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Abstract: This paper is dedicated to identifying stable equilibrium positions of the tether systems
attached to the L1 or L2 libration points of the Mars–Phobos system. The orbiting spacecraft deploying
the tether is at the L1 or L2 libration point and is held at one of these unstable points by the low thrust
of its engines. In this paper, the analysis is performed assuming that the tether length is constant. The
equation of motion for the system in the polar reference frame is obtained. The stable equilibrium
positions are found and the dependence of the tether angular oscillation period on the tether length
is determined. An analytical solution in the vicinity of the stable equilibrium positions for small
angles of deflection of the tether from the local vertical is obtained in Jacobi elliptic functions. The
comparison of the numerical and analytical solutions for small angles of deflection is performed.
The results show that the dependencies of the oscillation period on the length of the tether are
fundamentally different for L1 and L2 points. Analytical expressions for the tether tension are derived,
and the influence of system parameters on this force is investigated for static and dynamic cases.

Keywords: libration point; tether system; equilibrium positions; phase plane; analytic solution;
elliptic function; tension

1. Introduction

The space tether is a type of tether that is made of high-strength fiber used to connect
spacecraft to each other or to other masses. The space tether systems allow us to perform
missions that are impossible, impractical or unprofitable to accomplish with the help of
other space equipment. For example, tether systems can be used for docking between
spacecraft [1], as a space elevator [2–6], for payload orbital transfer [7,8], for exploring deep
space [9], the atmosphere and the surface of the planets and their moons [10], as well as
asteroids. For instance, Mashayekhi and Misra studied the effect of attaching a tether and
ballast mass to an asteroid with subsequent cutting of the tether [11]. In recent decades,
the use of space tethers near the collinear Lagrangian points has received considerable
attention [12–15]. Ref. [14] focused on the development of a new mission to explore Phobos
using a tether system anchored below the L1 Mars–Phobos libration point and deployed
toward Mars at a length slightly greater than the distance from Phobos. Paper [15] showed
the maintenance of an L1-type artificial equilibrium point in the Sun (Earth + Moon)
circular restricted three-body problem by means of an electric solar wind sail. The tether
capture system is also a promising method for removing space debris [16–21]. The topic of
dynamics and control of tether systems has received substantial attention [22–36]. Huang
et al. examined several new applications for the space tether during operation in orbit,
focusing on the structure, dynamics and control [23]. Paper [24] discussed the diversity of
tether modelling that has been undertaken recently, and showed that dynamics and control
are the two fundamentally important aspects of all tether concepts, designs and mission
architectures.

In 2017, NASA proposed the PHLOTE mission (Phobos L1 Operational Tether Experi-
ment) to explore the surface of Phobos using a tether system “anchored” at the L1 libration
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point of the Mars–Phobos system [10]. The tether release point was proposed to be an
orbiting spacecraft hovering in the vicinity of the L1 point. Once deployed, the small vehicle
with a sensor package attached to the tether was expected to investigate Phobos. This
mission concept is a synthesis of new technologies that would provide a unique platform
for multiple sensors directed at Phobos as well as at Mars. The PHLOTE ConOps describes
the PHLOTE mission and provides a key systems engineering document to support future
mission development. However, such a complex innovative mission requires an additional
theoretical justification and a variety of analytical models of the system motion. The work
of [37] considers a mission similar to the PHLOTE mission, where a detailed study of the
behavior of the tether system attached at the L1 collinear libration point was performed
using the classical Nehvil equations.

The purpose of the present work is to find the stable equilibrium positions of the
tether system attached at the L1 or L2 collinear libration points of the Mars–Phobos system
and to study the features of the tether motion near these positions. The system consists
of the tether and the end mass attached to its end. The mathematical model is based on
the differential equations of the classical circular restricted three-body problem [38–42].
The equation of motion for the tether system of constant length under the action of two
gravitational fields (Mars–Phobos) and the centrifugal force associated with the rotation of
the frame of the Mars–Phobos system are obtained in polar coordinates. The first integral
of this differential equation is found and used to determine the phase trajectories and
the stable equilibrium positions. The approximate analytical solutions of the equation
of motion for the tether system are obtained using Jacobi elliptic functions. Next, the
dependence of the oscillation period on the length of the tether is found. Finally, analytical
expressions for the tether tension are derived, and the influence of system parameters on
this force is investigated for static and dynamic cases. The results of this work can be used
for PHLOTE-like mission design. It is worth noting that the obtained solutions for small
tether deflection angles are of interest for the creation of the space elevator at the L1 and L2
libration points of the Mars–Phobos system in the future.

