angle could be adjusted by chang-
ing the diameter of the middle section of the torsion free-play pin. In addition, the distance 
between the horizontal tail and the torsion leaf-spring was variable by adjusting the length 
of connector C, resulting in the horizontal tail rotation to simulate the initial angle of at-
tack. 
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Figure 2. Details of free-play devices: (a) bending free-play device; (b) torsion free-play device. 

Figure 1. Schematic of the all-movable horizontal tail model with multiple free-plays.

Details of the bending free-play device are shown in Figure 2a. The bending free-play
pin was connected to the shaft through thread to achieve a tight fit. Additionally, the
middle section of bending free-play pin was sheathed in connector A, while the diameter
of the middle section of bending free-play pin was smaller than the inner diameter of
connector A to achieve a clearance fit. Similarly, the torsion free-play pin fit tightly with
connector B; see Figure 2b. Simultaneously, connector C and the middle section of the
torsion free-play pin were in clearance fit. The torsion free-play angle could be adjusted by
changing the diameter of the middle section of the torsion free-play pin. In addition, the
distance between the horizontal tail and the torsion leaf-spring was variable by adjusting
the length of connector C, resulting in the horizontal tail rotation to simulate the initial
angle of attack.
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2.2. Model Design and Manufacture

Subsequent wind tunnel tests were performed in a low-speed closed-circuit wind
tunnel at Shenyang Aerospace University. The height, width, and length of the wind tunnel
experimental section were 1 m, 1.2 m and 3 m, respectively. The turbulence level of the
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wind tunnel was less than 0.14%. According to the parameters of the low-speed wind
tunnel, the geometric features of the wind tunnel model were selected, as shown in Table 1.
In addition, the lengths of the root chord, tip chord, and span were referenced to a jet
aircraft and scaled down by one third. The wind tunnel model adopted the beam-rib–skin
structure commonly used in actual aircraft. Beam-ribs with variable cross-section were
applied to the horizontal tail model to obtain a reasonable mass distribution and stiffness
distribution. Compared to the flat-plate wing model, the present three-dimensional model
may have more similar dynamic characteristics to the actual aircraft [28–32]. In addition,
the thicknesses of the bending and torsion leaf-springs were selected as 3.5 mm and 3.2 mm,
respectively. The stiffnesses of the bending and torsion leaf-springs were 15,754 N/m and
2028 N/m, respectively.

Table 1. Geometric features of the horizontal tail model.

Description Value

The length of root chord, mm 659.1

The length of tip chord, mm 220.3

The length of span, mm 650.6

Swept angle of the leading edge, deg. 34

Airfoil NACA 0012

The thickness of skin, mm 1.0

The thickness of ribs, mm 1.0

The thickness of beams (from leading edge to
trailing edge), mm 3.5, 6.0, and 2.0

The length and diameter of the shaft, mm 111.0 and 8.0

The length, height, and thickness of the
bending leaf-spring, mm 141.0, 20.0, and 3.5

The length, height, and thickness of the torsion
leaf-spring, mm 237.0, 16.0, and 3.2

The computer-aided design model displayed the structural details of the horizontal
tail more clearly, as shown in Figure 3a. A streamlined fairing with a length of 1826 mm
was used to form a stable flow field in the wind tunnel test. In addition, the functions
of load point and accelerometer will be illustrated in Section 3. The components of the
model were made of the materials listed in Table 2. The manufactured horizontal tail model
weighed 2.2 kg, as shown in Figure 3b.

Table 2. Materials of the components.

Components Materials

Beam-rib–skin structure GFRP (Glass fiber reinforced plastics)

Fairing Pine and GFRP

The joint of the tail root and the shaft Aluminum alloy

Leaf-springs and shaft Steel
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Figure 3. The all-movable horizontal tail model: (a) design model; (b) manufactured model.

3. Experimental Setup and Methodology
3.1. Free-Plays and Angle of Attack Measurements

In this section, free-plays and angle of attack were measured. As shown in Figure 4, a
loading point was placed at 497.9 mm from the root and 168.8 mm from the trailing edge.
The marker point-1 was placed at the intersection of the leading edge and the extension
line of the shaft, and the marker point-2 was placed at the root of the trailing edge. In this
paper, six torsion free-play pins with different middle section diameters and one bending
free-play pin were designed and machined. For each torsion free-play pin, a set of pulling
forces were exerted on both sides of the loading point. Displacements of two marker points
under these pulling forces were measured using a binocular vision measurement system.
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Six sets of measurements for marker point-1 are shown in Figure 5a. For the ith torsion
free-play pin, intersections of the measured pulling force-displacement curve and Y-axis
were calculated using the least square method, indicated by Ai and Bi. The interval between
Ai and Bi represents the free range-of-motion of the horizontal tail induced by bending
free-play when the pulling force is 0. Here, YAi and YBi represent the Y-axis coordinate
values of Ai and Bi (YBi > YAi). According to the geometric features of the model, the
bending free-play angle δb can be calculated by using Equation (1).

