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Abstract: Pitch control of an unmanned aerial vehicle (UAV) using fluidic thrust vectoring (FTV) is a
relatively novel technique requiring no moving control surfaces, such as elevators. In this paper, the
authors’ previous work on the characterization of a static co-flow FTV rig is further validated using
the free to pitch dynamic test bench. The deflection of a primary jet after injection of a high-velocity
secondary jet was captured using the tuft flow visualization technique, along with the experimental
recording of subsequent normal force impinged on the Coanda surface resulting in the pitching
moment. The effect of primary and secondary flow velocities on exhaust jet deflection, as well
as on the pitch angle of the aircraft, is examined. Aerodynamic gain as well as the inertia of a
delta wing UAV test bench are computed through experiments and fed into the equation of motion
(e.o.m). The e.o.m developed aided in the design of a model-based PID controller for pitch motion
control using the multi-parameter root locus technique. The root locus tuned controller serves as a
benchmark controller for performance evaluation of the genetic algorithm (GA) and particle swarm
optimization (PSO) tuned controllers. Furthermore, the frequency domain metric of gain and phase
margins were also employed to reach a robust control design. Experiments conducted in a simulation
environment reveal that PSO-PID results in a better response of the UAV in comparison to the baseline
pitch controller.

Keywords: unmanned aerial vehicle; dynamic model; fluidic thrust vectoring control; genetic
algorithm optimization; PID controller; particle swarm optimization; Coanda effect

1. Introduction

Maneuverability—a key feature in aerial vehicles—is traditionally achieved using
conventional control surfaces. However, this approach is not effective in an operational
envelope where dynamic pressure is low, such as high-altitude operations where the air is
thin. In such a regime, mechanical thrust vectoring (MTV) has shown to be more effective
in combination with conventional aerodynamic control surfaces [1–5], in particular for
military aircraft such as the Lockheed Martin F-22 Raptor, VAAC Harrier, and Sukhoi
Su-30 MKI. In MTV, the control is transferred to the power plant instead of the control
surfaces. This is rendered by gimbaling the nozzle or deflecting the flaps/vanes, leading to
increased complexity and weight [2].

In recent years, however, a novel concept called fluidic thrust vectoring (FTV) has
gained a fair bit of attention due to its several inherent advantages such as having no moving
parts, being less complex compared to MTV, and its low weight penalty. As a consequence,
FTV has emerged as an attractive alternative to MTV. FTV works on the concept of moving
the primary jet emanating from the engine away from its principle axis by injecting a high-
velocity secondary jet in the vicinity of the primary jet to achieve pitch [6,7] or yaw [7,8]
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moments. The underlying phenomenon enabling FTV is the Coanda Effect, which is the
tendency of a flowing fluid to attach itself to a solid convex surface in its proximity [9].
FTV sparked a lot of interest because of its ability to considerably reduce aircraft size and
weight owing to the absence of any moving components [10], fast response [11], and stealth
properties [12]. Moreover, the control of an unmanned aerial vehicle (UAV) using FTV is
more energy efficient than using conventional aerodynamic surfaces [13], in particular at
high altitudes with the added benefit of reduced radar signature [12].

A fluidic thrust vectoring nozzle utilizes a secondary air source to redirect the thrust
vector of the primary jet off-axis. Various fluidic thrust vectoring techniques, including
co-flow, counter-flow, shock vector control, throat skewing, and synthetic jet actuation,
are employed in practice [14]. These techniques differ in how the secondary air source is
utilized. Among them, co-flow FTV is the most commonly used and fundamental technique
in subsonic UAVs [12]. In co-flow FTV, thrust vectoring is achieved by positioning curved
surfaces, known as Coanda surfaces, toward the rear of the exhaust nozzle. As illustrated
in Figure 1, a secondary stream of air flows parallel to the Coanda surface, generating
shear forces that cause the air to attach to the curved surface. This attachment creates a
pressure gradient perpendicular to the primary jet centerline, resulting in the deflection of
the primary jet [12].
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Work of similar nature is the authors’ previous work on the characterization of a
co-flow FTV rig [6]. The study, however, makes use of a static test bench as opposed to
the dynamic test rig being investigated in this work. Additionally, Saghafi et al. [15] and
Wu et al. [16] have developed a detailed model for co-flow FTV drones using numerical
simulation data.

