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Abstract: The obstacle avoidance system of a drone affects the quality of its flight path. The artificial
potential field method can react quickly when facing obstacles; however, the traditional artificial
potential field method lacks consideration of the position information between drones and obstacles
during flight, issues including local minima, unreachable targets, and unreasonable obstacle avoid-
ance techniques that lengthen flight times and consume more energy get encountered. Therefore, an
improved artificial potential field method is proposed. First, a collision risk assessment mechanism
was introduced to avoid unreasonable obstacle avoidance actions and reduce the length of unmanned
aerial vehicle flight paths. Then, to solve the problem of local minimum values and unreachable
targets, a virtual sub-target was set up and the traditional artificial potential field model was modified
to enable the drone to avoid obstacles and reach the target point. At the same time, a virtual sub-target
evaluation factor was set up to determine the reasonable virtual sub-target, to achieve a reasonable
obstacle avoidance path compared to the traditional artificial potential field method. The proposed
algorithm can plan a reasonable path, reduce energy consumption during flight, reduce drone turning
angle changes in the path, make the path smoother, and can also be applied in complex environments.

Keywords: UAV; artificial potential field method; virtual target points; adaptive step size; path planning

1. Introduction

Unmanned aerial vehicle use has been expanding quickly in recent years [1]. They
are extensively utilized in a variety of contexts, including military reconnaissance, rescue
operations, and environmental preservation [2]. Path planning is one of the main technolo-
gies for ensuring a drone’s smooth flight and safe and successful obstacle avoidance [3]. A*
algorithm [4], genetic algorithm [5], particle swarm optimization [6], ant colony optimiza-
tion [7], RRT algorithm [8], velocity obstacle [9,10], reinforcement learning method [11–13],
artificial potential field method [14–22], and others are examples of commonly used path
planning methods.

Due to its advantages such as low computation, real-time capability, easy control, and
good robustness relative to other algorithms [23], the artificial potential field method stands
out among many algorithms. However, traditional artificial potential field methods may
suffer from problems such as local optima, unreachable goals, and unreasonable planned
paths due to their limitations. Many scholars have conducted research to address the above
issues. Feng et al. [15] redefined the repulsive impact range by adding a safety distance to
the potential field model based on real environmental conditions, and divided the threat
level of obstacles, taking into account the constraints on the vehicle’s speed in the repulsion
calculation. Yang et al. [16] solved the problem of unreachable goals by modifying the
attractive model to increase the robot’s attraction to the target point; they also set virtual
target points and evaluations to avoid local minimum points. However, virtual sub-targets
have not been set by considering the relative positioning information between the robot
and obstacles. Feng et al. [17] set a virtual obstacle at the local minimum point of the drone.
The virtual barrier provides repulsive force to the drone, causing it to escape from the
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local minimum area in the past tense, when facing dynamic obstacles avoidance, there will
be a sudden change in the drone’s angle, which affects the drone’s flying performance.
Azzabi et al. [18] added the minimum distance between obstacles and target points to the
traditional attractive potential field function, increasing the attraction near the target point
to solve the problem of unreachable targets while also reducing the computation time.
By setting an escape force, when a drone falls into a local minimum, the escape force is
activated to prompt the UAV to leave the local minimum point. The lack of consideration
for smooth handling at the joint connections has resulted in excessively large angles at the
turning points. In the case of encountering a local minimum, Fedele et al. [19] used rotating
force to enable the robot to bypass obstacles. They also designed a potential field-switching
mechanism when faced with multiple obstacles to smooth out continuous obstacle avoid-
ance paths. To tackle the issue of unreachable targets, Fan et al. [20] incorporated the
Euclidean distance between the robot and the target point into the repulsive potential field
function. The robot can reach the target by generating a force pointing toward the target
point. In dealing with local minimum problems, they created virtual hexagons for the robot
to follow as it escapes from virtual sub-target points. The robot did not take into account
the distribution of subsequent obstacles when traversing the virtual hexagon, resulting in
path planning that is too long. During the process of obstacle avoidance in unmanned aerial
vehicles (UAVs), it is necessary to calculate the collision risks of obstacles in the external
environment. The velocity obstacle method utilizes the relative velocity between objects
to calculate the collision area [9]. In addition, Jenie et al. [10], in situations when there is a
lack of communication between UAVs and obstacles, optimization of obstacle avoidance
methods is achieved through the introduction of perception and evasion, making it possible
for UAVs to avoid obstacles in non-cooperative situations.

Regarding the problem of flight path length, Jiang et al. [21] proposed adaptive step
size adjustment to reduce the length of the obstacle-avoidance path in the traditional artifi-
cial potential field method. Li et al. [22] incorporated the ratio of the total length of the path
to the current distance from the target into the path calculation to obtain an adaptive step
size. Both approaches were aimed at reducing the length of the obstacle-avoidance path.