δb = 360
(
YBi – YAi

)
/4πH (i = 1, 2, 3, 4, 5, 6) (1)

where H = 584.1 mm is the distance from the center of bearing to the marker point-1. Thus,
the calculated bending free-play angle δb = ±0.10◦.
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The results of marker point-2 are shown in Figure 5b. Similarly, Ci and Di represent
the intersections of the force-displacement curve and the Y-axis for the ith torsion free-play
pin, and YCi and YDi are used as the values of Y-axis coordinates of Ci and Di (YDi > YCi).
The interval between YDi and YCi represents the free range-of-motion of the horizontal tail
caused by the ith torsion free-play when the pulling force is 0. Moreover, the center point of
Ci and Di corresponds to the initial angle of attack related to torsion DOF. Torsion free-play
angles δt and angle of attack α can be obtained by using the following equations:

δti = 360(YDi – YCi)/4πh (i = 1, 2, 3, 4, 5, 6) (2)

α = 360
(
YCi + YDi

)
/4πh (i = 1, 2, 3, 4, 5, 6) (3)

where h = 302.9 mm is the distance from the center of bearing to the marker point-2. The cal-
culated angle of attack α = 0.15◦, and the torsion free-play angles are ±0◦, ±0.165◦, ±0.243◦,
±0.262◦, ±0.409◦, and ±0.767◦, respectively. Therefore, the experimental investigations of
aeroelastic response induced by single free-play or multiple free-plays can be carried out
by using different combinations of bending free-play pin and torsion free-play pins.

3.2. Ground Vibration Test

The ±0◦ torsion free-play pin was chosen for the ground vibration test (GVT) to
analyze the basic dynamic characteristics of the horizontal tail model, as shown in Figure 6.
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The first bending frequency and the first torsion frequency measured in GVT were 4.5 Hz
and 19.9 Hz, respectively. Corresponding damping coefficients were 1.18% and 1.24%,
respectively. Modes obtained by GVT are shown in Figure 7.
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A finite element model consistent with the experimental model was constructed. The
first bending frequency and the first torsion frequency were 4.6 Hz and 20.1 Hz, respectively,
which was in good agreement with the GVT results. Applying a force of 1 N at marker
point-1, the calculated displacements of marker point-1 with and without leaf-springs
were 1.7 mm and 0.4 mm, respectively. When the force was applied to marker point-2, the
displacements of marker point-2 with and without leaf-springs were 2.0 mm and 0.4 mm.
The calculated flutter speed of the linear system without free-plays was 77 m/s.
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3.3. Data Acquisition in Wind Tunnel Tests

The experimental model installed in the wind tunnel is shown in Figure 8a. The
aeroelastic response in the wind tunnel tests was measured in the following ways:
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Figure 8. Wind tunnel arrangement: (a) model setup; (b) binocular vision measurement system.

1. Two strain gauges were glued to near the fixed end of the leaf-springs and were used
to measure the bending angle and torsion angle. The experimental sampling rate was
128 points per second, and the sampling length was 3840 points;

2. A built-in shear piezoelectric accelerometer manufactured by PCB piezotronics in-
corporated was placed inside the skin of the model (i.e., as shown in Figure 3a: the
position of the accelerometer was 534.1 mm from the root and 96.4 mm from the
trailing edge). The sensitivity of the accelerometer was 100.0 mV/g (10.20 mV/m/s2).
The experimental sampling rate was set to 128 Hz;

3. A set of marker points was pasted on one side of the model to obtain the transient
states during the vibration process (i.e., the instantaneous displacement of each marker
point could be measured by the binocular vision measurement system with a sampling
frequency of 43 Hz, as shown in Figure 8b).

Additionally, the data were collected after the flow velocity stabilized. The output
signals from these transducers were directly recorded on a computer with data acquisition
and analysis software.

