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Abstract: In order to further reduce the vibration level of helicopters, the active vibration control
technology of helicopters has been extensively studied. Among them, individual blade control (IBC)
independently applies high-order harmonics to each blade with an actuator, which can improve the
aerodynamic environment of the blade and effectively reduce the vibration load of the hub. The
rotor structural dynamics model based on the Hamilton energy variation principle and the medium
deformation beam theory were established firstly, and the aerodynamic model based on the dynamic
inflow model and the Leishman–Beddoes unsteady aerodynamic model were also established. The
structural finite element method and the direct numerical integration method were used to calculate
the vibration response of the rotor to determine the vibration load of the hub. After these, the steepest
descent-golden section combinatorial optimization algorithm was used to find the optimization
parameters of IBC. Based on this, the input parameters of fuzzy neural network PID control were
determined, and the rotor hub vibration load control simulation was conducted. Under the effect of
IBC, the vibration loads of the hub could be reduced by about 60%. The article gives the best control
laws of individual harmonic pitch control and their combinations. These results can theoretically be
applied to the design of control law to reduce helicopter vibration loads.

Keywords: helicopter; individual blade control; optimal state; vibration loads; neural network control

1. Introduction

As a rotorcraft, the helicopter takes the rotor as the main power source for flight. It has
many advantages that cannot be replaced by fixed wing aircraft, such as vertical take off
and landing, hovering and flying in any direction. As a source of helicopter lift, the rotor
also becomes a source of vibration. In the past, many passive methods, such as double-wire
pendulums, were used to reduce helicopter rotor vibration loads [1]. Helicopter active
control technology has been studied for helicopter vibration reduction since the 1970s, and
this research has developed rapidly since the 1980s. Research into active control technology
has also developed from the high-order harmonic control (HHC) to individual blade control
(IBC), active flap control (AFC) [2], active torsion control (ATC) [3] and structural response
active control (SRAC) [4]. AFC installs several flaps on the trailing edge of each blade.
The flaps are driven by actuators embedded inside the blade, and generate flap angle
changes according to the variation law provided by the control law. The ATC lays smart
material on the blade, and the material will deform under the given electrical signal, so that
during the rotation of the blade the angle of attack of different blade profiles will change
according to the preset control law, so as to improve the aerodynamic environment of the
blade and reduce the rotor vibration load. SRAC is achieved by using an actuator to excite
the important force transmission components of a helicopter. By adjusting the amplitude,
frequency, and phase of the excitation in real time through the controller, the vibration
response generated by the active excitation force at key parts such as the cockpit is offset
against the body vibration caused by the original excitation force of the helicopter.
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IBC is a new method developed from HHC [5]. The basic principle of IBC is shown in
Figure 1. HHC uses hydraulic actuators as active control actuators to apply excitation to
the non-rotating ring of the swashplate. The frequency of the excitation force is determined
by the number of blades. Compared to HHC technology, the actuator of the IBC is installed
above the rotation ring of the swashplate, and each blade can independently achieve
multi-harmonic pitch changes and arbitrary pitch motion.
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Between 1977 and 1985, Ham conducted an early experimental study of IBC to improve
blade bending stress, vibration loads, and stall-induced vibrations [6,7]. In the 1990s, Jacklin
conducted full-scale tests of a BO-105 individual rotor blade pitch control system in the 40-
by 80-Foot Wind Tunnel at the NASA Ames Research Center, with the main goal of reducing
Blade Vortex Interaction (BVI) noise abatement [8]. The test results showed that the BVI
noise could be reduced by more than 4 dB with 0.8 deg 2/rev IBC input at an advance
ratio of 0.1. In 2015, Nitzsche F and D’Assuncao developed an independent blade control
system centered on piezoelectric materials. In a systematic study, the control actuation of
the actuator was achieved by overcoming the stroke limitation of piezoelectric materials.
Experiments were conducted in the laboratory on rotors equipped with piezoelectric
material independent blade actuators, verifying that piezoelectric material actuators can
achieve vibration reduction in the rotor through independent blade control [9]. In 2017,
Küfmann and Bartels designed an independent blade control system for a five bladed rotor
composed of a multi-tilter rotating ring system [10]. In 2022, Yang used a genetic algorithm
to optimize the vibration loads of a rotor with an individual blade control system [11].
The article considers the impact of individual harmonics of IBC on rotor vibration loads.
Gao used a fuzzy neural network and particle swarm algorithm to search the optimal
control parameters of individual blade control [12]. The 3/rev vertical vibration load of the
helicopter in hover was reduced by 80% under the effect of IBC.