In the context of known information about the position and size of static obstacles, this
paper aimed to design an artificial potential field drone obstacle avoidance scheme based
on collision risk strategy. The contribution of this study includes the following aspects:
Firstly, introducing a collision risk judgment mechanism based on a safe distance. The
drone determines whether there is a collision risk based on its current position and flight
direction, and the obstacle’s location, thereby improving the drone’s impact judgment
on obstacles, eliminating the repulsion generated by non-obstructing obstacles, avoiding
unnecessary obstacle avoidance actions, and reducing energy consumption. Secondly,
setting up virtual sub-goals and evaluation factors. Virtual sub-goals generate control
forces to make drones avoid obstacles and reach safe areas. By setting evaluation factors
for virtual sub-goals, the reasonable virtual sub-goal can be selected for reasonable flight
paths. Introducing an adaptive step size setting, the drone adjusts the step size in different
areas to reduce the flight path length with flight times.

The organization structure of this article was as follows: Section 2 introduced the
basic principles of traditional artificial potential field methods and the problems encoun-
tered. Section 3 provided a detailed description of the improved artificial potential field
method. Section 4 conducted simulation experiments and discussions. Section 5 discussed
the improved algorithm. Section 6 summarized this article and presented outlooks for
the future.

2. Traditional Artificial Potential Field Method

The basic concept behind the traditional artificial potential field approach is to use a
virtual potential field to describe the position information between the UAV and the target
location and between the UAV and the obstacle [24]. According to the distance connection
in the potential virtual field, the target point attracted the UAV while the barriers repel
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it to the extent of their impact. Until it reaches the target spot, the UAV maneuvers by
force which results in attraction and repulsion. The following Formula (1) represents the
combined potential field of the conventional artificial potential field approach.

Uall = Uatt(goal) +
m

∑
i=1

Urep(obs), (1)

According to the formula, Uatt(goal) the target location generates a field of gravitational
attraction toward the drone, and Urep(obs) is the barrier that generates the repulsive potential
field. The letter “m” denotes the number of barriers.

In Formulas (2) and (3), the gravitational potential field Uatt(goal) and the repulsive
potential field Urep(obs) functions, respectively, are shown.

Uatt(goal) =
1
2

kattρ
2(Pu, Pgoal), (2)

Urep(obs) =

 1
2 krep

[
1

ρ(Pu ,Pobs)
− 1

ρe f f

]2
ρ(Pu, Pobs) ≤ ρe f f

0 ρ(Pu, Pobs) > ρe f f

, (3)

This formula uses constants katt and keeps to represent the attractive potential gain
coefficient and repulsive potential gain coefficient, respectively. It also uses Pu to represent
the drone’s position, Pgoal to represent the target point’s position, ρ(Pu, Pgoal) to represent
the Euclidean distance between the two, Pobs to represent the obstacle’s position, ρ(Pu, Pobs)
to represent the Euclidean distance between the two, and ρeff to represent the obstacle’s
influence distance. As stated in Equations (4) and (5), the attractive force Fatt(goal) and
the repulsive force Frep(obs) can be calculated by calculating the negative gradient of the
potential field function.

Fatt(goal) = −∇Uatt(goal) = −kattρ(Pu, Pgoal)
⇀
ρg, (4)

Frep(obs) = −∇Urep(obs) =

{
krep

[
1

ρ(Pu ,Pobs)
− 1

ρe f f

]
1

ρ2(Pu ,Pobs)

⇀
ρobs , ρ(Pu, Pobs) ≤ ρe f f

0 , ρ(Pu, Pobs) > ρe f f
, (5)

where
→
ρg is the unit vector where the drone points to the target point,

→
ρobs is the unit vector

where the obstacle points to the drone.
Equation (6) can be used by the drone to calculate the total force of Fall that it is

currently experiencing during flight by adding the attractive force from the point of the
goal and the repulsive force generated by the obstacles.

Fall = Fatt(goal) +
m

∑
i=1

Frep_i(obs), (6)

A particular distance threshold is used to calculate repulsion in the traditional artificial
potential field method for path planning, which results in an abrupt change in repulsion.
However, attraction persists along the entire planned route. In light of this, the traditional
artificial potential field approach has the following problems:

(1) The local minimum value problem [25]. Figure 1a illustrates what happens when
the drone, obstacle, and target point are all situated in a straight line: the drone will
be in a state of force balance, unable to progress to the next position, and unable to
reach the target point. As seen in Figure 1b, the drone encounters equal and opposing
repulsive and attractive forces from the obstacles at a given point, forcing it to stall at
this location.
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(3) Unreasonable motions are made to avoid obstacles. Even though the position of
obstacles in front of the drone has no bearing on its forward path, as illustrated in
Figure 3, when the forward path reaches within the obstacle’s influence range, the
drone will produce obstacle avoidance movements, lengthening the path.
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This article introduces a collision risk judgment method based on a safe distance that
reduces the drone’s irrational motions while in flight. A virtual sub-target is introduced and
an evaluation is set for the virtual sub-target to deal with the problems of local minimum
values and unreachable goals. To get the drone to the target position, a method for setting
virtual sub-targets is developed. At the same time, sudden repulsion forces are removed
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from the traditional artificial potential field models. Adaptable step size is suggested
following various threat regions to reduce the drone’s flight time.