The two dominant FTV mechanisms are co-flow [6–8] and counter-flow mecha-
nisms [17–19], wherein the jet is blown in the same direction as the primary jet in the case
of the former. In the latter mechanism, the secondary jet is sucked in against the outgoing
primary jet. The co-flow and its variant have been investigated by a number of researchers
in recent times. For instance, Maruyama et al. [18] examined the flow characteristics of
a two-dimensional dual-throat nozzle (DTN) using numerical analysis. Computational
work on flow dynamics behavior in two-dimension DTN using different input functions,
such as step and ramp, were carried out by Ferlauto and Marsilio [19]. Another interesting
work in the area of co-flow FTV is Wen et al. [20], who modified secondary co-flow from
conventional steady flow to a sweeping jet. In this approach, the authors claimed to have
better flow mixing, leading to better efficiency.

Most of the work available in the literature focuses on the study of static behavior of
FTV phenomenon with next to none on its application to a dynamic UAV. Gu et al. [21] used
actuator models to design a robust controller of an FTV UAV; however, the research focused
on supersonic flight using advanced control. Similarly, Cen et al. [10] have developed
simplified models of an FTV nozzle for a Vertical Take-off and Landing (VTOL) UAV and
tested a Non-linear Dynamic Inversion (NDI) control law for autopilot flight control in
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a simulation environment. Kikkawa et al. [22] designed and tested a PD controller for
position control and a non-linear controller with active disturbance rejection for heading
control for a fixed-winged thrust-vectoring UAV. Other than that, there is no work in the
literature, to authors’ knowledge, on the capability analysis of co-flow FTV for a UAV
model, and the design of an overarching controller to control UAV motion is often ignored
in the prior work.

With the exception of subsonic vehicles, such as MAGMA UAVs [23], VTOL UAVs [10],
and fixed-wing UAVs [22], most of the cited work is confined to static test benches that
too predominantly limited to the computational realm. This work, on the other hand, is
a continuation of the author’s previous work on co-flow static FTV actuator character-
ization [6]. Here, a dynamic test rig is custom designed, instrumented, and integrated
with a dynamic free-to-pitch test bench (Section 2) with a low aspect ratio delta wing. The
key relationships in the authors’ previous work dealt with estimating the normal force
as a function of primary jet deflection. In the present work, the magnitude of the normal
force was measured experimentally using a load cell, and the corresponding jet angles
were measured using the tufts visualization technique in real time. This enabled accurate
calculation of aerodynamic gain, which is an important control derivative. The rest of the
stability derivatives that characterized the dynamic behavior of a FTV controlled UAV
were computed using Newton–Euler approach to arrive at the pitch equation of motion
(Section 3). The developed e.o.m is employed for model-based pitch attitude control design
in a simulation environment (Section 4). In particular, the benchmark multi-parameter root
locus (MPRL) tuned PID controller is compared with genetic algorithm (GA) and particle
swarm optimization (PSO) tuned controllers.

The structure of the paper is as follows. Section 2 provides a description of the dynamic
test rig used in the study. The dynamic model for pitch control of the UAV is presented in
Section 3. Section 4 focuses on the design and analysis of the PID controller, including a
review of the main results, with tuning methods using root locus, GA, and PSO. The paper
concludes in Section 5.

2. Experimental Setup

The delta wing configuration has been selected for FTV demonstration in this study
due to the exceptional qualities that set it apart from other configurations. There are several
compelling reasons for choosing the delta wing UAV as the preferred option in this context.
Firstly, the delta wing configuration provides inherent stability and control, making it easier
to fly and control the UAV. The unique shape of the delta wing generates lift efficiently [24],
allowing the UAV to maintain stable flight even at low speeds or high angles of attack [25].
This stability is crucial for tasks such as aerial surveillance, mapping, or payload delivery,
where steady flight and accurate positioning are essential. Additionally, the delta wing
design offers a relatively large internal volume, allowing for greater payload capacity. This
means that delta wing UAVs can carry more sensors, cameras, or other equipment, enabling
them to perform a wider range of missions and gather more comprehensive data during
each flight.

