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Abstract: Gas foil journal bearings (GFJBs) have been widely employed in high-speed rotating
machinery in the aviation industry. However, the role of fluid–structure interaction in the unsteady
aerodynamic character of the gas film and the dynamic response of the elastic foils have not yet been
clarified. In this study, an unsteady shearing flow interacting with an exciting deformation of the top
or bump foils was investigated by means of a large eddy simulation with bidirectional fluid–structure
interaction (BFSI). The result shows that the main frequencies and amplitudes of stable fluctuations of
different flow field parameters at different positions are different. The oscillating duration in the solid
domain is much less than that in the fluid domain. The main positions for the interaction between the
gas film pressure and the elastic foil are on both sides of θ = π. Compared with the case without FSI,
the presence of the elastic foil flattens the distribution of the pressure of the gas film. As the rotational
speed increases, the main frequency and the amplitude of pressure in the fluid domain continuously
increase. With FSI, there is no interference frequency near the main frequency, which improves the
stability of the shearing flow. However, an interference frequency appears near the main frequency of
total displacement in the solid domain. The analysis in this paper lays the foundation for unsteady
fluid–structure interaction research.

Keywords: gas foil journal bearings; shearing flow; top/bump foils; deformation of elastic foils;
fluid–structure interaction (FSI)

1. Introduction

Taking advantage of their simple structure, ultimate high speed, and oil-free operation,
gas foil journal bearings (GFJBs) have been widely employed in rotational machinery in the
aviation industry, including in air turbines, refrigeration units, fans, and auxiliary power
units [1]. The load capacity of GFJBs results from the aerodynamic effect of the viscid
gas film, where relative motion between the rotator and the stator occurs in the wedge
clearance [2,3]. There is a strong fluid–structure interaction (FSI) between the shearing flow
of the gap gas film and the elastic foils, which plays a significant role in the performance of
GFJBs [4,5]. Therefore, it is essential to explore the mechanism of the fluid–structure incited
by elastic foils in the gas film between the rotator and the stator.

The Taylor–Couette flow induced by relative motion between the rotator and the
stator in GFJBs has been a classic research theme, which is the aerodynamic principle laid
out in GFJBs [6–8]. Scholars and engineers have clarified that the planar shearing flow is
closely associated with several influencing factors, such as the rotational speed, nominal
clearance height, and lubricating medium [9]. For the GFJB, the shearing flow of the gas
film between the stator and the rotator can be resolved using the classic Reynolds equation.
The consensus had been that the aerodynamic performance of GFJBs is tightly associated
with the geometrical parameters of the wedge-shaped channel between the rotator and
the top foil and the rotational speed [10,11]. Paghdar et al. [12] and Wei et al. [13] further
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illustrated the shearing flow and instantaneous evolution of the Taylor vortex at different
rotating Reynolds numbers and the dependence of the angular velocity and eccentricity.
Sytin et al. [14] explored the role of the shearing flow in the dynamic characteristics of GFJBs
by means of a numerical simulation. The influencing parameters include the geometric
parameters of the gas film and the temperature of the supplied lubricant, which weakens
the elastic and damping properties of the bearing. However, the previous research studies
above have assumed that the shearing flow channel is strictly rigid, without deformation
of the elastic foils. Therefore, it is worth revealing the influence of the deformation of the
elastic foil on the flow field in the gas film.

The new generation of GFJBs are characterized by the support of an elastic foil, which
can enhance the carry capacity and improve its dynamic response [15–17]. The defor-
mation of the elastic foils would definitely have a great impact on the carry capacity,
stiffness, and damping of GFJBs. Numerous researchers have also carried out experimen-
tal and numerical studies on the deformation of the elastic foil. For instance, Barzem
et al. [18] employed high-speed digital cameras to measure the vibration of the foils, and
the elastoplastic deformation of the foil under shock loads was observed. Feng et al. [19].
found the minimum film thickness and dynamic stiffness of the bearings by means of
the journal trajectory. The relationship between experiments and numerical calculations
has been demonstrated. Ywica et al. [20,21] pointed out that the dynamic stiffness of FTB
increases while the equivalent damping decreases with an increase in excitation frequency.
Early scholars [22–24] used the wading method to solve the dynamic characteristics of
bearings, and the influence of the working conditions and structural parameters on the
dynamic stiffness coefficient and dynamic damping coefficient has also been analyzed.
For instance, Balducchi et al. [22] solved the Renault equation and linearized dynamic
equations. With the increase in rotational speed, the stiffness increases nonlinearly while
the damping decreases rapidly. Pronobis et al. [23] pointed out that the main stiffness value
increases with the increase in excitation frequency, while the damping decreases with the
increase in excitation frequency. The absolute values of the cross-coupling, oblique symme-
try stiffness, and damping parameters decrease with the increase in excitation frequency.
Zhou et al. [24] found that the stiffness tends to stabilize with the increase in disturbance fre-
quency. Additionally, the damping tends to zero with the increase in disturbance frequency.
Sim et al. [25] further pointed out that both stiffness and damping increase with increasing
frequencies. As the shaft temperature increases, the direct stiffness coefficients decrease
by 8% and the direct damping coefficients decrease by approximately 30%. It is noted that
the aerodynamic exciton and its influence on the deformation of the elastic foil have rarely
been emphasized or paid much attention in the previous research studies.