Neural network control is an intelligent control and identification method formed by
simulating the physiological structure of the human brain. Fuzzy neural networks were
proposed by Lee in 1975 [13] and were used for model parameter identification [14–16].

The Takagi Sugeno (TS) type fuzzy model was implemented by Gang [17] based on a
genetic algorithm, and the control design was carried out by Mathiyalagan [18]. Lemos pro-
posed a fast learning algorithm based on weighted non-norm neural networks in 2012 [19].
Afterwards, Ahn proposed a passive exponential filter with delay and external disturbances
suitable for TS type neural networks [20]. In 2021, Fei designed a double hidden-layer
recursive fuzzy neural network controller using terminal sliding mode control for nonlinear
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systems [21]. In 2021, Omar used the genetic algorithm optimization technique to optimize
the distribution of the fuzzy membership functions in order to improve the performance
of the suggested controller [22]. In 2023, Sabzalian proposed a new methodology based
on an improved bidirectional recurrent neural network for lung cancer detection from
images [23].

A mechanical actuator which can apply IBC to the rotor was designed, as shown in
Figure 2. Previous studies only considered single harmonics in optimization analysis. This
article considers the optimization results of the simultaneous action of second and third
harmonics. The article adopts the steepest descent method based on the golden section to
search for the optimal parameters of each harmonic when the helicopter is flying forward
rather than just hovering. On this basis, a PID controller based on a fuzzy neural network
was designed to control the rotor vibration load. Without selecting the theoretical optimal
value, combined with the processing accuracy of the actuator, an approximate value of the
amplitude, which can be achieved by machining, was used in the simulation.
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2. Calculation Methods
2.1. Aeroelastic Model
2.1.1. Rotor Blade Airfoil Aerodynamics

The angle of attack of the blade is determined by the pitch angle θ and the flow angle
φ as shown in Figure 3 (where α is angle of attack and uP and ut are vertical and lateral
components of wind speed).
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The pitch angle of a traditional helicopter is determined by the collective pitch angle, θ0,
the cyclic pitch angles, θ1c, θ1s, and the blade linear pretwist, θw. A helicopter, controled by
IBC, adds highorder harmonic components of different orders, amplitudes and phases to
the pitch angle of a traditional helicopter. The pitch angle θ can be written as in Equation (1).

θ(t, r) = θ0 + θ1ccos(Ω t)+θ1ssin(Ω t) + θw(0.7− r)+A2cos(2Ω t + ϕ2)+A3cos(3Ω t + ϕ3) + . . . (1)

where r is the relative radius of blade section position. A2, A3 and ϕ2, ϕ3 are the amplitudes
and phases of higher order harmonics.

The profile airflow is more complex than traditional helicopters, requiring more
accurate airfoil aerodynamic models. This paper calculates the unsteady aerodynamic
forces of blade profiles based on the Leishman–Beddoes semi-empirical unsteady/dynamic
stall aerodynamic model [24].
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2.1.2. Elastic Model

The rotor blade can be analyzed as an elastic beam [25,26]. The equations of motion of
the blade system were obtained through the method proposed by Hamilton, which can be
expressed as:

δΠ =
∫ t2

t1
(δU − δT − δW)dt = 0 (2)

where δU is the virtual variation of strain energy, δT is kinetic energy and δW is the virtual
work performed by external forces. The variation of these can be expressed as:

δUi =
∫ R

0

x (
Eεxxδεxx + Gεxηδεxη + Gεxζδεxζ

)
dηdζdx (3)

δTi =
∫ R

0

x
ρs

⇀
V i·δ

⇀
V idηdζdx (4)

δWi =
∫ R

0

(
LA

u δu + LA
v δv + LA

w δw + LA
φ δφ

)
dx (5)

where εxx is axial strain, and εxη and εxζ are engineering shear strains. xηζ is the rotating
deformed blade coordinate system. LA

u , LA
v , and LA

w are the distributed airloads in the x, y, z
directions, respectively, and LA

φ is the aerodynamic pitching moment about the undeformed
elastic axis.