3. Improvement of Artificial Potential Field Method

In the case of known static obstacle information, to address the above issues, this
section improves upon the artificial potential field method. Based on the speed obstacle
method for collision evaluation between objects, a collision risk judgment mechanism
based on a safety distance angle is proposed. To address situations where drones have
collision risks during flight or are stuck in a local minimum value, virtual sub-targets are
proposed to guide drones to avoid obstacles and escape local minimum value points. Since
the quality of the virtual sub-target setting also affects the quality of the drone’s flight path,
a virtual sub-target evaluation factor is introduced based on the virtual sub-target, target
point, and obstacle information between the virtual sub-target and the target point to obtain
a reasonable virtual sub-target. The traditional artificial potential field method model is
modified based on the collision relationship and virtual sub-target. Finally, an adaptive
step size setting is proposed based on the geometric relationship between the drone and
obstacles to improve the drone’s flight performance. At the same time, the obstacle model
in this paper is set as circular. When facing non-circular obstacles, the obstacle model is
built by constructing the circumscribed circle.

3.1. The Mechanism for Calculating Crash Risk Based on Safety Distance

Obstacle avoidance is essential for drones to fly safely and steadily in their environ-
ment. As Equation (5) demonstrates, the geometry relationship between the drone and the
obstacle is not considered by the traditional artificial potential field method, which only
considers the distance between the drone and the obstruction to calculate the obstacle’s
repulsive force on the drone. As seen in Figure 4, when there are no angle constraints,
meaning that the relationship between the current heading angle of the unmanned aerial
vehicle (UAV) and the obstacle is not judged [10] and the UAV will not be affected by
obstacles in front of it during its path, but if the planned path falls within the influence
range of an obstacle, the obstacle will still exert a repulsive force on the UAV, causing the
UAV to increase its avoidance movements, resulting in higher energy consumption [26]
and path length.
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To address this problem, a mechanism for judging the likelihood of a collision based
on the safety distance angle was developed [15]. Based on the speed obstacle method for
evaluating collision risks between unmanned aerial vehicles and obstacles [10], this article
incorporated the heading relationship between the UAV and obstacles into the collision risk
calculation. At the same time, a safety distance was introduced within the obstacle model
to increase the buffer zone between the UAV and the obstacles. At the same time, a safety
distance dsafe was added to the obstacle model, as illustrated in Figure 5, to predict the
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collision between drones and obstacles [27]. As a buffer zone between the drone and the
obstacle, the safety distance dsafe added to the radius of the drone outside of the obstacle.
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In Formula (7), the safety distance dsafe is defined as follows:

dsa f e = do + du (7)

where the UAV radius is do and du is the obstacle radius. Using Formula (8), the angle ψ of
the drone’s current flight path is compared to the angle (θR, θL) of the obstacle’s boundary
to assess the probability of collision:

Rcoll =

{
1 , θR ≤ ψ ≤ θL (has collision risk)
0 , θR > ψ ∪ ψ > θL (no collision risk)

, (8)

As demonstrated in Figure 6, there is a risk of collision when the present angle of
UAV A is on the edge of an obstacle with a safety distance. The UAV must avoid the
impediment in this situation, which will be covered in a subsequent section. There is no
risk of a collision when the UAV’s present angle is outside the obstacle’s perimeter with a
safety distance, and thus it can continue to fly in its current direction.
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3.2. Virtual Sub-Target Setting

During the flight process, the drone encountered the following situations:
Situation 1: when there is the possibility of a collision due to the drone’s trajectory forward;
Situation 2: when the drone is in a local minimum [25].
When the drone is in the above Situation 1, it may have collision risk under the

action of potential field force and needs to avoid obstacles during flight. The traditional
artificial potential field method may cause sudden changes in the drone’s turning angle
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during obstacle avoidance due to the sudden increase of repulsive force, affecting the flight
performance of the drone.

When the drone is in Situation 2, it is trapped in a point and unable to reach the target
due to the balance of potential field force and needs to escape from this local minimum trap.
To solve the problems of excessive turning angle caused by collision risk with obstacles
and stopping or hovering due to local minimum traps during flight, due to the limitations
of the drone’s flight turning performance during actual obstacle avoidance flight, it cannot
achieve large angle changes in reality [28,29]. This article introduces a virtual sub-target to
enable the drone to avoid obstacles or escape from local minima while reducing the angle
changes in the flight path to meet the requirements of practical flights.