In industrial applications, a strong interaction between the film shearing flow of the
gas film and the elastic foil structure takes place in the GFJB. Some researchers began
to pay attention to the FSI between the gas film and elastic foils [26,27]. For instance,
Hoffmann et al. [28] obtained the linearized stiffness and damping through applying a
perturbational Reynolds equation. The nonlinear bump structure is simplified by means of
a link–spring model in which Coulomb friction effects from the elastic corrugated structure
are illustrated. Kan et al. [29] proposed a fluid–structure model for bump-type foil thrust
bearings. The transient fluid flow and structural deformation of elastic foils were discussed.
The multi-physics computational framework can predict the steady-state and dynamic
performances [30–32]. Furthermore, in this decade, some researchers had begun to consider
FSI in GFJBs and its influence on the load capacity and dynamic response by means of the
finite element method and the finite volume method [33]. For instance, Bou-Sad et al. [34]
considered the nonlinear isothermal elastic aerodynamic lubrication of radial bearings.
The effects of rotational speed and unbalanced eccentricity on the nonlinear response of
rigid and flexible bearings were compared. Wang et al. [35] studied the bifurcation of GFJB
and solved the Reynold equation using the successive iteration method. The dynamic
response along the horizontal and vertical directions was analyzed using the system state
trajectory, Poincare diagram, power spectrum, and bifurcation plot. Kim et al. [36] obtained
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the impact response of GFJB from an external 5.55 g load of lateral acceleration. It was
found that there was synchronous vibration and sub-synchronous vibration in the rotor
supported by the foils. and under forced excitation, the forced response dominated the
deformation of the bearing. Lehn A et al. [37] found the capacity of the GFJB is superior
to rigid thrust bearings. The overall compliance of the pads in a GFJB had resulted in the
superior behavior of the GFJB to rigid thrust bearings. Overall, the work on the FSI in GFJB
is still deficient, and its mechanism needs to be furtherly explored.

As concluded above, several researchers have paid much attention to fluid–structure
interaction in the GFJB and its influence on carry capacity and dynamic response. However,
the understanding of the unsteady fluid–structure interaction between gas film and elastic
foils is extremely inadequate and complicated, especially at higher rotational speeds.
Therefore, it is necessary to investigate the unsteady fluid–structure interaction between
gas film and elastic foils. This study aims to reveal the unsteady characteristics of GFJBs
with fluid–structure interaction. The shearing flow in the gap between the rotator and stator
is solved via large eddy simulation, and the time-resolved deformation of the preloaded
foils is simulated using the Conventional Serial Staggered (CSS) method. The mesh-based
parallel-code coupling interface (MpCCI) is used to control the coupling process and
exchange forces and displacements across the fluid–structure interfaces. The dynamic
response of the flow field and elastic foils in the time and frequency domain has been
interpreted and compared with the non-FSI case. The analysis of this article can provide
technical support for the design of non-contact rotor support structures for high-speed
rotating machinery in airborne environments with high overload and strong vibration.

2. Computational Methodology
2.1. Physical Model

Figure 1 shows the scheme of the GFJB, which consists of the rotator, top foil, and
bump foil, as well as the stator. The gas film is formed by the top foil and rotator. The rotor
is assumed to be massless and fully rigid, which indicates the rotor’s dynamic behavior is
not taken into account in numerical simulations. The top foil is supported by the bump
foil with several evenly distributed bumps beside the bearing sleeve. The axial view of
the GFJB with top/bump foils is shown in Figure 1b, as well as the combined relationship
between the top foil and the bump foil. Several bumps have been distributed on the back
of the top foil, which is in contact with the top foil and bearing house. Here, r, θ, and z
are specified as the radius, circumferential, and axial coordinates, respectively. h is the
thickness of the gas film. R and R′ are the radius of the rotator and stator, respectively.
Table 1 shows the parameters employed in the present study. It is noted that the nominal
gas film thickness h1 is specified as 200 µm, and the rotational speed n0 is specified as
105 r/min.

Table 1. Parameters employed in this study.