For the i-th blade, δΠ is expressed as:

δΠi =
∫ ψF

ψI
[

N

∑
j=1

(
δUj − δTj − δWj

)
]dψ = 0 (6)

Using the notation
∆j = δUj − δTj − δWj (7)

Each section of the blade is simplified as a small beam. Each beam has twelve degrees
of freedom. The elemental nodal displacement vector is defined as:

qT
j =

[
u1, v1, v′1, w1, w′1, φ1, u2, v2, v′2, w2, w′2, φ2

]
(8)

Using appropriate shape functions, ∆j can be written as:

∆j = δqT
j

(
[M]j

..
qj + [C]j

.
qj + [K]jqj − {F}j

)
(9)

where [M]j, [C]j [K]j and {F}j are mass matrices, damping matrices, stiffness matrices and
load matrices of each element.

By assembling elemental matrices, the total energy can be expressed as:

δΠi =
∫ ψF

ψI
δqT([M]

..
q + [C]

.
q + [K]q− {F})dψ = 0 (10)

The above formula can be transformed into the following finite element equation of
the motion of the blade.

[M]
..
q + [C]

.
q + [K]q = {F} (11)

2.1.3. Response Solution

The response of the blade is calculated based on the previous aerodynamic and
dynamic calculations. The modal superposition method, which obtains the response of the
system by overlaying the contributions of various modes [27,28], was adopted to solve the
problem. The method can be expressed as in Equation (12).

Y(t) =
N

∑
i=1

yiγi(t) = φγ (12)
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where Y(t) is the displacement of the blade; yi is the i-th natural vibration mode of the
blade; γi is the response coefficient corresponding to the i-th mode; and φ is the modal
matrix of the blade. φ was derived from the [M], [C], [K] in Equation (11) by using the EIG
function in matlab.

The modal superposition method requires the truncation of the modal, which will
reduce the computational accuracy. In order to balance the calculation accuracy and time
cost, this paper selected the first 8 modes of the blade for calculation.

2.2. Hub Loads

In the analysis, the blade was divided into several segments and the blade load
was calculated from the superimposition of each segment. With the assumption that the
helicopter is flying steady, the hub loads in the flap plane can be seen in Figure 4. The loads
mainly consist of gravity, lift and centrifugal forces. The loads in the lag plane can be seen
in Figure 5. The loads mainly include aerodynamics, centrifugal forces, Coriolis forces and
inertial forces.
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The aerodynamic force of the airfoil profile can be obtained from Section 2.1.1, and the
aerodynamics of the blade section are shown in Equation (13).

dY = 1
2 CLρV2cdr

dX = 1
2 CDρV2cdr

dL = dYcos∅+ dXsin∅
dQ = dXcos∅− dYsin∅

(13)

The forces in each segment can be expressed as follows:
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dTs = dLcosw’
dHH = dQsinψ− dLcosψsinw’
dSs = dQsincosψ− dLsinψsinw’
dNs = mΩ2xdr·sinψ+ mΩ2ydr·cosψ
dNH = mΩ2xdr·cosψ−mΩ2ydr·sinψ
dgs = 2mΩ

.
xdr·cosψ

dgH = 2mΩ
.
xdr·sinψ

dCt = m
..
zdr

dCs = m
..
ydr·cosψ

dCH = m
..
ydr·sinψ

dT = dTs + dCt
dS = dSs + dNs + dgs + dCs
dH = dHH + dNH + dgH + dCH

In the analysis, the blade was divided into several segments and each segment was
very short, so it was assumed that the forces were distributed evenly in each segment.
Therefore, the hub forces can be expressed as shown in Equation (14). T, S and H are the
thrust, lateral force and backward force of the hub.

T(ψ) =
N

∑
i=1

R∫
e

dTi(ψi)dr

S(ψ) =
N

∑
i=1

R∫
e

dSi(ψi)dr

H(ψ) =
N

∑
i=1

R∫
e

dHi(ψi)dr

(14)

dTi(ψi) is the the microsection thrust of the ith blade at azimuth ψi. ψi can be expressed
as in Equation (15).

ψi = ψ +
2π

N
(i− 1) (15)

Reference [15] studied the effect of IBC on the vertical force of the hub. In order to
analyze the comprehensive impact of IBC on the thrust, lateral force and backward force of
the hub, the vibration load Fvb was defined as in Equation (16).