Furthermore, delta wing UAVs often have a reduced radar cross-section, making them
less detectable and more suitable for stealth operations or applications that require a lower
radar signature [26]. Lastly, the delta wing configuration typically has a higher lift-to-drag
ratio, resulting in increased fuel efficiency and longer endurance [27]. This extended flight
time allows for prolonged missions, reducing the need for frequent landings and increasing
overall operational efficiency.

In consideration of the overall superiority of the delta wing design and with the aim
of showcasing the effectiveness of co-flow FTV in subsonic test conditions, a dynamic test
rig has been specifically designed and employed as an experimental platform. The fuselage
is mounted in such a way that it can pivot and freely rotate around its center of gravity, as
depicted in Figure 2. The maximum permissible pitching angle for the rig is set at 40◦.
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Figure 2. Fully assembled delta wing UAV: (a) exploded CAD model, (b) assembled UAV.

The intake of the system utilizes two Electric Ducted Fans (EDF) with a rotor diameter
of 70 mm to generate primary and secondary airflows, respectively. In terms of orientation
sensing, a rotary potentiometer is employed, with the potentiometer serving to determine
the pitch angle of the UAV. The jet velocity is measured using a pitot tube, while the lift force
is measured with a load cell. To facilitate communication with the sensors and actuators,
an ATmega328P microcontroller is utilized. Figure 3 depicts the schematic as well as the
actual UAV fuselage. The microcontroller is interfaced with the PC for data acquisition and
control of the ducted fans.
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2.1. Experimentation
2.1.1. Velocity and Thrust Force Measurement

Using the Bernoulli equation, primary and secondary exit velocities may be cal-
culated from pressure data. The MPXV7002DP pressure sensor is used to calculate
differential pressure.

v =

√
2
(

Pstag − Pstat
)

ρ
(1)

where ρ denotes air density, Pstag is stagnation pressure, and Pstat is static pressure inside
the fuselage. An anemometer is used to calibrate pressure sensors. To remove noise from
the velocity data, a high pass filter is used. Additionally, due to its high sensitivity, the
sensor reading necessitates the implementation of a running average in order to obtain
a stable and reliable measurement. Furthermore, it is observed during experimentation
that the position of the sensor inside the ducted fuselage is very crucial. Foul readings are
expected due to boundary layer formation if the sensor is placed at the fluid–solid interface.
Therefore, care must be exercised while installing the velocity sensor. For the rig under
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consideration, sensors for both the primary and the secondary jet are positioned at the exit
nozzle. It is observed that an increase in primary flow velocity influences the secondary
flow velocity readings, so the error must be subtracted from the secondary flow data, as
seen in Figure 4. The error observed in the secondary flow can be attributed to the mixing
of flow and turbulent effects that occur when higher velocities are encountered.
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Figure 4. Error induced in secondary flow speed measurement.

The lift force generated as a result of jet deflection is amplified for visualization using
the load cell with an HX711 Analog to Digital Converter (ADC) module. The load sensor is
calibrated against a standard mass of known value. A calibration factor is used in the code
to offset any error in the sensor reading.

2.1.2. Experimental Measurement of Jet Deflection Angle

In order to determine the efficacy of the FTV mechanism for the UAV, acquiring
experimental data becomes crucial. To accomplish this, real-time tests are conducted on
the test rig. During these tests, the primary velocity is maintained at a constant level,
while the secondary velocity is incrementally increased. The authors’ previous work [6]
relied on computational fluid dynamics and a high-speed camera to capture the deflected
jet angles at various secondary flow velocities. In this work, however, tufts are used for
flow visualization. The tufts were placed along the geometric centerline of the exit nozzle.
The tufts were adjusted so that when there is no injection of a secondary jet, the tufts are
perfectly parallel to the main jet flow. Experiments were conducted after ascertaining that
the tufts flow pattern matches the main jet flow. A sample primary jet deflection using
tufts is shown in Figure 5, wherein tufts are clearly tracing the flow trajectory. The actual
primary jet deflection angle is read manually from the protractor placed coincident with
the thrust axis. The process is repeated at various secondary flow velocities while noting
down the corresponding jet deflection.