Parameters Unit Scale

Radius of rotator R/mm 19.05
Radius of stator R′/mm 19.25

Length of bearing L/mm 38.1
Thickness of top foil tt/µm 100

Thickness of bump foil tb/µm 100
Length of bump element S/mm 4.064
Span of bump element 2l/mm 3.434

Poisson’s ratio υ 0.29
Young’s modulus E0/GPa 207

Pressure of environment P0/Pa 1.013 × 105

Dynamic viscosity µ/Pa·s 1.84 × 10−5
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Figure 1. Scheme of the multi-leaf compliant foil bearing. (a) Foil journal bearing. (b) Schematic 
diagram of foil journal bearing. 
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Figure 1. Scheme of the multi-leaf compliant foil bearing. (a) Foil journal bearing. (b) Schematic
diagram of foil journal bearing.

2.2. Solution Domain and Computational Grid

To guarantee converged simulation results, the comprehensive time and grid analyses
were performed. The mesh resolution and details regarding the mesh partition in fluid
and solid domains are shown in Figure 2. In the fluid domain, the shearing flow and
deformation were the most sensitive to the mesh resolution. Hence, grid refinement has
been conducted. A resolution of 0.001 mm near clearance height is proved to be sufficient
along the tangential direction, as shown in Figure 2a. Meanwhile, an even distribution
of the grid was specified along the radial direction to capture the evolution of the Taylor
vortexes induced by the shearing flow. As a result, the grid was uniform and structural in
the gas film. After several adjustments, it was discovered that the wall y+ varied from 1 to
2 in most areas of the surface attached to the rotator and top foil. The grid independency
test had been performed to fit the requirement of the simulation. After adjustments of
several mesh generation schemes, the final control volume in the computational mesh
was approximately 6,250,000. The simulations are realized using the unsteady solver with
a second-order implicit time in Fluent 18.0, and the velocity-pressure coupling is set as
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SIMPLE. The time step of this study was specified as 10−5 s, which was 1/1000 of the
operation period of the rotator. A total of 200 iterations were conducted per time step,
which was sufficient to converge the simulation. The residual of the continuity and pressure
was set as 10−5.
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Figure 2b presents the mesh resolution in the solid domain. The solid domain mesh is
specified as a 10-node quadratic tetrahedron with a mesh size of 0.001 mm and a deviation
factor of less than 0.1. To reveal the dynamic response of the foil, the grid was structured
with a grid type of S4R, and the maximum grid concentration is near the top foil. Solid
domain meshes are generated by means of ABAQUS pretreatment applications. To fully
verify the independence of the mesh, the mesh of the top and support foil are calculated
separately. In a grid independency test, the total mesh cell numbers of 1,500,000 have been
demonstrated to be adequate, such that the computational results were affected by the
grid quantity. The top foil, bump foil, and bearing sleeve are all established using shell
elements, and the bearing sleeve is set as a rigid body. The fixed end of the rigid bearing
sleeve, top foil, and corrugated foil are used to limit the axial movement of the top foil and
corrugated foil. The contact between the corrugated foil, bearing sleeve, and top foil is set
as hard contact, and the contact rule is a penalty function. Considering the friction and
damping of the foil, transient implicit dynamics are used to analyze the GFJB. The time
step is consistent with the fluid domain, which is 10−5 s.

Considering the huge workload and complex settings, the computational simulation
in this study was performed via supercomputing on the Sunway Taihu Light, which was
equipped with an Intel® X®(R) CPU E5-2683. A total of 1500, in which each node contained
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32 cores nodes, has been specified. A total of 72,000 core hours have been spent to execute
20 operational cycles.

2.3. Boundary Conditions

Figure 3 presents the boundary conditions. In the fluid domain, the computational
domain is divided into two regions. The first one is the gas film which is between the top
foil and the rotator, and the second one comprises the ambiance outlet the gas film, which is
defined as a pressure outlet. The outer diameter of the gas film is specified as the interface
to exert fluid–structure interaction. The energy source of shearing flow is originated from
the internal diameter of the gas film in which the rotational motion of the rotator exerts. The
end of the gas film is connected with the ambiance which is specified as the interior. Also,
the ambiance is specified as the pressure outlet whose static pressure is P0 and temperature
of 101,325 Pa and 300 K, respectively. The rotator is defined separately, and a user-defined
function is described for its reciprocating rotational motion. A domain independence test
was conducted, and the result shows that ambient size in the computation domain did not
affect the computational results. At this condition, the computational domain of ambiance
is assigned as 10 R1 along the axial direction and 10 R1 along the radial direction. In the
solid domain, the inner-diameter side of the top foil is specified as the interface to exert
fluid–structure interaction, which corresponds to the outer-diameter side of the gas film.
The lower side of the top foil is contacted with the upper side of the bump foil. Moreover,
the bump foil is contacted with the fixed bearing sleeve.
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2.4. Fluid–Structure Interaction

To better understand the dynamic response of the elastic foils and the instantaneous
flow field of shearing flow, an integrated fluid–structure interaction simulation has been
performed. The CFD solver FLUENT and CSD solver ABAQUS have been adopted in
the fluid domain and solid domains. A two-way interaction between the fluid and the
structure is accomplished using the mesh-based parallel-code coupling interface (MpCCI)
in a loosely coupled manner.