Fvb = Max(T(ψ))−Min(T(ψ)) + Max(H(ψ))−Min(H(ψ))
+Max(S(ψ))−Min(S(ψ))

(16)

Fvb0 is the baseline of Fvb. It represents the vibration load without applying IBC. Fv,
which is the ratio of Fvb to Fvb0, can represent the impact of IBC on the vibration loads of
the hub. Fv is given as in Equation (17).

Fv =
Fvb

Fvb0
(17)

This paper determined whether the applied IBC reduced the rotor vibration load
by calculating whether Fv was less than 1. The smaller the Fv, the better the vibration
reduction efficiencies.

2.3. Optimization Algorithm

Due to the complexity of the calculation of the helicopter hub loads, the steepest
descent-golden section combinatorial optimization algorithm was used to find the optimal
parameters to reduce rotor vibration. The calculation process of this method is shown
in Figure 6 (where J represents the vibration load Fvb). The amplitudes and phases of
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second and third harmonics were used as the optimization variable, which was defined as
in Equation (18).

δ f = [A2, ϕ2, A3, ϕ3] (18)
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At the beginning of the calculation, give n = 0 and calculate the gradient Gn
grad.

Gn
grad = ∇Jk

(
δ f

)
= (

∂Fvb
∂A2

,
∂Fvb

∂Aϕ2
,

∂Fvb
∂A3

,
∂Fvb
∂ϕ3

) (19)

[a, b] are the range of values for variable δ f . The entire calculation process stops when
Gn

grad meets the accuracy.

2.4. Fuzzy Neural Network Combined with PID Controller

As the actuator to be designed is an electromechanical type, the amplitude of higher
order harmonics that can be applied is determined by the height of the actuator’s structural
surface, and the phase can be controlled by the motor. Therefore, in the control simulation,
the amplitude of the higher harmonic was selected based on the optimization algorithm. In
this system, the input rin(k) was the increment of phases of higher order harmonics, and



Aerospace 2023, 10, 623 8 of 19

the vibration load Fv was used as the system output rout(k). The incremental PID control
algorithm was adapted in the article [29], and can be described as in Equation (20)

u(k) = u(k− 1) + ∆u(k) (20)

where ∆u(k) = kp(e(k)− e(k− 1)) + kie(k) + kd(e(k)− 2e(k− 1) + e(k− 2)).
The optimization process is shown in Figure 7.
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The paper uses a fuzzy neural network to automatically adjust the three parameters of
the PID controller, as shown in Figure 8 (where kp is proportional coefficient, ki is integral
time constant and kd is differential time constant).

Aerospace 2023, 10, x FOR PEER REVIEW 8 of 20 
 

 

− 

Fuzzy Control

rin(k)

PID Controler CSD yout(k)

e(k)
const

Δu(k)

 
Figure 7. Fuzzy neural network PID control system structure. 

The paper uses a fuzzy neural network to automatically adjust the three parameters 
of the PID controller, as shown in Figure 8 (where 𝑘௣ is proportional coefficient, 𝑘௜ is 
integral time constant and 𝑘ௗ is differential time constant). 

 
Figure 8. Structure of fuzzy neural network. 

The second layer in the figure represents the fuzzification layer, which is used to 
receive numerical values passed down from the input layer and to perform fuzzification 
processing. The membership of each input variable is defined by the Gaussian function, 
which is as follows: 

2

2

( )i ij

ij

x c

j
i e σμ

−
−

=  
(21)

where ijc
and ijσ

 represent the center and width of the Gaussian function. 
The third layer is the fuzzy inference layer, which can be written as in Equation 

(22): 
1 2

1 2
i i in

j nα μ μ μ= 
 (22)

The function of the fourth layer is to transform dimensional expressions into di-
mensionless expressions in the inference process of fuzzy neural networks. The expres-
sion is as follows: 

/ , 1, 2,
m

j j j
j

j mβ α α= = 
 

(23)

Figure 8. Structure of fuzzy neural network.