2. Mathematical Model: Finding Sustainable Positions

In this section, the behavior of the tether system of constant length attached to the L1
or L2 libration point under the action of two massive attracting bodies, M1 and M2 (Mars
and Phobos), is described using the differential equations of the classical circular restricted
three-body problem [38–42]. It is assumed that the mass of the body M is much less than
the mass of the bodies M1 and M2. As a result, the body M has negligible influence on
other bodies. In addition, it is assumed that the eccentricity of the two bodies of the primary
orbit is e = 0 and the distance between them is

r = d, (1)

where d is the semilatus rectum. The orbiter is located at the L1 or L2 libration points, either
of which can be the attachment point for the tether.

In the following subsections, we consider two cases characterized by different values
of the tether deflection angle, namely, ϕ and ψ = ϕ + π.

2.1. Tether Deflection Angle ϕ

The equations of motion of the circular restricted three-body problem [42] in the
polar reference frame (`, ϕ) (see Figure 1) for the constant length tether ` = const can be
written as

..
ϕ− Fi(ϕ) = 0, (i = 1, 2) (2)

where

Fi(ϕ) = −n2sinϕ ai
`

+
Gsinϕ

`

(
m1(dµ + ai)

r1
3 +

m2(d (µ− 1) + ai)

r23

)
(3)
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n =
√

G(m1+m2)
d3 is the mean motion, G is the Newtonian gravitational constant, m1 and m2

are masses of the bodies M1 and M2, respectively, a1 ≈ d [ 1−
( µ

3
) 1

3 ], a2 ≈ d [ 1 +
( µ

3
) 1

3 ]
are the distances from the origin to the L1 and L2 libration points, respectively µ = m2

m1+m2
is the mass ratio,
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r1 is the distance between the primary 1 and the end mass,

r1 =

√
(ai + d µ + `cosϕ)2 + (`sinϕ)2, (i = 1, 2), (4)

r2 is the distance between the primary 2 and the end mass,

r2 =

√
(ai + d (µ− 1) + `cosϕ)2 + (`sinϕ)2, (i = 1, 2) (5)

Equation (2) has the following energy integral:

E =

.
ϕ

2

2
+ P(ϕ) = h = const (6)

where E is the total energy. The potential energy can be written as

P(ϕ) = −
∫

Fi(ϕ) dϕ = −n2aicosϕ

`
− G

`2

(
m1

r1
+

m2

r2

)
, (i = 1, 2) (7)

It follows from the Equations (6) and (7) that the equation of phase trajectories has the
form

.
ϕ = ±

√
2(h− P(ϕ)). (8)

Figure 2 shows the potential energy (7) and the corresponding phase portrait of the
system (2) for the tether length ` = 3000 m and the following parameters:

d = 9.4 · 106 m, a1 = 9.38 · 106 m, a2 = 9.42 · 106 m, µ = 1.67 · 10−8.

The stationary positions for ϕ ∈ [−π, π] can be found from the equation

Fi(ϕ∗) = 0. (9)

The stable equilibrium positions are ϕs = −π, 0, π, and the unstable positions are
ϕus = −π

2 , π
2 .
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Figure 2. (a) The potential energy P(ϕ) for the tether system attached at the L1 libration point; (b) the
potential energy P(ϕ) for the tether system attached at the L2 libration point; (c) phase trajectories
.
ϕ(ϕ) corresponding to different levels of the total energy Ej(j = 1, 2, 3, 4) for the tether system
attached at the L1 libration point; (d) phase trajectories

.
ϕ(ϕ) corresponding to different levels of the

total energy Ej(j = 1, 2, 3, 4) for the tether system attached at the L2 libration point.