As shown in Figure 7, the current UAV position Pcur_uav(xu, yu) is the origin, and the
detected distance dpre is the radius to detect the obstacle within the angle β in front of the
UAV. When the detection of obstacles ahead Pr_col(xobs, yobs) has the risk of collision or in
the case of local minima, a virtual sub-target is generated to guide the UAV to the target
point. The specific method is to make the UAV and the obstacle line L1 of the vertical line
L2, L2, and the safe distance dsafe intersect with two points for Pdum_i (i = 1, 2); that is, the
virtual sub-target coordinates to be determined. The slope of the UAV obstacle line L1 is
k1, and the coordinates of the virtual sub-target Pdum_i(xdum_i, ydum_i) (i = 1, 2) are given by
Equations (9) and (10).

xdum_i = xobs ±

√√√√ d2
sa f e

1 + k2
1

(i = 1, 2), (9)

ydum_i = yobs ± k1

√√√√ d2
sa f e

1 + k2
1

(i = 1, 2), (10)
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3.3. Virtual Sub-Target Evaluation

The influence of obstacle distribution on the drone’s path has received less attention
in the existing research than the setting of virtual waypoints based on the dimension of
the drone’s heading deviation angle [30,31], obstacles near local minima [17,25,32], and
information on obstacle distribution [33].

The virtual sub-target setting had an impact on the subsequent path of the drone;
therefore, this paper proposed a virtual sub-target evaluation factor to reasonably estimate
the flight path of the drone and reduce drone energy consumption. As shown in Figure 8,
the virtual sub-target Pdum_i (i = 1, 2) was set and connected with the target point by line
Ldum_i (i = 1, 2), and the distances from the obstacles in front of line L2 to line Ldum_i (i = 1, 2)
were represented as ρ(Pobs_j, Ldum_i). When the line Ldum_i fell within the influence range of
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obstacles 1 and 3, the drone needed to generate obstacle avoidance actions to avoid them.
At the same time, considering the effect of scenario a formed by obstacles 1 and 2 on the
line, the obstacles within the range of 4ρeff from line Ldum_i were included in the evaluation
calculation. All these descriptions are in the past tense because it is explaining what has
already been proposed and done in the article.
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Equation (11), for example, states that the relative distance between the obstruction
and the line Ldum_i (i = 1, 2) is defined as ω. The relative distance ω is determined to
determine how impediments (such as obstacles 1 and 3) affect the line Ldum_i. After that,
the effectiveness of establishing virtual sub-goals is assessed using the assessment factor J.
Equation (12) is the expression for the evaluation factor J.

ω =
[
ρ(Pobs_j, Ldum_i)− (ρe f f + α)

]
, (11)

Ji =


h
∑

i=1
(

m
∑

j=1
( 1

eω )
2
), ρ(Pobs_j, Ldum_i) < 4ρe f f (h = 1, 2)

0 , ρ(Pobs_j, Ldum_i) ≥ 4ρe f f (i = 1, 2) .
(12)

In the equation, m represents the number of obstacles whose distance from the line
Ldum_i, as represented by distance ρ(Pobs_j, Ldum_i), is greater than 4ρeff (ρ + α) is the evalua-
tion distance and α is the evaluation constant.

When ω < 0, it meant that the drone needed to avoid the obstacle because it was close
to the line Ldum_i evaluation distance. When ω ≥ 0, it meant that the obstacle was outside
of the line Ldum_i evaluation range and that the drone did not need to avoid it. Based on
the value of ω, the value of J might is i determined. When a particular virtual sub-goal
assessment factor J is smaller, it means that the obstacles close to the line Ldum have less of
an effect on the drone’s future flight route; thus, a reasonable virtual sub-target coordinate
can be derived Pdum(xdum, ydum).

3.4. Artificial Potential Field Model Modification

The virtual sub-goal Pdum(xdum, ydum) has no obstacles between its location and the
current position of the drone. Therefore, it is possible to eliminate the repulsive force
generated by obstacles in traditional artificial potential field methods and only retain the
attraction generated by the target point. The attraction in traditional artificial potential
field methods is only based on the distance between the drone and the target point. As the



Aerospace 2023, 10, 562 9 of 20

drone gets closer to the target point, the value of the attraction also decreases, which can
make it difficult for the drone to accurately reach the target point.

The target attraction calculation in traditional artificial potential field methods was
improved in this article concerning the aforementioned problem by taking into considera-
tion the ratio of the distances ρ(Ps, Pgoal) between the drone’s starting point and the target
point and ρ(Pcur_uav, Pgoal) between the drone’s current position and the target point. The
enhanced attraction force Fimp_att(goal) can offer more attraction as the drone gets closer to
the target point, enabling it to be reached precisely. Equation (13) provides the expression
for the enhanced attraction force Fimp_att(goal).