The second layer in the figure represents the fuzzification layer, which is used to
receive numerical values passed down from the input layer and to perform fuzzification
processing. The membership of each input variable is defined by the Gaussian function,
which is as follows:

µ
j
i = e

−
(xi−cij)

2

σij
2

(21)

where cij and σij represent the center and width of the Gaussian function.
The third layer is the fuzzy inference layer, which can be written as in Equation (22):

αj = µi1
1 µi2

2 · · · µin
n (22)
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The function of the fourth layer is to transform dimensional expressions into dimen-
sionless expressions in the inference process of fuzzy neural networks. The expression is
as follows:

β j = αj/
m

∑
j

αj, j = 1, 2, · · ·m (23)

The fifth layer is the defuzzification layer, which is used to convert the blurring
quantity into an accurate quantity; that is:

yi =
r

∑
j=1

wijβ j, j = 1, 2 · · · r (24)

where wij represents the connection weight between the third and fourth layer.
In the structure of fuzzy neural networks, the parameters that can be self-adjusted

are cij, σij and wij. Assuming that the expected output of the controlled object is yk′ and
the actual output of the controlled object is yk, the expression for the error performance
index is:

E =
1
2

r

∑
k=1

e(k)2 =
1
2

r

∑
k=1

[y(k)− y′(k)]2 (25)

By defining x(j)
i and y(j)

i as the input and output of the ith node in jth layer, the
following can be obtained:

δ
(5)
i = − ∂E

∂ f (5)i

= − ∂E
∂yi

= y′i − yi

∂E
∂wij

= − ∂E
∂ f (5)i

∂ f (5)i
∂wijδ

= −δ
(5)
i y(4)j = −(y′i − yi)β j

δ
(4)
j = − ∂E

∂ f (4)i

= −
r

∑
i=1

∂E
∂ f (5)i

· ∂ f (5)i

∂g(4)j

·
∂g(4)j

∂ f (4)i

=
r

∑
i=1

δ
(5)
j wij

δ
(3)
j = − ∂E

∂ f (3)i

= − ∂E
∂ f (4)i

· ∂ f (4)i

∂g(3)j

·
∂g(3)j

∂ f (3)i

= δ
(4)
j

m
∑

i = 1
i 6= j

x(3)i /(
m

∑
i=1

x(3)i )2

= δ
(4)
j

m

∑
i = 1
i 6= j

αi/(
m

∑
i=1

αi)
2

δ
(2)
j = − ∂E

∂ f (2)j

= −
m

∑
k=1

∂E
∂ f (3)k

· ∂ f (3)k

∂g(2)ij

·
∂g(2)ij

∂ f (2)ij

=
m

∑
k=1

δ
(3)
j Sije

f (2)ij =
m

∑
k=1

δ
(3)
j Sije

−
(xi−cij)

σ2
ij

∂E
∂cij

= ∂E
∂ f (2)ij

·
∂ f (2)ij
∂cij

= −δ
(2)
ij ·

2(xi−cij)

σ2
ij

∂E
∂δij

= ∂E
∂ f (2)ij

·
∂ f (2)ij
∂δij

= −δ
(2)
ij ·

2(xi−cij)

σ3
ij

The first step degree of each parameter can be derived from the above formula. There-
fore, for the three parameters that need to be adjusted, the expression for their variation is
as shown in Equation (16):

wij(k + 1) = wij(k)− η ∂E
∂wij

+ λ∆wij(k) i = 1, 2, · · · r j = 1, 2, · · ·m

cij(k + 1) = cij(k)− η ∂E
∂cij

+ λ∆cij(k) i = 1, 2, · · · n j = 1, 2, · · ·mi

σij(k + 1) = σij(k)− η ∂E
∂σij

+ λ∆σij(k) i = 1, 2, · · · n j = 1, 2, · · ·mi

(26)
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where ∆σij(k) = σij(k) − σij(k − 1), ∆wij(k) = wij(k) − wij(k − 1), ∆cij(k) = cij(k) −
cij(k− 1) where η represents the learning rate; λ is the inertia coefficient. In this paper, η
and λ are set to 0.1.

3. Results
3.1. Model Validation

In order to verify the correctness of the dynamic model, modal measurement experi-
ments were conducted, as shown in Figure 9. Two rubber ropes with appropriate length and
stiffness were chosen to hang the blades at both ends, so that the blades were approximately
in a free-free state. Ten excitation points and one measurement point were determined
along the spanwise and chordal directions on the blade, a hammer was used to excite each
excitation point, and the acceleration sensor was placed at the measurement point to obtain
the vibration response of the blade. The flap and lag plane at each excitation point was
struck three times with the hammer. The collection and processing of experimental data
were based on the platform of LMS Test.Lab. Measurement data were used to calculate the
frequency response function and correlation function. The frequency response function
is shown in Figure 10, from which the modal frequency of the blade can be obtained. By
determining the vibration mode at the corresponding frequency, it can be determined
whether the modified modal is the blade elastic vibration modal.. The blade was made of
composite, and its shape is shown in Figure 11. The typical profile of the blade is shown
in Figure 12. According to the structure of the blade profile, the blade properties of each
section were calculated with variational asymptotic beam sectional analysis (VABS). The
blade properties are shown in Table 1, in which r means radial station, EIf is flap stiffness,
EIl is lag stiffness, GJ is torsional stiffness, M is blade sectional mass and YG is chordwise
blade c.g. location.
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Table 1. Properties of the blade section.