2.2. Tether Deflection Angle ψ

To consider this case, let us represent the deflection angle of the tether as

ψ = ϕ + π. (10)

The equations of motion in polar coordinates for the constant tether length are

..
ψ−Qi(ψ) = 0, (i = 1, 2) (11)

where

Qi(ψ) =
n2sinψ ai

`
− Gsinψ

`

(
m1(d µ + ai)

r3
1

+
m2(d (µ− 1) + ai)

r3
2

)
(12)

r1 is the distance between the primary 1 and the end mass,

r1 =

√
(ai − `cosψ + d µ)2 + (`sinψ)2, (13)

r2 is the distance between the primary 2 and the end mass,

r2 =

√
(ai − `cosψ + d (µ− 1))2 + (`sinψ)2. (14)

Equation (11) has the following energy integral:

E =

( .
ψ
)2

2
+ P(ψ) = h = const (15)
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where E is the total energy. The potential energy is

P(ψ) = −
∫

Qi(ψ) dψ =
n2aicosψ

`
− G

`2

(
m1

r1
+

m2

r2

)
(16)

It follows from the equations (15) and (16) that the equation of phase trajectories has
the form

.
ψ = ±

√
2(h− P(ψ)) (17)

Figure 3 depicts the potential energy (16) and the corresponding phase portrait of the
system (11) for the tether length ` = 3000 m and the following parameters:

d = 9.4 · 106 m, a1 = 9.38 · 106 m, a2 = 9.42 · 106 m, µ = 1.67 · 10−8

Equating the generalized force (12) to zero,

Qi(ψ∗) = 0, (18)

leads to two types of stationary positions for ψ ∈ [−π, π]. The stable equilibrium positions
are ψs = −π, 0, π, and the unstable positions are ψus = −π

2 , π
2 .
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Figure 3. (a) The potential energy P(ψ) for the tether system attached at the L1 libration point; (b) the
potential energy P(ψ) for the tether system attached at the L2 libration point; (c) the separatrices
.
ψ(ψ) in the phase space corresponding to different levels of the total energy Ej(j = 1, 2, 3, 4) for

the tether system attached at the L1 libration point; (d) the separatrices
.
ψ(ψ) in the phase space

corresponding to different levels of the total energy Ej(j = 1, 2, 3, 4) for the tether system attached at
the L2 libration point.

3. Approximate Analytical Solutions

In this section, the approximate analytical solutions of the equations of motion of the
tether system in Jacobi elliptic functions [43] for small deflection angles are found and
compared with the numerical solutions.
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3.1. Tether Deflection Angle ϕ

The following notation for the small tether deflection angle is used:

ϕ→ α. (19)

Let us expand the right hand side of Equation (2), which is an odd periodic function,
into a Taylor series and keep the first two terms:

..
α = Aα + Bα3, (20)

where A and B are coefficients depending on the system parameters

A = −n2ai
`

+
G
`

(
m1(d µ + ai)

`1
3 +

m2(d (µ− 1) + ai)

`23

)
, (i = 1, 2) (21)

B =
n2ai
6 `

+
3 G
2 `

(
m1` (d µ + ai)

2

`1
5 +

m2` (d (µ− 1) + ai)
2

`25 −

1
9

m1(d µ + ai)

`1
3 − 1

9
m2(d (µ− 1) + ai)

`23 (22)

`1 = `+ d µ + ai, `2 = `+ d (µ− 1) + ai

The phase trajectory equation for the Equation (20) in this case is

.
α = ±

√
2E1 + Aα2 + B

α4

2
(23)

where E1 = −A α0
2

2 − B α0
4

4 = const and is determined from the initial conditions t = 0,
.
α = 0, α = α0, α0 being the initial tether deflection angle measured from the x-axis.
Separating variables in the Equation (23) leads to∫

dt = ±
∫ dα√

2E1 + Aα2 + B α4

2

(24)

The polynomial under the root of the expression (24) [ 2E1 + Aα2 + B α4

2 ] can be
factored as

B
2
(α− c1)(α− c2)(α− c3)(α− c4) (25)

The roots of the polynomial (25) have the form

c1,4 = ∓
√
−A− N

B
, c2,3 = ∓

√
−A + N

B
(26)

where N =
√

A2 − 4BE1. The right part of expression (24) is an elliptic integral. To reduce
it to the canonical form, it is necessary to calculate the modulus, which is determined
by [43].

k =
z′ − z′′

z′ + z′′
, 0 < k2 < 1 (27)

where z′ =
√

c13c24, z′′ =
√

c12c34, cij = cj − ci (i = 1, 2, 3, 4; j = 1, 2, 3, 4). Now the expres-
sion (24) can be reduced to the form