Fimp_att(goal) = katteλ, (13)

The parameter λ satisfies Equation (14):

λ =
ρn(Ps, Pgoal)

ρ(Pcur_uav, Pgoal) + ρ(Ps, Pgoal)/2
. (14)

When the virtual sub-target was present, the gravitational pull was generated by both
the target point and the virtual sub-target, as well as regulatory gravitational force. The
drone moved to the following location thanks to a combination of gravitational attraction
at the target point and the regulating gravitational force of the virtual sub-target. The
equation for the regulatory gravitational force Fimp_att(goal) of the virtual sub-target is given
by Equation (15). It is derived depending on the distance ρ(Pcur, Pdum) between the drone
and the virtual sub-target.

Fdum_att(goaldum) = katte(γ/ρ(Pcur ,Pdum))n
, (15)

γ is the distance parameter in the equation.
Equation (16) provides the expression for the total attractive force Fatt on the drone

following Equations (13) and (15).

Fatt =

{
Fimp_att(goal) + Fdum_att(goaldum) , ∃(goaldum)
Fimp_att(goal) , ∃(goal)

, (16)

3.5. Adaptive Step Size

The step size of an unmanned drone vehicle flight determined the distance of each
step, thereby affecting the flight time and energy consumption during the flight process.
An adaptive step size setting has been suggested to lessen the number of drone flights to
increase UAV flight efficiency [34]. When there is no collision risk ahead of the drone, the
step size should be raised within the detection distance dpre to accomplish fast flight. The
step size should be decreased to avoid obstacles when there is a chance of collision in front
of the drone.

As shown in Figure 9, determine the drone’s subsequent step length based on the
current angle ψ, the obstacle boundary angle θ, the angle between the drone and the
obstacle connecting line θT, the fixed step size St, the virtual sub-target boundary angle δ,
and the current angle L. Equation (17) gives L the step length expression.

L =

{
St ln(2e + (ψ−θ

δ−θ − 1)
2
) , θ < ψ < δ (a)

St ln(e− θ−ψ
θ−θT

) , θT < ψ < θ (b)
, (17)
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Equation (17), (δ − θ) represents the escape angle, and (θ − θT) represents the
collision angle.

If the drone’s angle ψ is greater than the obstacle’s boundary angle θ, the drone’s angle
to the escape angle is increased. Considering the angle relationships between the drone,
the virtual sub-target, and the obstacles. The value of Equation (17(a)) gradually rises as
the angle of the drone increases since the likelihood of a collision diminishes. The ratio of
the drone’s angle to the collision angle is added if the angle of the drone ψ is shorter than
the angle of the obstacle’s boundary θ. The value of Equation (17(b)) steadily reduces when
the drone’s angle drops because there is a greater chance of a collision.

Although the step size computation is shown in Equation (17), both excessively large
and excessively small step sizes still affect the drone’s flying, necessitating a limit on the step
size. The step size’s final expression is given in Equation (18), and this paper determines an
upper limit for the step size lmax = 1.8St and a lower limit for the step size lmin = 0.8St:

Lz =


lmax L > lmax
L lmax ≥ L ≥ lmin
lmin lmin < L

, (18)

4. Comparison of Simulation Results

The traditional artificial potential field method (referred to as T-APF) and the algorithm
in reference [30] (referred to as B-APF) were tested and simulated under the conditions
of local minimum value, unreachable target, and complex environment to confirm the
viability and effectiveness of the algorithm proposed in this paper (referred to as IM-APF).
Tables 1 and 2 display the parameters of the method; the autonomous drone’s flying height
and the wind speed in the flight environment were both fixed at the same time.

Table 1. APF basic parameters.

Name Symbol Value

gravitational gain coefficient katt 30
obstacle radius/m do 1
fixed step size/m St 0.1

To evaluate the flight performance of drones under three algorithms, this article
compared the length of the path (Jlength), energy consumption (E) during flight, number of
iterations (N), angle changes, and number of angle changes in the drone flight path.
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Table 2. Improve the basic parameters of the algorithm.

Name Symbol Value

safe distance/m dsafe 1.3
detection distance/m dpre 4.5
evaluation constants α 0.5

distance factor n 1.2
distance parameters γ 16

Equation (19) provides the formula to calculate the UAV’s entire flight path length [35],
abbreviated as Jlength:

Jlength =
I−1

∑
i=1

√
(xn+1 − xn)

2 + (yn+1 − yn)
2, (19)

where I is the total number of steps in a drone flight.
Based on the UAV’s horizontal speed and acceleration, it is possible to determine

the energy consumption P of the battery during flight [36]. Equation (20) can be used to
determine the general consumption of energy E during flight:

E =
∫
T

P(t)d(t), (20)

where T is the amount of time the drone spent flying overall.