2.4.1. CFD Solver

Large eddy simulations (LESs) model small-scale turbulent structures while resolving
large-scale turbulent eddy structures. Therefore, the mass and the momentum conservation
can be shown as follows:
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∂ρ

∂t
+

∂

∂xi
(ρui) = 0 (1)

∂

∂t
(ρui) +

∂

∂xj
(ρuiuj) = −

∂p
∂xi

+
∂

∂xj
σij +

∂

∂xj
(−ρuiuj) (2)

where ρ is fluid density (kg/m3), t is time (s), u is the fluid velocity (m2/s), and p is
pressure (Pa). The stress tensor σij and Reynold stress term (−ρuiuj) are shown as follows:

σij = (µ + µt)(
∂ui
∂xj

+
∂uj

∂xi
− 2

3
∂uk
∂xk

δij) (3)

−ρuiuj = µt(
∂ui
∂xj

+
∂uj

∂xi
)− 2

3
(ρk + µt

∂uk
∂xk

)δij (4)

where µ is dynamic viscosity (Pa·s), µt is turbulent dynamic viscosity (Pa·s), δij is the
Kronecker delta, and k is turbulent kinetic energy (m2/s2). The energy conservation
equation can be expressed as follows:

∂

∂t
(ρE) +

∂

∂xi
[ui(ρE + p)] =

∂

∂xi
(Ke f f

∂T
∂xj

+ uiτij) (5)

where E is the total energy (J), T is the temperature of the fluid (K), and the effective thermal
conductivity keff (W/(m·K)) is shown as follows:

Ke f f = K + cpµt/Prt (6)

where cp is specific heat capacity (J/K) and Prt is the turbulent Prandtl number. In this
study, the turbulent Prandtl number Prt was set to 0.9, and the viscous Prandtl number was
fixed as 0.713, which corresponds to a heat conductivity coefficient of 0.0257 W/mK.

In this study, the wall-adapting local eddy-viscosity (WALE) model was set in this
simulation as in [38,39]. The turbulent viscosity µt in the WALE subgrid-scale model can
be expressed as follows:

µt = ρ∆2

(
Sd

ijS
d
ij

)3/2

(
SijSij

)5/2
+
(

Sd
ijS

d
ij

)5/4 (7)

where ∆ is the length scale in terms of the cell volume V, defined as

∆ = min
(

κd, CwV1/3
)

(8)

In Equation (8), κ is the von Karman constant; d is cell distance from the wall; Cw is
the switching coefficient, which was set to 0.544 in this study. The strain tensors can be
defined as

Sij =
1
2

(
∂ui
∂xj

+
∂uj

∂xi

)
(9)

Sd
ij =

1
2

(∂ui
∂xj

)2

+

(
∂uj

∂xi

)2
− 1

3
δij

(
∂uk
∂xk

)2
(10)

In the numerical setting, the spatial discretization of the gradient is chosen as Green-
Gauss Cell-Based. Also, the momentum term is specified as Bounded Central Differencing.
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2.4.2. CSD Solver

The force on the top and bump foils can be shown as follows:

[M]
{ ..

x
}
+ [C]

{ .
x
}
+ [K]{x} = {F} (11)

where {x} is the displacement vector; [M], [C], and [K] are the matrix of mass, damping,
and stiffness, respectively. {F} indicates the aerodynamic force from the shearing flow, in
which pressure and viscous stress are included. To resolve the force on the elastic foils,
the Newmark integration has been performed, its underlying assumptions [40] are shown
as follows: { .

x
}t+∆t

=
{ .

x
}t

+ [(1− δ)
{ ..

x
}t

+ δ
{ ..

x
}t+∆t

]∆t (12)

{x}t+∆t = {x}t +
{ .

x
}t∆t + [(

1
2
− β)

{ ..
x
}t

+ β
{ ..

x
}t+∆t

]∆t2 (13)

β and δ are fixed as 1/4 and 1/2, respectively.

2.4.3. Fluid–Structure Interaction

To realize the fluid–structure interaction, the exchange of forces and displacements
in the fluid–structure interfaces become more critical in this study. The exchange of data
streams between the ANSYS fluent and ABAQUS is conducted on the platform MpCCI. It
guarantees direct communication between the fluid domain of the shearing flow and the
solid domain of the elastic foil through the application programming interfaces (APIs). In
fluid–structure interfaces, the compatibility of displacements and the forces can be obtained
using Equation (14) and Equation (15), respectively, shown as follows:

→
x f =

→
x s (14)

p f ·
→
n f − σf ·

→
n f = σs·

→
n s (15)

where
→
x f and

→
x s are the displacement in the interfaces of the fluid domain and solid domain,

respectively.
→
n f and

→
n s are the unit vector in the interfaces specified

→
n f = −→n s. p f is the

pressure from the interfaces in the fluid domain. Σf and σs are the fluid viscous stress and
structural stress, respectively, in the solid domain.