r/m EIf/N·kg EIl/N·kg GJ/N·m2 M/kg/m YG/m

0–0.042 164.1 890.1 70.3 0.643 0
0.042–0.082 159.2 744.2 68.4 0.624 0
0.082–0.892 12.8 562.6 7.47 0.283 0
0.892–0.912 13.4 596.9 7.49 0.255 0

The parameters were substituted into the model established in Section 2 to obtain
the mode frequencies of the blade. The calculated and experimental values are shown in
Table 2. The calculating values were in fairly good agreement with the experimental data.
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Table 2. Mode frequencies.

Mode Calculation/Hz Experiment/Hz Error/%

1st flap 26.21 26.32 −0.42
2nd flap 74.89 75.93 −1.37
3rd flap 150.00 144.07 4.12
1st lag 172.78 180.76 −4.41
2nd lag 490.51 517.54 −5.22

1st torsion 199.52 203.32 −1.87

3.2. Optimal Parameters

This paper analyzed the impact of the amplitudes and phases of different order
harmonics on the rotor vibration load. The helicopter parameters in reference [11] were used
as example parameters. Firstly, the paper investigated the influence of single harmonics on
vibration loads. When the helicopter was flying at an advance ratio of 0.26, the influence of
phases of second and third harmonics on vibration loads is shown in Figures 13 and 14.
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Figure 13. Influence of phases of second order harmonicon on vibration loads.

Figures 13 and 14 show that although the amplitudes were different, the trend of
the influence of phases on vibration load was similar, but the vibration reduction effect
achieved was different. They all decreased, firstly, and then increased with the increases
of phases. Only a certain range of phases of IBC could reduce the rotor vibration load. It
can be seen from Figure 14 that, under larger amplitudes of third harmonics, IBC with any
phases of harmonics could not achieve vibration reduction.

Then, the paper analyzed the impact of amplitudes of different harmonics on vibration
loads. The paper calculated the variation trend of the vibration load with the amplitude
of each harmonic under a specific phase of different harmonic. The results are shown in
Figures 15 and 16.
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Figure 14. Influence of phases of third order harmonics on vibration loads.
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Figure 16. Influence of amplitude of third order harmonics on vibration loads.

Figures 15 and 16 show that although the phases were different, the trend of the influ-
ence of amplitudes on vibration load was similar. Under different phases, the amplitude of
the harmonic varied slightly when the vibration load reached its minimum value.

The previous analysis results showed that it was hard to find the optimal parameters
directly with IBC. Therefore, the steepest descent-golden section combinatorial optimization
algorithm was used to find the optimal parameters for IBC. It firstly analyzed the single
harmonic control law for vibration load reduction. The results of the second harmonic
control are shown in Figure 17.
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Figure 17. Optimal amplitude and phase of second harmonics.

When the helicopter was flying at a low speed, the optimal harmonic amplitude firstly
decreased and then increased with the increase in the forward flying speed. When the
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forward speed was high, the optimal amplitude increased rapidly with the increase in the
forward speed. According to the results of References [30,31], when the SA349/2 helicopter
was flying at a low speed, the higher the speed, the smaller the in-plane vibration hub forces.
Therefore, as the forward flight speed increased, the higher-order harmonic amplitude
required for vibration reduction decreased. Vibration hub forces increased significantly
when helicopters fly at high speeds, and the required higher-order harmonic amplitude
also increased.

The results of the third harmonic control are shown in Figure 18.
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The optimal phase of the third harmonic also increased slowly, The difference is that
the optimal amplitude of the third harmonic increased with the increase in the forward
flying speed both at low and high speeds. According to the results of Reference [16],
out-plane hub forces increase as the forward flight speed increases, and the required
higher-order harmonic amplitude also increases.