4.1. Local Minimal Value Test Verification

Three simulation scenarios were set up in this study to test the algorithm’s efficacy
in dealing with local minima, as depicted in Figures 10a, 11a and 12a. Local minimum
case 1 in Figure 10a is established by aligning obstacles 1 and 2 symmetrically about the
line linking the UAV and the target point, whereas local minimum case 2 is established
by placing obstacle 3 on the line that connects the UAV start point and the target point.
In Figure 11a, the target point stands between obstacles 1 and 3, forming local minimum
case 3, which is on the line that connects the UAV start point with the target point. In
Figure 12a, obstacles 1 and 3 are present on the line that connects the UAV start point and
the target point, forming local minimum case 4.
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Due to force balancing, the UAV will stop in front of obstacles when the T-APF
algorithm runs into the aforementioned four local minima and will be unable to reach the
target point. The IM-APF and B-APF algorithms, on the other hand, can bypass the local
minimum and arrive at the desired location. The IM-APF algorithm generates a virtual
sub-target outside the safety distance of the obstacles when it encounters local minima,
and it chooses an appropriate evaluation factor for the virtual sub-target. In addition to
helping the UAV escape the local minimum trap, the virtual sub-target also lessens the
UAV’s activities to avoid obstacles as it approaches the virtual sub-target.

Figures 10b, 11b and 12b show the drone angle change diagrams for the IM-APF and
B-APF algorithms in the three scenarios. The IM-APF algorithm’s greatest angle change
during obstacle avoidance in all three scenarios was roughly 36.30◦. In Scenario 2, the
B-APF algorithm encountered obstacle 2 and in Scenario 3 encountered obstacle 1, resulting
in a significant angle change with the maximum angle change value reaching 96.34◦. On
the other hand, the IM-APF algorithm reduced the angle change by over 63.32% compared
to the B-APF algorithm. Figures 10c, 11c and 12c depict the step change that occurs while
the IM-APF algorithm is attempting to avoid obstacles. To shorten flight times, the drone
flies at its maximum step length without the risk of collision. To counteract the drone’s
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fast speed and sluggish reaction time, the step length will be shortened when it comes into
contact with objects that pose a risk of collision while in flight.

Table 3 displays the evaluation information for the three algorithms. In all three
cases, the IM-APF and B-APF algorithms were able to avoid local minima. However, the
IM-APF algorithm lengthened the drone’s flight route by 0.97% in comparison to the B-APF
method. The IM-APF algorithm also decreased flight time and avoidance actions as a result
of the virtual sub-target setup and evaluation factor, which led to a reduction in energy
consumption during the flight by 33.64%. The IM-APF algorithm also improved by 44.01%
in terms of the number of algorithm iterations.

Table 3. Local minimum algorithms compare the data.

Scenarios Algorithm Energy Consumption [kJ] Path Length [m] Iteration Number [N]

Scenario 1
T-APF - - -
B-APF 35.67 34.10 342

IM-APF 23.70 33.83 200

Scenario 2
T-APF - - -
B-APF 31.27 27.20 273

IM-APF 21.10 27.06 156

Scenario 3
T-APF - - -
B-APF 36.18 35.80 359

IM-APF 24.01 35.45 201

4.2. Target Unreachable Test Validation

Three simulation scenarios were put up in this research to validate the algorithm’s
efficacy in managing unreachable targets, as illustrated in Figures 13a, 14a and 15a. In each
of the three simulation scenarios, the target spots are close to an obstruction. The drone will
hover close to the target position when the T-APF algorithm hits an impassable target since
it cannot be reached because the obstacle’s repulsive force is larger than its attraction force.
On the other hand, the IM-APF and B-APF algorithms are unaffected by the repulsive force
close to the target location and can reach it. At the same time, in Scenario 2, the drone
successfully reached the target point despite facing obstacles 2, 3, 4 and 5, which formed
a complex environment with an L-shaped obstacle. IM-APF algorithm, as opposed to
the B-APF algorithm, chooses a sensible path in flight when confronted with complicated
impediments because of the evaluation factor for virtual sub-target point selection.