Figure 6 summarizes and depicts the deflection angles obtained as a result of secondary
velocity alteration while a primary flow velocity of 19 m/s is maintained throughout
the experiments.

As seen in Figure 6, the jet deflection angle is proportional to the secondary flow
velocity. However, a dead zone is detected between 0 and 5 m/s, while saturation occurs at
40 m/s. Despite an increase in secondary velocity, no change in deflection angle is detected
in the dead zone or saturation. Maximum jet deflection of 27◦ is noted at primary and
secondary flow velocities of 19 m/s and 40 m/s, respectively. Trimming a UAV is of interest
in the zone where the maximum deflection occurs, which is between 15 and 30 m/s of the
secondary velocity. Similarly, the moment produced by the jet deflection about c.g. can be
seen in Figure 7.
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In addition to vp = 19 m/s, experiments are carried out at the primary jet velocity of
vp = 25 m/s for completeness. Figure 8 illustrates a comparison of moments generated at
primary jet velocities of 19 m/s and 25 m/s.
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3. Dynamic Modelling

The ultimate objective is to design a closed-loop control system, thus requiring an
accurate dynamic model. Using Newton’s second law, the governing equation for a free-to-
pitch test rig may be found [28,29]. The test rig is constrained to move about its pivot point,
which is also c.g. location. In this work, inertia is obtained experimentally through the
Bifilar pendulum method. Mδ, which is regarded as aerodynamic gain, is also determined
experimentally (refer to Figure 9).

Iy
..
θ −Mqq−Mαα = Mδδ(t) (2)

where θ is the pitch angle. A comprehensive list of model nomenclature can be found
in Appendix A.
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For c.g. constrain, q =
.
θ; α = θ. Dividing Equation (2) by Iy.

..
θ −

Mq

Iy
q− Mα

Iy
α =

Mδ

Iy
δ(t) (3)
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where Mα(t) = ∂M
∂α = −l × CLα ×Q× Se. For thin airfoil, Clα = 2π.

CLα =
Clα

1 + Clα
π×AR

(4)

where AR ≈ 3 for the delta wing aircraft. Using the value of the aspect ratio in Equation (4),
CLα = 3.78 rads, which is similar to what is reported by Wang et al. [30]. Additionally,

rewriting Mα(t) with Q =
ρ×v2

p
2 .

Mα =
−l × 3.78× ρ× v2

p

2
× Se (5)

Using ρ = 1.29 kg/m3, l = 0.5 m, and vp = 19 m/s in Equation (5),
Mα(t) = −42.25 kg·m2/s2. Similarly, for the pitching moment:

Mq =
−l2 × Clα × ρ× vp

2
× Se = −1.11 kg·m2/s (6)

Additionally, the moment due to jet deflection:

Mδ =
∂M
∂δ

= k× l =
Fl |max
δmax

× l =
0.4

0.4363
× 5 = 0.46 kgm2/s2 (7)

where k is the slope of jet deflection and lift force curve shown in Figure 9.
Using Equations (5)–(7) in Equation (3):

..
θ + 27.79

.
θ + 1056 θ = 11.46 δ(t) (8)

Taking Laplace transform and rewriting Equation (8):

θ(s)
δ(s)

=
11.46

s2 + 27.79 s + 1056
(9)

Equation (9) demonstrates the relationship between pitch angle and jet deflection
angle, which in turn depends on primary and secondary flow velocities. With both poles in
the left-hand plane (eigenvalues = −13 ± 82.84), analysis of the transfer function indicates
that the system is stable. The developed model’s eigenvalues when compared (at 12 m/s
operating velocity) with similar blended wing UAVs [31] were found to be quite similar.
Figure 10 displays the frequency response for the open-loop system. The section that
follows deals with the experimental aspect of this study.
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4. Controller Design
4.1. Benchmark Controller Design
4.1.1. Selection of Control Paradigm

Outlining performance criteria is the first step in every control design problem. These
performance specifications may include intended peak time, maximum permissible over-
shoot, and settling time requirements. A cautious performance criterion of 10% acceptable
overshoot and a 2 s settling time are specified for the system under investigation. The damp-
ing ratio and natural frequency are calculated from the specified performance parameters
as 0.6 and 2.5 rad/s, respectively.