In this section, the Conventional Serial Staggered (CSS) procedure has been employed
to conduct a two-way loosely coupled ANSYS fluent and ABAQUS [41]. Figure 4 presents
the procedure of fluid–structure interaction. Here, W is the vector of variables in the fluid
domain [ρρ

→
v e], U is the vector of variables in the solid domain [us

.
us], F is the force vector

solved using ANSYS fluent solver. Moreover, the superscript n corresponds to the nth
time station. Five steps are shown as follows: (1) giving Wn and Un at the time-step n;
(2) drawing aerodynamic force Fn in the fluid domain and then executing it in the interface;
(3) processing Un+1 = CSD(Un, Fn) in the solid domain; (4) executing the displacements of
the top foil onto the ANSYS fluent boundary—thus x f

n+1 = us
n+1; (5) renovating the grid

in the fluid domain and the solid domain—thus Wn+1 = CFD(Wn, x f
n+1). In this study,

a steady-state solution in the fluid domain had been conducted before the fluid–structure
interaction, which acted as the initial solution.

2.5. Validation and Data Reduction

Currently, experimental measurements in which contact friction has been strengthened
are greatly lacking. Although some researchers have obtained the aeroelastic characteristics
of GDFBs, their details are still inadequate. This section verifies the numerical calculation
method employed in this article. As observed from Figure 5a, the distribution of pressure
along the circumferential direction, conducted via LES in this study, agrees well with the
experimental measurement conducted by Fatu et al. [30]. The former is overpredicted
near θ = 0.75π and underpredicted near θ = 1.25π, whose maximum error of 14.5% takes
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place near θ = 0.75π. It is attributed to the violently turbulent state near the end of the
gas film, where a large velocity gradient as well as backflow occur. Additionally, keeping
the bearing parameters consistent with the experiment in Reference [42], the variation
pattern of the minimum gas film thickness with bearing load capacity was obtained at
R = 19.05 mm and L = 19.05 mm, as shown in Figure 5b. The maximum error of 7.8% takes
place at F = 100 N, which is attributed to the complex thermal boundary condition in the
experimental configuration. Discrepancies between the numerical simulations with BFSIs
employed in this study and those in published works occurred due to two reasons. The
first reason was the complicated operating conditions of the experimental measurement,
and published works have not been presented in adequate detail. The second reason is
the assumption of axial rotation without defection in the simulation, which is inconsistent
with that in actual operation. In general, the LES performed in this study can reveal the
behavior of the flow field in GFJBs more reliably.
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3. Result and Discussion
3.1. Flow Field in the Gas Film

In this section, the flow field of the shearing flow induced by the rotator has been
explored. Figures 6 and 7 present the variation of the pressure and the axial velocity in real
time. The pressure and axial velocity of the shearing flow all attenuate while oscillating
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with the real-time at t > 15 ms, as shown in Figures 6a and 7a. It is attributed to the inherent
pulsation of the Taylor-Couette flow. The magnitude of pulsation in the pressure of the
gas film near maximum clearance height (θ = 0) is larger than the minimum clearance height
(θ = π). Moreover, the frequency near low-frequency region of the former is also larger than
the latter, as shown in Figure 6b. Near θ = 0, the axial velocity is under oscillating in real
time because of coupling of the end leakage. Moreover, the variation of pressure and axial
velocity in the frequency domain have been presented, as shown in Figure 8. The oscillation at
different positions can intuitively reflect the main frequency, which is conducive to studying the
unsteady characteristics of fluctuations in pressure. The low-frequency range (0 < f < 104 Hz) is
affected by the rotational speed, while the mid-frequency range (104 Hz < f < 5× 104 Hz) and
high-frequency region (f > 5× 104 Hz) are mainly affected by the coupling effect of shearing
flow and foil deformation. Figure 8a shows the variation of pressure in the frequency
domain. In the low-frequency region, the corresponding main frequency at θ = π is equal
to the rotational speed of the rotor, while the main frequency at θ = 0 is not significant, and
the amplitude at θ = π becomes higher. In the mid-frequency range, the amplitude at θ = π

is higher than at θ = 0. In the high-frequency region, the amplitude at θ = π is lower than
that at θ = 0, which is at odds with the mid-frequency region. Figure 8b shows the variation
of axial velocity in the frequency domain. In the low-frequency and mid-frequency regions,
the amplitude at θ = π is higher than that at θ = 0; in the high-frequency region, there is no
obvious dominance. It is attributed that θ = π is located at the minimum gap, where the
pressure amplitude is large and greatly affected by the rotor rotational frequency, which is
odd with θ = 0. In the mid-frequency range, the amplitude at θ = 0 is higher than that at
θ = π, which is attributed to generation of Taylor vortices at θ = 0 and oscillation of pressure
induced by end leakage. For axial velocity, in the low-frequency and mid-frequency regions,
the amplitude at θ = 0 is higher than that at θ = π due to the generation of Taylor vortices at
θ = 0. However, in the high-frequency region, there is no obvious dominant frequency at
different positions. This is because the interaction between convection and solid coupling
is sensitive to axial velocity.