4. Results and Discussions
4.1. Aeroelastic Response of the Single Free-Play System

All single free-play experiments were performed with δb = 0.1◦, δt = 0◦, and α = 0.15◦

to investigate the effect of bending free-play on the response of the model. The system
underwent three stages of slight random vibration/LCO/slight random vibration with the
flow velocity varying from 5 to 35 m/s. The time histories of the bending angle and torsion
angle at V = 19 m/s, V = 20 m/s, V = 21 m/s, and V = 35 m/s are shown in Figure 9, which
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indicates that the LCO induced by bending free-play was observed at V = 20 m/s and
then disappeared at V = 21 m/s. A similar characteristic related to torsion free-play was
proposed by Tang and Dowell [16], and it was demonstrated that such a disappearance of
the LCO could be attributed to the initial non-zero angle of attack. The model continued to
experience slight random vibration when the flow velocity rose from 21 to 35 m/s. The
maximum flow velocity of the test was selected as 35 m/s for the following reasons: (1) to
avoid model damage; (2) to avoid the wind tunnel being damaged by the broken model;
and (3) because the flow velocity was close to the wind tunnel boundary, and a further
increase of the flow velocity may reduce the stability of the flow field. In the following
section, this LCO, which appeared at V = 20 m/s, will be further investigated.
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4.2. Aeroelastic Response of Multiple Free-Plays System

All the following experiments were performed with the initial conditions for bending
free-play angle δb = 0.1◦ and angle of attack α = 0.15◦. In addition, five torsion free-play
angles varying from δt = 0.165◦ to 0.767◦ were employed to study the LCO behaviors
induced by multiple free-plays quantitatively. The same phenomenon found in the five
groups of experiments was that the model experienced four processes of slight random
vibration/small amplitude LCO/slight random vibration/large amplitude LCO as the flow
velocity increased. For convenience, these two LCOs are referred to herein as S-LCO (small
amplitude LCO) and L-LCO (large amplitude LCO), respectively. The time histories of
bending angle and torsion angle at V = 19 m/s, V = 20 m/s, V = 21 m/s, and V = 27 m/s
are shown in Figure 10a,b, respectively (δt = 0.767◦ is taken as an example). Displacement-
velocity phase diagrams are shown in Figure 11. From Figures 10 and 11, the following
points can be drawn:
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1. The S-LCO appeared at V = 20 m/s and disappeared at V = 21 m/s, which is the same
as the result in Section 4.1. Moreover, the L-LCO occurred when the flow velocity
increased to 27 m/s. Therefore, it can be inferred that the L-LCO was caused by the
torsion free-play. In addition, for simplicity, the critical flow velocities that led to the
occurrences of S-LCO and L-LCO are called VS-LCO and VL-LCO, respectively;

2. For S-LCO, the amplitude of bending angle was greater than that of torsion angle.
However, the opposite was true for the L-LCO;

3. For the L-LCO induced by torsion free-play, the vibration characteristics were very
different in the free-play region and the stiffness region (see Figure 11b, V = 27 m/s).
The torsion velocity was relatively stable in the free-play region, but it was more
variable in the stiffness region.

According to the measured instantaneous displacement of each marker point, the
transient states within one vibration period of the S-LCO and the L-LCO were obtained
by the digital image correlation method [33–35], as shown in Figure 12a,b, respectively.
The results show that the S-LCO mainly contained bending vibration, while the L-LCO
contained both bending vibration and torsion vibration.

For different torsion free-play angles, the amplitudes of bending angle and torsion
angle vs. flow velocity are shown in Figure 13a,b, respectively. The results show that the
value of torsion free-play angle hardly affected the VS−LCO and VL−LCO. Furthermore, the
value of torsion free-play angle had no significant effect on the amplitudes of bending angle
and torsion angle in S-LCO. However, when V ≥ VL−LCO, the amplitudes of bending angle
and torsion angle increased prominently with the increasing torsion free-play angle and
flow velocity.
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The quantitative analysis carried out using the same data in Figure 13 is shown in Figure 14,
in which the amplitudes of bending angle and torsion angle are non-dimensionalized by the
torsion free-play angle. These non-dimensional values indicate the effect of the torsion free-
play angle on the LCO amplitude more clearly. The results show that the non-dimensional
amplitudes of torsion angle were nearly the same for all torsion free-play angles (see Figure 14b).
Thus, it can be determined that the amplitude of torsion angle was almost proportional to the
torsion free-play angle, while such a rule does not apply to the amplitude of bending angle (see
Figure 14a).