± zt = F(α, k) (28)
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where z = z′+z′′
2

√
B
2 , F(α, k) is the elliptic integral of the first kind,

F(α, k) =
α∫

0

dα√
(1− α2)(1− k2α2)

(29)

Converting the elliptic integral from the expression (28) and using an elliptic sine
sn(u, k), we obtain the approximate analytical solution:

α(t) = α0sn(u, k) (30)

where u = zt.
Let us compare the obtained analytical solution Equation (30) with the results of

numerical integration of the initial Equation (2). Figure 4 illustrates the simulation results
for ` = 3000 m and the following initial conditions for the tether system attached in the L1
libration point:

α0 = 0.25 rad,
.
α = 0.00022732 rad/s

and
α0 = 0.5 rad,

.
α = 0.00043229 rad/s.
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Figure 5 shows the simulation results for ` = 3000 m and the following initial condi-
tions for the tether system attached in the L2 libration point:

α0 = 0.25 rad,
.
α = 0.00017327 rad/s

and
α0 = 0.5 rad,

.
α = 0.0003377 rad/s.
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3.2. Tether Deflection Angle ψ

If the deflection angles are small, one can write, using Equations (10) and (19), that

β = α + π. (31)

In this case, the approximate analytical solution can be written as

β(t) = β0sn(u, k), (32)

where β0 is the initial deflection angle of the tether measured from the x-axis,

u = zt,
k = z′−z′′

z′+z′′ , 0 < k2 < 1,

z = z′+z′′
2

√
D
2 ,

z′ =
√

c13c24, z′′ =
√

c12c34, cij = cj − ci, (i = 1, 2, 3, 4; j = 1, 2, 3, 4)

c1,4 = ∓
√
−C−N

D , c2,3 = ∓
√
−C+N

D ,

N =
√

C2 − 4DE2,

E2 = −C β0
2

2 − D β0
4

4 = const,

C = n2ai
` + G

`

(
m1(d µ+ai)

`3
3 − m2(d(µ−1)+ai)

`4
3

)
,

D = − n2ai
6` + 3 G

2 `

(
1
9

m1(d µ+ai)
`3

3 + m1`(d µ+ai)
2

`3
5 + 1

9
m2(d ( µ−1)+ai)

`4
3 + m2`(d ( µ−1)+ai)

2

`4
5

)
,

`3 = `− d µ− ai, `4 = `− d (µ− 1)− ai

Figure 6 shows the simulation results for ` = 3000 m and the following initial condi-
tions of the tether system attached in the L1 libration point:

β0 = 0.25 rad,
.
β = 0.00017414 rad/s

and
β0 = 0.5 rad,

.
β = 0.00033936 rad/s.
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Figure 6. Time history of the tether deflection angle for the tether system attached in the L1 libration
point.

Figure 7 shows the simulation result for ` = 3000 m and the following initial conditions
for the tether system attached in the L2 libration point:

β0 = 0.25 rad,
.
β = 0.00022753 rad/s

and
β0 = 0.5 rad,

.
β = 0.00043273 rad/s.
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The comparison of the numerical and analytical results shows that the approximate an-
alytical solutions are able to accurately predict the amplitudes of tether angular oscillations,
but not the frequencies. However, in the considered case, the amplitudes are much more
important for the analysis of tether oscillations, so the approximate analytical solutions are
quite consistent with the numerical solutions.

4. Oscillation Period of the Tether near the Stable Position
4.1. Tether Deflection Angle ϕ

According to Equation (28) and Ref. [43], the oscillation period of Equation (30) is
determined by the formula

τ1 =
4K(k)

z
(33)

where K
(

π
2 , k
)
=
∫ π

2
0

dα√
(1−k2 sin α2)

is the complete elliptic integral of the first kind,

k = z′−z′′
z′+z′′ , 0 < k2 < 1,

z = z′+z′′
2

√
B
2 ,

z′ =
√

c13c24, z′′ =
√

c12c34, cij = cj − ci, (i = 1, 2, 3, 4; j = 1, 2, 3, 4)

c1,4 = ∓
√
− A−N

B , c2,3 = ∓
√
− A+N

B ,

A = − n2ai
` + G

`

(
m1(d µ+ai)