Overall, the oscillation of the shearing flow is highly associated with the occurrence of
end leakage. From excitation to stable operation, the parameters of the shearing flow all
attenuate while oscillating in real time. After t = 15 ms, the pressure and velocity of the
shearing flow stay unchanged. The main frequency and amplitude of stable fluctuations of
different flow field parameters at different positions are different. In engineering applica-
tions, the elastic foil structure of bearings should be reasonably designed so that there is a
certain difference between the natural frequency of the elastic foil and the main frequency
of the flow field parameters to avoid resonance.

Figure 9 presents the variation of tangential velocity along the dimensionless radius near
θ = 0. Near the midsection of the clearance (Z/L = 0.5), the tangential velocity first increases
at (r – r1/r2 – r1) < 0.25, then stays almost unchanged at 0.25 < (r – r1/r2 – r1) < 0.75; lastly,
it gradually decreases to zero at (r – r1/r2 – r1) > 0.25. In contrast, the tangential velocity
near the end of the clearance (Z/L = 0.1) decreases along the radial direction monotonously.
It is noted that for the quasi-steady state, the tangential velocity almost stays unchanged
at different times both for Z/L = 0.1 and Z/L = 0.5, which indicates the shearing flow is
dominated by low-level turbulence over the period. The distribution of instantaneous
pulsating pressure of the shearing flow has been presented in Figure 10. Near θ = 4π/5, the
regional pulsating pressure first increases and then decreases. This is because the pressure
near θ = 4π/5 is significantly affected by the deformation of the elastic foils, while other
positions are the opposite and less affected by the deformation of the elastic foils.
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The time-averaged distribution of pressure and velocity has also been presented,
as shown in Figure 11. The pressure of the shearing flow downstream of the minimum
clearance height is less than the ambiance, while the pressure upstream of the minimum
clearance height is larger than the ambiance. Also, near maximum clearance height, the
pressure of the shearing flow is close to the ambiance. Moreover, the gauge pressure of the
shearing flow near the end of the clearance is close to zero. Based on previous studies [10],
the shearing flow is characterized by the paring of the Taylor vortexes and can be clearly
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found in this section. The distribution axial velocity and radial velocity indicated the
formation and shading of the Taylor vortexes. The Taylor vortexes are formed near the
midsection and keep complete shapes. It gradually moves towards the end of the clearance
and then distorts and breaks at the outlet of the clearance.
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Overall, the shearing flow is characterized by the circular channel between the rotator
and the top foil, which has been confirmed in previous studies [10,43]. After time-averaged
treatment, the paring of the Taylor vortexes can be found near the midsection of the
clearance. Also, the end leakage has a great impact on the formation of the Taylor vortexes.
Near the outlet of clearance, the Taylor vortexes have been distorted and broken. From
excitation to the quasi-steady state, its pressure and velocity are under violent oscillation in
the time domain. For the quasi-steady state, the tangential velocity almost stays unchanged
while the pressure pulsation is in an oscillating condition.
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3.2. Solid Field of Foils

The deformation and dynamic response of elastic foils in the solid domain are also
the concerned issues of this study. In this section, the instantaneous deformation of the
top foil and bump foil has been presented. Figure 12 presents the variation of the radial
displacement of the top foil in real time near θ = π. Monitor #1 and monitor #2 are, respec-
tively, a point on the top foil that is in direct contact with the bump foil and a point that is
not in direct contact with the bump foil. Similar to the pressure and velocity in the fluid
domain, the radial displacement attenuates while oscillating in real-time. Then, the radial
displacement of the top foil is almost unchanged at t > 3 ms. It is indicated the oscillating
duration in the solid domain is much less than the fluid domain. The vibration magnitude
of radial displacement near θ = π is less than θ = 0, which corresponds to the pressure and
velocity of the shearing flow. Figure 13 presents the variation of the radial displacement in
the frequency domain near θ = π. The main frequency of radial displacement at monitor #1
and monitor #2 is similar, but the amplitude of radial displacement differs significantly. The
amplitude of monitor #1 is about three times that of monitor #2. In engineering applications,
the elastic foil structure of bearings should be reasonably designed so that there is a certain
difference between the natural frequency of the elastic foil and the main frequency of the
flow field parameters to avoid resonance phenomena.
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Figures 14 and 15 present the instantaneous contours of stress and radial displacement
of the top foil and the bump foil. The stress of the top foil is in a high level near the region
where it contacts with the bump foils. Moreover, the maximum radial displacement takes
place near the minimum clearance height and the end of the clearance, which is attributed
to the larger gradient of pressure in the shearing flow. As shown in Figure 15, the maximum
stress and radial displacement are located near θ = π and Z/L = 1.
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For the top foil, the stress within the quarter circle to the right of θ = 0 firstly increases
and then decreases. In contrast, at θ = π, the stress distribution on both sides firstly
decreases and then increases. The distribution of displacement for both positions is opposite,
indicating that the change in displacement lags behind the force. For the bump foil, the
stress and displacement on both sides at θ = π firstly decrease and then increase, indicating
that the deformation of bump foil lags behind the top foil. Except for the above positions,
there is no obvious periodic pattern, indicating that the main positions for the interaction
between the gas film pressure and the elastic foil are on both sides at θ = π.