The ratio of torsion angle amplitude to bending angle amplitude vs. flow velocity
for different torsion free-play angles was calculated to further explain the effect of torsion
free-play angle on amplitude; see Figure 15. Interestingly, when V < VL−LCO, θt/θb was
less than 1 and reached its minimum value at V = VS−LCO. When V ≥ VL−LCO, θt/θb was
greater than 1 and increased as the torsion free-play angle increased. This shows that a
larger torsion free-play angle leads to more torsion vibration in L-LCO.
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Fast Fourier transform (FFT) was performed on the measured acceleration to obtain the
main frequency at different flow velocities, as shown in Figure 16. When V < VL−LCO, the
frequency increased almost linearly with the increase in flow velocity and was independent
of torsion free-play angle. The frequency dropped at V = VL−LCO and subsequently
increased slightly with the flow velocity and torsion free-play angle.

In addition, high-order harmonics were observed in the FFT frequency spectra and
the characteristics of the high-order harmonics were related to the torsion free-play angle.
Therefore, two torsion free-play angles (δt = 0.767◦ and δt = 0.243◦) were selected for
further analysis. The fundamental frequency and high-order frequency at different flow
velocities are shown in Figures 17a and 18a. The FFT frequency spectra for two torsion
free-play angles at V = 20 m/s, V = 27 m/s and V = 33 m/s are shown in Figures 17b–d
and 18b–d, respectively. It is interesting to note that high-order harmonics always appear
along with LCOs. From Figures 17 and 18, the following points can also be made:
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(b) frequency spectrum at V = 20 m/s; (c) frequency spectrum at V = 27 m/s; and (d) frequency spectrum
at V = 33 m/s. The red and blue markers indicate the 2nd and 3rd order harmonics, respectively.
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1. Second/third order harmonics always prominently exist in S-LCOs (see Figures 17b
and 18b) and L-LCOs (see Figure 17c,d and Figure 18c,d), respectively;

2. Significant second order harmonics can sometimes be found in L-LCOs, and their
appearance is related to the torsion free-play angle (see Figures 17c and 18c). Addi-
tionally, a further increase in the flow velocity seems to result in a disappearance of
second order harmonics in L-LCO (see Figure 16c,d).

4.3. Stability of Limit Cycles

Stability analysis is an important tool in the study of nonlinear dynamics. An excitation
device consisting of an air pump, conduit, and switch was designed to study the stability
of limit cycles. By controlling the switch, the high-pressure air in the air pump can be
sprayed onto the model to simulate gust excitation. The amplitudes of acceleration with
and without excitation vs. flow velocity are shown in Figure 19a (δt = 0.165◦ is taken
as an example). It is worth noting that the excitation will result in the disappearance of
L-LCOs only when the flow velocity is slightly greater than VL-LCO. Further, time histories
of acceleration with excitation when V = 20 m/s and V = 28 m/s are shown in Figure 19b,d,
respectively. The responses after excitation remained consistent with the original LCOs,
regarded as stable limit cycles. Figure 19c shows the time history of acceleration with
excitation when V = 27 m/s. The disappearance of LCO after excitation indicates that this
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limit cycle was unstable, and the unstable LCO will turn to be stable as the flow velocity
increases (i.e., when V ≥ 28 m/s).
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5. Conclusions

In this study, an all-movable horizontal tail model with bending and torsion free-
plays was designed to investigate the aeroelastic responses induced by multiple free-plays
experimentally. The main findings of this paper can be summarized as follows:

1. The all-movable horizontal tail with multiple free-plays experienced two independent
LCOs, which were induced by bending free-play (S-LCO) and torsion free-play (L-
LCO), respectively. Further analyses of the LCOs indicated that the S-LCO mainly
contained bending vibration, while the L-LCO contained both bending vibration and
torsion vibration.

2. The torsion free-play angle only affected the characteristics of the L-LCO it triggered,
not those of the S-LCO. The amplitude and frequency of the L-LCO increased continu-
ously with the increase in torsion free-play angle and flow velocity.

3. High-order harmonics always appeared along with LCOs. It was also found that the
characteristics of high-order harmonics were related to the free-play angle and flow velocity.

4. The L-LCO was unstable only when the flow velocity was slightly greater than VL-LCO.
Otherwise, the L-LCO was stable.

In conclusion, it was verified experimentally that the all-movable horizontal tail with
multiple free-plays exhibited more complex dynamic responses than the single free-play
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system. Hence, high nonlinearity as a result of multiple free-plays should be considered
effectively in the design process, to ensure that the all-movable horizontal tail avoids LCOs
within the flight envelope. In addition, these experimental results also provide a significant
reference for prediction methods of LCOs induced by multiple free-plays.
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