Selecting an appropriate control paradigm is key once the performance criteria have
been determined. While contemporary controllers are better equipped to handle multiple-
input, multiple-output (MIMO) systems, classical controllers are best suited for single-
input, single-output (SISO) systems. In its pitch motion, a thrust-vectoring UAV is a SISO
system. Therefore, the conventional control scheme is preferred. The proportional integral
derivative (PID) controller is the most often used control strategy within the classical control
framework. Nearly all commercially available open-source autopilots employ PID, which
accounts for around 80% of all industrial control systems [32]. As a result, the design of a
traditional PID controller employing the multi-parameter root contour approach is covered
in the next subsection. Following that, the tuned controller’s performance is evaluated
against a GA-PID and a PSO-PID.

4.1.2. Multi-Parameter Root Contour Method

The root locus approach is often used to design a straightforward proportional con-
troller, but by leveraging the multi-parameter root contour method, it may also be expanded
to design a full-fledged PID controller. This approach begins by converting the charac-
teristics equation of the closed-loop transfer function into the standard root locus format,
which is:

1 + k× Gr = 1 + k
num(s)

denum(s)
= 0 (10)

The so-called root contour plot is then produced by generating numerous root locus
plots for various combinations of PID gains and superimposing them on one another in a
single plot [33]. The closed-loop transfer function for Equation (9) is given as:

Gcl =
11.46

(
kds2 + kps + ki

)
s3 + (11.46kd + 27.79)s2 +

(
11.46kp + 1056

)
s + 11.46ki

(11)

whereas Equation (11) in a standard multi-parameter root locus form is:

1 + ki
11.46

s3 + (11.46kd + 27.79)s2 +
(
11.46kp + 1056

)
s
= 0 (12)

Comparing Equation (10) and Equation (12):

Gr =
11.46

s3 + (11.46kd + 27.79)s2 +
(
11.46kp + 1056

)
s

(13)

The position of the closed-loop poles for various combinations of kp and kd with
differing ki is shown by the contour plot of Equation (13). The required controller gains are
the gain values at which the system’s closed-loop poles reach the desired closed-loop pole
location. For the intended performance, the closed-loop pole position is determined to be
s1,2 = 1.5± 2i. Figure 11 highlights the placement of the intended closed-loop poles.
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Figure 11. Root contour plot for pitch controller.

According to the root contour map shown above, the closed-loop transfer function’s
poles are at the desired location when the gain values for kp, ki, and kd are 175, 825, and 13.
The closed-loop PID controller for the pitch axis is subsequently developed. The proposed
controller must then be assessed and tweaked in simulations. Hence, the controller is
simulated on a high-fidelity UAV model. A doublet input is provided to the model, and the
controller gains obtained by the root contour method are implemented. The simulations
are carried out for 5 s, and the output response of the model is shown in Figure 12.
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Figure 12 illustrates that the root contour controller is capable of delivering a response
that is satisfactory, with no overshoot, a 0.485 s rise time, and a setting time of 1.04 s, as
expected. Additionally, it is evident that the thrusters are not saturated. The frequency
response of the system with the root locus tuned PID controller is shown in Figure 13.
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Despite the fact that the model’s response is satisfactory and fulfills the performance
criteria, the root locus tuned controllers are not optimal. In aerial vehicle applications,
controllers that can deliver optimal performance are required so that the intended response
may be achieved with the least amount of control effort. The genetic algorithm (GA) and
particle swarm optimization (PSO) are the most widely used methods for optimal tuning
of PID controllers. The sections that follow cover PID tuning using the GA and PSO.

4.2. Genetic Algorithm (GA) Optimization

The genetic algorithm (GA), an important evolutionary technique, provides approxi-
mate solutions to a wide range of optimization problems. It incorporates various biological
strategies such as selection, crossover, mutation, and reproduction [34]. The algorithm
follows several steps:

1. The starting population is defined either randomly or heuristically.
2. The fitness value of each population member is calculated.
3. A selection probability proportional to the fitness rating is assigned to each member.
4. Desired individuals are selected from the current generation to produce offspring for

the next generation.
5. Steps 1 to 4 are repeated, and the objective function is evaluated for each chromosome

(member) of the new generation until a satisfactory solution is found.