Figures 13b, 14b and 15b display the drone angle change diagrams for the IM-APF
and B-APF algorithms in the three scenarios. In all three scenarios, the IM-APF algorithm
reduced the angle change and the number of steps for the drone to avoid obstacles compared
to the B-APF algorithm. During obstacle avoidance, the IM-APF algorithm encountered a
maximum angle change of 44.89◦ when facing obstacles in all three scenarios, while the
B-APF algorithm had a maximum angle change of 58.69◦ in Scenario 1 when encountering
obstacle 2, and experienced angle oscillations when encountering obstacles 4 and 5 in
Scenario 2 and obstacles 1 and 2 in Scenario 3, with the maximum angle change reaching
88.32◦. On the other hand, the T-APF algorithm had a maximum angle change of 320.79◦

in all three scenarios. The IM-APF algorithm reduced the angle change by over 49.17%
compared to the B-APF algorithm. Reducing the angle change can lead to a decrease in
energy consumption during the drone’s flight. Figures 13c, 14c and 15c illustrate the step
change that occurs when the IM-APF algorithm is avoiding obstacles. In the absence of a
risk of collision, the drone uses its maximum step length to cut down on flight duration.
However, the step length is decreased to prevent flying too rapidly and causing collisions
due to the drone’s delayed reaction when it comes into contact with objects that pose a risk
of collision during flight.
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The evaluation data for the three algorithms in the unreachable target scenario are
shown in Table 4. Compared to the B-APF algorithm, the IM-APF algorithm increased the
drone’s flight path length by 0.7988% in all three scenarios. Moreover, due to the shorter
flight time and reduced angle change during the drone’s flight, the IM-APF algorithm
reduced energy consumption by 34.78%. Finally, due to the presence of adaptive step
length adjustment, the IM-APF algorithm reduced the number of iterations by 43.52%.

Table 4. Comparison data of goal unreachable algorithms.

Scenarios Algorithm Energy Consumption [kJ] Path Length [m] Iteration Number [N]

Scenario 1
T-APF - - -
B-APF 21.13 20.6 203

IM-APF 13.78 20.20 116

Scenario 2
T-APF - - -
B-APF 21.24 20.30 204

IM-APF 14.37 20.12 125

Scenario 3
T-APF - - -
B-APF 35.67 34.60 347

IM-APF 23.78 34.32 196

4.3. Complex Environment Test Verification

As shown in Figures 16a, 17a and 18a, three simulation scenarios were proposed in
this study to verify the effectiveness of the algorithm in dealing with complex obstacle
situations. To verify the effect of facing obstacles of different shapes, different-shaped
obstacles (such as obstacles 1–7) were set in Figure 18a. Figure 16a illustrates how the
T-APF algorithm encountered obstacles 2 and 4 in a complex environment, causing the
drone to make an abrupt turn due to the repulsive force of the obstacles. As shown in
Figure 17a, when encountering numerous obstacles, the T-APF algorithm made the drone
unable to move at position A.
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In a complex environment, both the IM-APF and B-APF algorithms were able to reach
the target point. The B-APF algorithm selected a smaller angle by calculating the next
turning angle of the drone to avoid obstacles. However, it did not consider the distribution
of obstacle positions, which would increase the number of obstacle avoidance actions.
Therefore, as shown in Figure 16a, when the drone avoided obstacle 2, it still needed to
avoid obstacle 3, resulting in redundant obstacle avoidance actions. In Figure 18a, the drone
still needed to avoid obstacles on the subsequent path after avoiding obstacle 1. The IM-
APF algorithm selected a suitable virtual sub-target based on the distribution of obstacles
between the obstacles and the target point. As shown in Figure 16a, the IM-APF algorithm
only needed to avoid obstacle 2, reducing subsequent obstacle avoidance actions. At the
same time, as shown in Figure 17a and Figure 18a, when facing complex environments and
obstacles of different shapes, the IM-APF algorithm could choose a reasonable path and
reach the target point simultaneously.
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Figures 16b, 17b and 18b show the angle changes of the drone in three different
scenarios. The maximum angle change of the IM-APF algorithm during obstacle avoidance
in the three scenarios was 34◦. The B-APF algorithm had a maximum angle change of 78.14◦

when facing obstacle 3 in Scenario 1, 87.71◦ in Situation 1 where there were two obstacles
in Scenario 2 and 106.32◦ when facing obstacle 6 in Scenario 3. Compared with the B-APF
algorithm, the IM-APF algorithm reduced the angle change by 68.02%, making the path
smoother. As shown in Figures 16c, 17c and 18c, the IM-APF algorithm could still adjust
the step size based on the collision risk with obstacles in a complex obstacle environment.

The evaluation data of the three algorithms in complex environments are shown
in Table 5. When facing a complex environment, the IM-APF algorithm reduced the
drone’s flight path length by 3.39% in the three scenarios compared to the B-APF algorithm.
In addition, due to the virtual sub-target setting and evaluation factor of the IM-APF
algorithm based on obstacle and drone flight path information, it selected a reasonable
virtual sub-target, reducing unnecessary obstacle avoidance actions and unreasonable
paths during the drone flight process, thus reducing energy consumption during flight.
The energy consumption during the flight was reduced by 36.45%. Finally, in terms of
algorithm iteration times, the IM-APF algorithm automatically adjusted the step size based
on obstacle and flight information to reduce flight time when facing obstacles in complex
environments. Therefore, the iteration times of the IM-APF algorithm were reduced by
62.82% compared to those of the B-APF algorithm.