Figure 16 presents the time-averaged contours of stress and radial displacement for
top foil and bump foil. After time-averaged treatment, the maximum stress of the top foil is
located in the contact zone between the top foil and the bump foil, as shown in Figure 16a.
In contrast, the maximum stress on the bump foil takes place near the fixed end. This is
attributed to the accumulation of stress and the radial movement of the top foil. Moreover,
the maximum radial displacement occurs near the free end.

3.3. Comparison of with and without FSI

The role of the fluid–structure interaction on the carry capacity and flow field has been
presented and illustrated in this section. A comparison of carry capacity between cases with
FSI and without FSI has been presented. The FSI indicates the case with fluid–structure
interaction, such that the deformation of the top/bump foils is tightly associated with
distribution of pressure of the gas film. In contrast, the case without FSI indicates the
condition of infinite stiffness of the top/bump foils that its morphology does not change
with aerodynamic pressure. Figure 17 presents the distribution of mean pressure contours
on the foil side along the circumferential direction. Figure 18 presents the variation of
pressure and film thickness along the angled direction at Z/L = 0.5. For the case without
FSI, the peak pressure downstream of the minimum clearance height is larger than the
case with FSI, as shown in Figure 17. Also, for the case without FSI, the curve of pressure
along the circumferential direction is smoother than with FSI. Therefore, compared the case
without FSI, the fluid–structure interaction between the shearing flow and elastic foils had
weakened its carry capacity. Moreover, for the case without FSI, the peak pressure is 16.8%
larger than the case with FSI. This is because the deformation of the elastic foil had enlarged
the local clearance height, and the carry capacity had been impaired correspondingly.
For the case without FSI, the clearance height is less than the case with FSI, as shown in
Figure 18b. In summary, compared with the classical sinusoidal curve of the pressure
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distribution generated by the case without FSI [24], the presence of the elastic foil flattens
the distribution of the pressure of the gas film. The pressure downstream of the minimum
clearance height had decreased. Moreover, it is furtherly confirmed that, for the case with
FSI, pulsation of pressure is dominated by the elastic foil. For the case without FSI, the
pulsation of pressure is inherently featured by shearing flow itself, which is consistent with
published experiments [44].
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3.4. Influence of the Rotational Speed
3.4.1. Fluid Domain

Figures 19 and 20 show the variation of pressure in the frequency domain without
and with FSI as a function of rotational speed, respectively. For cases with FSI or without
FSI at n0 = 2 × 104 r/min, there is no significant change in amplitude at θ = 0 and θ = π.
With FSI, the amplitude is less than or close to the amplitude without FSI. As the rotational
speed increases, the amplitude continuously increases at θ = 0 and θ = π, regardless of the
presence or absence of FSI. Compared with the case without FSI, the case with FSI reduces
the amplitude of pressure oscillation, and there is no significant interference frequency
near the main frequency in the mid-frequency region and high-frequency region. As the
rotational speed increases, the main frequency continuously increases correspondingly.
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3.4.2. Solid Domain

Taking monitor #1 as an example, Figure 21 shows the variation of the total displace-
ment in the frequency domain with rotational speed. As the rotational speed increases,
the amplitude also increases. The main frequency is located in the mid frequency range,
and the interference frequency near the main frequency increases. This is because as the
rotational speed increases, the amplitude of the fluctuation of the elastic foil increases.
There is an interference frequency near the main frequency, and the vibration amplitude
of displacement of the top foil caused by fluid pulsation is much lower than the vibration
amplitude caused by the characteristics of the elastic foil itself.
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In summary, as the rotational speed increases, the main frequency and the amplitude
of pressure in the fluid domain also increase. For the case with FSI, there is no interference
frequency near the main frequency, which improves the stability of the shearing flow.
However, interference frequency appears near the main frequency of total displacement
in the solid domain. Therefore, in practical engineering applications of gas foil journal
bearings, an appropriate rotational speed can achieve the best stability and load-bearing
performance in bearings.