`1
3 + m2(d (µ−1)+ai)

`2
3

)
,

B = n2ai
6 ` + 3 G

2 `

(
m1` (d µ+ai)

2

`1
5 + m2` (d (µ−1)+ai)

2

`l25 − 1
9

m1(d µ+ai)
`1

3 − 1
9

m2(d (µ−1)+ai)
`2

3 ,

N =
√

A2 − 4BE1,

E1 = −A α0
2

2 − B α0
4

4 = const,
`1 = `+ d µ + ai, `2 = `+ d (µ− 1) + ai

Figure 8 shows the dependence of the oscillation period on the length of the tether
attached at the L1 and L2 libration points based on analytical and numerical calculations
for the initial deflection angle of the tether α0 = 0.25 rad.
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Figure 8. The oscillation periods of the tether systems attached at the L1 and L2 libration points.

The difference between the numerical and analytical calculations is approximately
300 s. As the tether length increases for the case when the tether system is fixed at the
libration point L1, the period decreases. If the tether is attached at the L2 libration point,
the period of oscillation of the tether decreases at ` < 200 m, but begins to increase at
` > 200 m. This change in the character of the dependence of the oscillation period on
the tether length requires further study. For the tether length ` = 3000 m, the analytical
calculation gives the oscillation period of about 7000 s ≈ 1.94 h for the tether attached at
the L1 point and 9081 s ≈ 2.52 h for the L2 point, while the orbital period of Phobos around
Mars is 27,540 s ≈ 7.65 h.

4.2. Tether Deflection Angle ψ

According to Ref. [43], the oscillation period of Equation (32) is determined by the
formula

τ2 =
4K(k)

z
(34)

where K
(

π
2 , k
)
=
∫ π

2
0

dβ√
(1−k2 sin β2)

is the complete elliptic integral of the first kind,

k = z′−z′′
z′+z′′ , 0 < k2 < 1,

z = z′+z′′
2

√
D
2 ,

z′ =
√

c13c24, z′′ =
√

c12c34, cij = cj − ci, (i = 1, 2, 3, 4; j = 1, 2, 3, 4)

c1,4 = ∓
√
−C−N

D , c2,3 = ∓
√
−C+N

D

N =
√

C2 − 4DE2,

E2 = −C β0
2

2 − D β0
4

4 = const,

C = n2ai
` + G

`

(
m1(d µ+ai)

`3
3 − m2(d(µ−1)+ai)

`4
3

)
,

D = − n2ai
6` + 3 G

2 `

(
1
9

m1(d µ+ai)
`3

3 + m1`(d µ+ai)
2

`3
5 + 1

9
m2(d ( µ−1)+ai)

`4
3 + m2`(d ( µ−1)+ai)

2

`4
5

)
`3 = `− d µ− ai, `4 = `− d (µ− 1)− ai

Figure 9 shows the dependence of the oscillation period on the length of the tether
attached in the L1 and L2 libration points based on analytical and numerical calculations
for the initial tether deflection angle β0 = 0.25 rad.
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The difference between the numerical and analytical calculations is approximately
300 s. As the tether length increases for the case when the tether system is fixed at the
libration point L2, the period rises. If the tether is attached at the L1 libration point, the
period of oscillation of the tether increases at ` < 200 m, but begins to decrease at ` > 200 m.
At the tether length of ` = 3000 m, attached in the L1 or L2 libration point, the oscillation
period according to the analytical calculation is equal to, respectively, 6982 s ≈ 1.94 h и
9028 s ≈ 2.51 h.

5. Tether Tension Force

In this section, the equations of motion of the end mass in the polar reference frame are
derived for the angle ϕ, in order to obtain the tension of the tether. Note that the equations
will be the same for the angle ψ. Analytical expressions for the tether tension force are
given and the influence of tether system parameters on this force is investigated in both
dynamic and static cases.

Consider the equations of planar motion for the end mass in the Oxy coordinate frame
within the scope of the classical restricted three-body problem [42]. In the presence of tether
tension, these equations can be written as

..
x− 2n

.
y− n2x =

∂U
∂x
− 1

m
Tx, (35)

..
y + 2n

.
x− n2y =

∂U
∂y
− 1

m
Ty, (36)

where T =
(
Tx, Ty

)
is the tether tension force acting on the end mass from the tether.