The GA results in the proliferation of the fittest members after each iteration by using
a predetermined fitness function. Figure 14 depicts the basic flowchart of the GA.

The cost function for the system under discussion is the Integral of Time-weighted
Absolute Error (ITAE). Minimizing the error function yields proportional, integral, and
derivative gains for the controller. Table 1 contains an overview of the various parameters
employed in the problem setup.

After the setup is complete, the algorithm is executed to minimize the cost function.
The optimization results in the minimum value of the cost function, which is then converted
into PID gains. Specifically, proportional, integral, and derivative gains of 110, 981, and 0.1
are obtained through GA optimization. These gains are then simulated on the FTV model.
The simulation demonstrates that the response falls within the desired performance range,
with a rise time of 0.390 s, a settling time of 0.75 s, and no overshoot. Figure 15 shows
the response of the system with the GA-PID controller, whereas the frequency response is
depicted in Figure 16.
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Table 1. GA setup parameters.

Parameter Value

Gain Bounds 0–1000

Initial Population Size 50

Stopping Criteria 300 Generations

Creation Function Uniform

Selection Function Stochastic Selection Function

Crossover Intermediate

Mutation Adaptive Feasible
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While GA-PID meets the performance requirements and outperforms root locus PID,
it should be noted that the population density in the solution space is lower, and the GA
may not be able to generate all viable solutions [35]. On the other hand, PSO exhibits a
unique behavior, where the best solution has a significant influence over the entire search
space, resulting in better solutions in a shorter time frame [36]. Nonetheless, the GA has
attracted a lot of attention from academics in recent years and is now being used as an
established optimization method in a wide range of academic arenas [37]. Katoch et al.
have gone into great detail about current applications and possible areas of research where
the GA might be used [38]. The next section explains the tuning of PID using PSO.

4.3. Particle Swarm Optimization (PSO)

Particle swarm optimization (PSO) is an evolutionary algorithm that operates by
forming a swarm of particles that adhere to predetermined principles. The particle’s
previous position and the best-known position across the entire search space determine the
changes in particle values [39]. Initially, the particles are randomly positioned, and with
each iteration, the position and velocity of each particle are adjusted to move toward the
individual best and global best locations. By applying arbitrary factors to the acceleration
coefficients, the efficiency of local search and convergence to a globally optimal solution is
enhanced [40].

To understand how PSO works, consider a particle i such that the position vector of
the particle at any instant in time xi(t) is a member of search space. In addition to position,
there is a velocity vector for every particle, which is denoted by vi(t). Furthermore, every
particle has a memory of its own best position or experience denoted by personal best Pi(t)
and a common best experience among the members of the search space denoted by G(t).
Let us say the particle moves at a newer or updated position denoted by xi(t + 1). Now,
the path followed by the particle to reach the updated position is dictated by its velocity
vector vi(t) and the vectors from the particle’s initial position to personal and global best,
as shown in Figure 17. The mathematical expression of the motion of particles in PSO is
as follows:

xi(t + 1) = xi(t) + vi(t + 1) (14)

where vi(t + 1) is the velocity of the particle at the updated position and is given as:

vi(t + 1) = wvi(t) + r1c1(Pi(t)− xi(t)) + r2c2(G(t)− xi(t)) (15)
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where c1 and c2 are called acceleration coefficients and w, r1, and r2 are all real value
coefficients such that r1, r2 ∼ U(0, 1).
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Figure 17. A basic PSO schematic.