Table 5. Comparison data of complex environment algorithms.

Scenarios Algorithm Energy Consumption [kJ] Path Length [m] Iteration Number [N]

Scenario 1
T-APF 103.86 39.60 397
B-APF 35.33 34.40 345

IM-APF 22.45 33.88 192

Scenario 2
T-APF - - -
B-APF 35.64 35.40 355

IM-APF 22.98 34.20 196

Scenario 3
T-APF 43.93 42 421
B-APF 35.64 35.00 351

IM-APF 23.36 34.89 198
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5. Discussion

The artificial potential field method has been improved by some scholars to increase
its practicality in various situations. The traditional method includes incorporating the
Euclidean distance between the drone and the target point into the potential field function,
as well as increasing the drone’s attraction to the target to solve the problem of hovering
around the target. When the drone enters a local minimum trap in the flight environment,
this article gives additional attraction by creating a virtual sub-target in the flight envi-
ronment of the drone, as shown in Figures 10–12, where B points are generated outside
the obstacle for safety. When there is a risk of collision in the flight environment of the
drone, the target point of the drone is increased with the virtual sub-target B point, which
produces an attractive force on both. By calculating the distance between the drone and the
virtual sub-target point as the calculation of the attractive force produced by the virtual
sub-target, the drone can fly towards the virtual sub-target point. At the same time, because
there is no obstacle threat between the virtual sub-target point and the current position
of the drone, the adaptive step size can be adjusted to make the drone fly quickly, thus
reducing the energy consumption of the drone.

When facing a situation where the target is unreachable, due to the obstacle collision
risk judgment mechanism of this algorithm, it can screen out the obstacles that have an
impact on the drone flight. As shown in Figures 13–15, this algorithm can remove the
repulsive force effect of obstacles near the target point, so that the IM-APF algorithm can
solve the problem of unreachable targets. When facing complex flight environments with
multiple obstacles, as shown in Figures 16 and 17, the evaluation factor of the IM-APF
algorithm can calculate a reasonable flight path based on the main obstacle information
between the drone and the target point. This ability to calculate a reasonable flight path
reduces unreasonable obstacle avoidance actions. In comparison, the B-APF algorithm relies
on the size of the next turning angle of the drone to select the flying direction. Meanwhile,
the traditional artificial potential field method only relies on distance relationships to
avoid obstacles, which can cause excessive turning angles and, in the presence of complex
obstacles, the drone may stop at a certain point due to the obstacle’s repulsive force being
greater than the attraction force from the target point. Through experimental simulations, it
is known that the IM-APF algorithm can reduce energy consumption in drone flight while
providing a path with small angle changes and smoother movements. This can enable
drones to search for rescue missions and perform environmental monitoring tasks in real
environments, providing smooth and low-consumption paths, and improving the ability of
drones to perform related tasks.

6. Conclusions

This article first introduced the basic principles of the traditional artificial potential
field method and analyzed its limitations of it. IM-APF algorithm was proposed to improve
the T-APF algorithm. Faced with the problems of local minimum values and unreachable
targets, collision risk judgment was first introduced, followed by virtual sub-targets and
evaluation factors. By judging the relationship between the position and heading angle
of obstacles and drones, the danger judgment of obstacles can remove the influence of
non-obstacle objects, making the drone avoid obstacles with targeting. At the same time, it
can also solve the problems of unreachable targets and local minimum values. Secondly,
a virtual sub-target is set outside the safe distance of obstacles with collision relations to
provide gravitational guidance for the drone to avoid obstacles. The evaluation factor
is set according to the obstacle information between the current position of the drone
and the target point, and the selection of the virtual sub-target point is made, selecting a
reasonable virtual sub-target. Reasonable virtual sub-targets can reduce the angle changes,
flight energy consumption, and flight path length during drone obstacle avoidance. By
modifying the traditional artificial potential field method model and adding an adaptive
step size setting, the drone can adjust the step size according to the collision risk of obstacles
during flight, reducing the flight time and energy consumption of the drone.
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Through simulation, it is known that the IM-APF algorithm reduced the length of the
drone’s flight path and reduced the energy consumption of the entire flight by over 32%
by comparing the performance of the IM-APF algorithm in different environments. The
number of algorithm iterations increased by more than 38%. At the same time, when facing
obstacles with collision risk, the IM-APF algorithm reduced the magnitude and number of
angle changes in the obstacle avoidance process. This article proposes an improved artificial
potential field method that cannot only solve the problems of local minimum values and
unreachable targets in traditional artificial potential field methods but also effectively
reduce energy consumption during drone flight compared to traditional artificial potential
field methods and other algorithms. The drone has a small heading angle change and
few change steps during obstacle avoidance, and a smooth flight path ensures its flight
stability. In future work, we will perform path planning in environments with crosswinds
and dynamic obstacles.
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