4. Conclusions

In this study, a numerical investigation of gas foil journal bearings (GFJBs) with
conjugation between the unsteady aerodynamic behavior of shearing flow and the dynamic
response of elastic foils has been performed. Additionally, the role of fluid–structure
interaction on the characteristic of the fluid and solid domains has been illustrated. The
results are concluded as follows:

(1) The shearing flow in the gap between the rotator and stator is solved via large eddy
simulation, and the time-resolved deformation of the preloaded foils is simulated using the
Conventional Serial Staggered method. A mesh-based parallel-code coupling interface is
used to control the coupling process, and the exchange of forces and displacements across
the fluid–structure interface has been specified. The computational model in this article
can better reveal the unsteady characteristics of GFJBs with fluid–structure interaction,
which cannot be calculated using a traditional quasi-static computational method. In the
future, the unsteady characteristics of GFTBs under the influence of fluid–thermal–structure
interactions as well as its rotor dynamics can be further analyzed.

(2) The oscillation of the shearing flow is highly associated with the occurrence of
end leakage. From excitation to stable operation, the parameters of the shearing flow all
attenuate while oscillating in real time. After t = 15 ms, the pressure and velocity of the
shearing flow stay unchanged. In engineering applications, the elastic foil structure of
bearings should be reasonably designed so that there is a certain difference between the
natural frequency of the elastic foil and the main frequency of the flow field parameters to
avoid subsynchronous resonance.

(3) The oscillation duration in the solid domain is much less than in the fluid domain.
The maximum stress of the top foil is located in the contact zone between the top foil and
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the bump foil. In contrast, due to the accumulation of stress and the radial movement
of the top foil, the maximum stress on the bump foil takes place near to the fixed end.
The maximum radial displacement occurs near the free end. The main positions for the
interaction between the gas film pressure and the elastic foil are on both sides of θ = π.

(4) Compared with the case without FSI, in the case with FSI, the elastic foil flattens
the distribution of the pressure of the gas film. The fluid–structure interaction between
the shearing flow and elastic foils had weakened the carry capacity compared with the
rigid case. Moreover, it is further confirmed that the pulsation of pressure with fluid–
structure interaction is dominated by the elastic foil. Without fluid–structure interaction,
the pulsation of pressure is inherently featured by the shearing flow itself.

(5) As the rotational speed increases, the main frequency and the amplitude of pressure
in the fluid domain continuously increase. For the case with FSI, there is no interference
frequency near the main frequency, which improves the stability of the shearing flow.
However, interference frequency appears near the main frequency of displacement in the
solid domain. Therefore, in practical engineering applications of gas foil journal bearings,
an appropriate rotational speed can achieve the best stability and load-bearing performance
of bearings.
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Nomenclature
Nomenclature entries should have the units identified

b Ramp extent ratio
[C] damping matrix
Cp specific heat capacity (J/(kg·K))
D cell distance from the wall (mm)
E0 Young’s modulus (GPa)
E total energy
e eccentricity
F bearing load capacity (N)
{F} aerodynamic force matrix
h thickness of the gas film (µm)
h1 maximum thickness of the gas film (µm)
h2 minimum thickness of the gas film (µm)
[K] stiffness matrix
k turbulent kinetic energy (m2/s2)
keff effective thermal conductivity
L Length of bearing (mm)
[M] mass matrix
n unit outward normal vector
n0 rotational speed (r/min)
j waypoint index
K trailing-edge nondimensional angular deflection rate
l half of span of bump element (mm)
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Prt turbulent Prandtl number
p pressure (Pa)
p0 pressure of environment (Pa)
r radial coordinate
r1 minimum radial position of thickness (mm)
r2 maximum radial position of thickness (mm)
R rotator radius (mm)
R′ stator radius (mm)
R1 inner radius (mm)
R2 outer radius (mm)
s thickness of orifice plate (m)
S strain tensors
T temperature (K)
t time (s)
tt Thickness of top foil (µm)
tb Thickness of bump foil (µm)
u fluid velocity (m/s)
U total displacement (mm)
U1 radial displacement (mm)
radial displacement
V cell volume
{x} the displacement vector
y+ dimensionless height of the first layer
z coordinate across film thickness
Greek Letters
ρ density (kg/m3)
θ angular coordinate
β top foil opening angle
µ dynamic viscosity (Pa·s)
µt turbulent dynamic viscosity (Pa·s)
σ stress tensor
δ Kronecker delta
∆ length scale
κ von Karman constant
Subscripts
b bump
f fluid
s structure
t top
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