As with the GA, the cost function is the Integral of Time-weighted Absolute Error
(ITAE). The error function is minimized to obtain proportional, integral, and derivative
gains for the controller. PSO setup parameters are similar to those used in GA optimization.
Figure 18 depicts the PSO implementation flowchart.
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The algorithm is then executed, yielding proportional, integral, and derivative gains
of 26, 900, and 0.9, respectively. After simulating the model, the response is determined
to be within the intended performance range, with a rise time of 0.328 s, a settling time of
0.75 s, and a zero-percent overshoot. Figure 19 shows the response of the system with the
PSO-PID controller, whereas the frequency response is depicted in Figure 20.
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The performance of the controllers used in this investigation is summarized in Table 2.
Based on the analysis presented in the table, it is evident that all controllers meet the
predetermined performance criteria. However, PSO demonstrates superior performance
compared to the GA and root locus PID controllers across all performance indicators. These
results also validate the suitability of the employed modeling approach.

Table 2. Quantitative performance comparison of the investigated controllers.

kp ki kd Tr (s) Tp (s) Ts (s) % OS PM

PID 175 825 13 0.485 2.33 1.039 0 179◦

GA-PID 110 981 0.1 0.390 1.923 0.749 0 30.1◦

PSO-PID 26 900 0.9 0.328 1.273 0.610 0 173◦
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In Table 2, it is evident that the gains obtained from PSO yield a more optimal perfor-
mance compared to the other two methods. The improved performance of PSO over the
GA can be attributed to the following factors:

1. PSO employs velocity and location update equations that generate a new swarm of par-
ticles, allowing for significant differences between the new particles and existing ones.

2. Compared to solutions generated by the GA, PSO maintains a higher density of
candidate solutions within the solution space.

3. Each solution in the population is influenced by the best particle’s experience in the
swarm, facilitating rapid convergence.

In summary, PID gains obtained using PSO yield the most desirable performance
among the three methods. Additionally, with an equal number of iterations, PSO achieves a
lower value for the cost function and faster convergence to the optimal solution compared
to the GA.

5. Conclusions

This study examines a delta wing UAV test bench equipped with co-flow FTV for pitch
control. The research focuses on the challenging tasks of modeling and closed-loop control
design associated with the delta wing UAV with novel co-flow FTV control. This article
utilizes the Newton–Euler approach to derive the equation of motion for a free-to-pitch UAV
test bed. To obtain a high-fidelity model, the experimentally obtained pitching moment
of inertia and aerodynamic gain were incorporated in the e.o.m. Consequently, a linear
single-input, single-output (SISO) transfer function model is obtained for the dynamic
UAV. The modeling procedure employed in this study is deemed suitable for a class of
blended/delta wing UAVs.

In relation to vehicle control, several performance measures, such as stability, reference
tracking, quick response time, and robustness, were defined. Analysis of the test rig’s re-
sponse revealed that accomplishing these objectives solely through open-loop mechanisms
was not feasible, thus necessitating the examination of closed-loop strategies. A multi-
parameter root contour method was utilized as a reference point to assess the performance
of a PID controller based on the genetic algorithm (GA) and particle swarm optimization
(PSO). The inadequacy of the conventional tuning procedure to attain optimal controller
gains necessitates the use of meta-heuristics.

Finally, experiments were conducted in simulation environment to assess the perfor-
mance of the controllers both in the time and frequency domain. The simulation results
demonstrated that the PSO-PID controller exhibits significantly enhanced performance
compared to the root locus and GA-PI controllers. Furthermore, the findings demonstrated
that the PSO-PID controller outperformed the other examined algorithms in terms of per-
formance capabilities (up to 32% improvement in rise time, 83% in peak time, and 70%
in settling time) while demanding a comparable control effort. Consequently, PSO-PID
has been demonstrated to be an effective choice for FTV control of delta wing UAVs and
comparable systems.
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Appendix A

Table A1. Comprehensive model nomenclature.

Symbol Description

Iy Mass moment of inertia in pitch plane

θ Pitch angle

Mq Pitching moment or stability derivative due to pitch rate

Mα Pitching moment due to angle of attack α

α Angular acceleration in pitch

q Pitch angular velocity

δ Jet deflection angle

l Distance between c.g. and exhaust nozzle

CLα Lift curve slope

Q Dynamic pressure

Se Effective planform area

Clα Lift curve slope of a 2D infinite flat plate

v2
p Primary flow velocity

k Aerodynamic gain

Fl Lift force

AR Aspect ratio
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