Position of the body M relative to the origin of coordinates in the polar reference frame
(`, ϕ) is defined by

x = ai + `cosϕ, (i = 1, 2)
y = `sinϕ.

(37)

In the polar reference frame (`, ϕ), the Equations (35) and (36) can be written as

..
ϕ + Fϕ = 0 (38)

..
`+ F` = −

1
m

T (39)

where T =
√

T2
x + T2

y is the magnitude of the tether tension force acting on the end mass
from the tether,
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Fϕ =
n2sinϕ ai

`
− Gsinϕ

`

(
m1(dµ + ai)

r3
1

+
m2(d (µ− 1) + ai)

r3
2

)
+

2
.
`

`

(
n +

.
ϕ
)
, (i = 1, 2), (40)

F` = −n2cosϕ ai + G

(
m1(`+ cosϕ (dµ + ai))

r3
1

+
m2(`+ cosϕ (d(µ− 1) + ai))

r3
2

)
− `
(
n +

.
ϕ
)2, (41)

r1 is the distance between the primary 1 and the end mass,

r1 =

√
(ai + `cosϕ + d µ)2 + (`sinϕ)2, (42)

r2 is the distance between the primary 2 and the end mass,

r2 =

√
(ai + `cosϕ + d (µ− 1))2 + (`sinϕ)2. (43)

5.1. Static Tension

The static tension of the constant length tether can be calculated using Equation (39)
according to the following formula:

Tst = m n2(`+ ai)−mG
(

m1

`1
2 +

m2

`22

)
(44)

where `1 = `+ d µ + ai, `2 = `+ d (µ− 1) + ai.
Figure 10 shows that the tension force is almost proportional to the length of the tether.
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Figure 10. Tension force of the tether, as a function of its length for the end mass of 50 kg: (a) tether
attached at the L1 libration point; (b) tether attached at the L2 libration point.

For the 50 kg end mass and the tether length of 3000 m attached in the L1 libration
point, Equation (44) gives the tension force of 0.086 N. When considering the L2 libration
point, the tension force is 0.059 N.

5.2. Dynamic Tension

The dynamic tether tension force can be found using Equations (39) and (41) as

T = −mF` =

−m
(
−n2cosϕ ai + G

(
m1(`+cosϕ (dµ+ai))

r3
1

+ m2(`+cosϕ (d (µ−1)+ai))

r3
2

)
− `
(
n +

.
ϕ
)2
)

,
(45)

Figure 11 shows the tether tension force and the tether deflection angle from the
gravitational vertical for the end mass of 50 kg and the tether length of 3000 m.
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Figure 11. (a) Tension force for the tether attached in the L1 libration point; (b) tension force for the
tether attached in the L2 libration point; (c) tether deflection angle for the tether attached in the L1

libration point; (d) tether deflection angle for the tether attached in the L2 libration point.

The graphs in Figure 11 allow us to make the following conclusions:

1. The tether is stretched (T > 0) in all cases considered;
2. The greater the amplitude of oscillation of the tether, the greater the period of oscillation.

6. Conclusions

For the tether system attached at the L1 or L2 collinear libration points of the Mars–
Phobos system, the equations of motion for the system for the case of massless and non-
extensible tether with the end mass have been obtained. The first integrals of these dif-
ferential equations have been found and used to determine the phase trajectories and the
stable equilibrium positions. Simplified equations for small tether deflection angles in
Jacobi elliptic functions have been obtained. The oscillation period of the system has been
analytically found. It has been shown that the dependencies of the oscillation period on
the tether length for L1 and L2 points are different. The obtained approximate analytical
solutions and the results of the numerical integration of the original equations of motion
for small angles of deflection of the tether are in good agreement. Analytical expressions
have been obtained to determine the tether tension, and it has been shown that for the end
mass of 50 kg, this force is small and does not exceed 1 N both for the static and dynamic
states of the tether.

The results of this study confirm the possibility of a PHLOTE-like mission and give it
some theoretical justification. The prospects of using similar tether systems in the future to
create a space elevator anchored at the L1 or L2 libration point is a good stimulus for future
research, which will also focus on the consideration of an elastic tether.
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