Then, this article analyzed the results of combined second and third harmonic control.
They are shown in Figures 19 and 20.
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It can be seen from the results that the optimal states parameters of multiple harmonics
were not the combination of those obtained directly from single harmonic control. The
optimal amplitudes were lower than those of single states, which were easier to put
into practice.

3.3. Results under Fuzzy Neural Network PID Control

This article took the helicopter’s forward flight speed of µ = 0.26 as the control object.
Based on the results of Section 2.2, the amplitude and phase of the second harmonic were
set to 0.2◦ and 180◦. The expected output was set to 40% of the initial vibration value; that
is, the model helicopter vibration load was set to reduce the vibration reduction effect by
60%, and obtain the hub vibration load through the fuzzy neural network PID control. The
change trend of the vibration load ratio is shown in Figure 21.
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The changes of PID parameter values are shown in Figure 22. The parameters of PID
were kp = 0.594, ki = 0.709, kd = 0.820.
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The fuzzy neural network PID controller could quickly calculate the manipulation
quantity that meets the expected vibration effect based on the minimum performance
function. The phase of the second order harmonic is shown in Figure 23.

Aerospace 2023, 10, x FOR PEER REVIEW 18 of 20 
 

 

 
Figure 23. The change trend of the phase. 

4. Conclusions 
The paper analyzed the impact of different orders, amplitudes, and phases of IBC on 

vibration loads. The constrained optimization problem was established, with the 
high-order harmonic-related parameters as design variables, the rotor vibration load 
coefficient as the objective function, and the harmonic amplitude and phase variation 
range as constraints. The optimization problem was solved using the steepest de-
scent-golden section combinatorial optimization algorithm. If combined harmonics are 
used, smaller amplitudes of second and third order harmonics are needed. On this basis, 
fuzzy neural network PID control was carried out to achieve the rapid control of the vi-
bration load of the hub. According to the results obtained by the algorithms, the vibration 
level was 60% less than that without the applied IBC. 

The paper only theoretically analyzed the impact of IBC on rotor vibration load, 
and did not conduct relevant experimental research. The paper studied the influence of 
IBC on the vibration load of the hub, and in the future studying the influence of IBC on 
the blade profile load, which has a significant impact on blade fatigue, could be consid-
ered. The mechanical actuator designed in the article has immutable amplitude, so only 
the phase of high order harmonics was controlled during fuzzy neural network PID 
control. With the development of new actuators, it may be necessary to simultaneously 
control the amplitude and phase of each harmonic. 

Author Contributions: Conceptualization, H.W.; methodology, X.N.; software and validation, 
Y.G.; investigation and writing—original draft preparation, R.Y.; R.Y. and Y.G. contributed equally 
to this paper. All authors have read and agreed to the published version of the manuscript. 

Funding: This research was funded by the Fundamental Research Funds for the Central Universi-
ties, grant number NS2015013, and the Priority Academic Program Development of Jiangsu Higher 
Education Institutions. 

Data Availability Statement: Not applicable. 

Conflicts of Interest: The authors declare no conflicts of interest. 

  

0 40 80 120 160 200
120

130

140

150

160

170

180

𝜑 2/° 

Figure 23. The change trend of the phase.

4. Conclusions

The paper analyzed the impact of different orders, amplitudes, and phases of IBC on
vibration loads. The constrained optimization problem was established, with the high-order
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harmonic-related parameters as design variables, the rotor vibration load coefficient as the
objective function, and the harmonic amplitude and phase variation range as constraints.
The optimization problem was solved using the steepest descent-golden section combinato-
rial optimization algorithm. If combined harmonics are used, smaller amplitudes of second
and third order harmonics are needed. On this basis, fuzzy neural network PID control
was carried out to achieve the rapid control of the vibration load of the hub. According to
the results obtained by the algorithms, the vibration level was 60% less than that without
the applied IBC.

The paper only theoretically analyzed the impact of IBC on rotor vibration load, and
did not conduct relevant experimental research. The paper studied the influence of IBC
on the vibration load of the hub, and in the future studying the influence of IBC on the
blade profile load, which has a significant impact on blade fatigue, could be considered.
The mechanical actuator designed in the article has immutable amplitude, so only the
phase of high order harmonics was controlled during fuzzy neural network PID control.
With the development of new actuators, it may be necessary to simultaneously control the
amplitude and phase of each harmonic.
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