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Abstract: An airfoil shape parameterization that can generate a compact design space is highly
desirable in practice. In this paper, a compact airfoil parameterization is proposed by incorporating
deep learning into the PAERO parameterization method based on the thin-airfoil theory. Following
the PAERO parameterization, the mean camber line is represented by a number of aerodynamic
performance parameters, which can be used to narrow down the design space according to the
thin-airfoil theory. In order to further reduce the design space, the airfoil thickness distribution is
represented by data-driven generative models, which are trained by the thickness distributions of
existing airfoils. The trained models can automatically filter out the physically unreasonable airfoil
shapes, resulting in a highly compact design space. The test results show that the proposed method
is significantly more efficient and more robust than the widely used CST parameterization method
for airfoil optimization.

Keywords: aerodynamic shape optimization; airfoil parameterization; thin-airfoil theory; deep
learning; generative model

1. Introduction

Airfoils play a critical role in the aerodynamic design of aircraft, wind turbines and gas
turbines. Airfoil optimization design includes three components, namely airfoil parameteri-
zation, Computational Fluid Dynamics (CFD) simulation and optimization search. It is well
known that during optimization, the number of CFD evaluations increases rapidly with the
increase in design space, which is known as the “curse of dimensionality” [1,2]. Although
the gradient-based methods such as the adjoint method [3,4] can make the number of CFD
evaluations almost independent of design variables, the gradients are usually either not
available or difficult to calculate. For the surrogate-based methods [5] and the gradient-free
methods [6], an efficient parameterization method that can generate a compact design
space is still highly desirable [7].

Traditionally, the airfoil parameterization methods can be classified into two cate-
gories. The first category consists of the direct construction methods such as parametric
section (PARSEC) [8], class function/shape function transformation (CST) [9] and B-spline
curves [10], and the second category consists of the perturbation deformation methods such
as Hicks–Henne bump functions [11] and the free-form deformation (FFD) method [12]. In
recent years, the data-driven methods have gradually been proved to be able to reduce the
number of design variables in aerodynamic shape optimization. Masters et al. [13] studied
a number of parameterization methods, concluding that data-driven singular value decom-
position (SVD) parameterization can minimize the number of design variables representing
airfoils. The idea of SVD is that a number of orthogonal modes can be extracted from the
existing airfoil geometries, and then, the linear combination of these modes can be used to
construct new airfoils. Li et al. [14] extended this idea by extracting the orthogonal modes
from the airfoil thickness and the airfoil camber, respectively. More recently, Chen et al. [15]
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proposed Bézier Generative Adversarial Networks (Bézier-GANs) for airfoil shape param-
eterization. By learning from the existing UIUC [16] airfoil database, a Bézier-GAN can
ensure a physically reasonable airfoil geometry, resulting in a compact design space for
airfoil optimization. Du et al. [17,18] incorporated a surrogate model into a B-spline-based
GAN to further speed up the airfoil design. In addition, Li et al. [19,20] adopted the UIUC
airfoil database and a number of randomly deformed airfoils to train a discriminative
model for unrealistic airfoils, resulting in a further speedup.

Although the above methods are proven to be useful in some applications, their design
variables are usually independent of aerodynamic performances. In optimization design,
aerodynamic performances often appear as goals or constraints. Therefore, incorporating
aerodynamic performances into shape parameterization can provide extra guidance for
optimal design. Recently, a number of studies introduced aerodynamic performances into
shape parameterization by using deep learning technology. Achour et al. [21] trained a
Conditional Generative Adversarial Network (CGAN) that can generate an airfoil geometry
directly by a given lift–drag ratio and a given shape area. The results showed that about 75%
of the generated airfoils maintained the given aerodynamic performances. Yilmaz et al. [22]
adopted the airfoil stall performance and the drag pole curve as given design parameters
to train a CGAN. Sekar et al. [23] proposed a deep learning model that can map a given
pressure distribution to an airfoil geometry. Wang et al. [24] proposed an inverse design
method for supercritical airfoils based on the Conditional Variational AutoEncoder (CVAE)
and Wasserstein Generative Adversarial Networks (WGANs). This method first generates
a Mach number distribution with given features, and then, the geometric coordinates are
obtained from this Mach number distribution by a neural network model built for nonlinear
mapping. In addition, Lei et al. [25] combined the generative model and the optimization
algorithm to find a pressure coefficient distribution with given features and then mapped it
to the corresponding airfoil geometry.

It is worth noting that the above trained models are often limited by the given training
data, and they cannot provide a general shape parameterization method. Inspired by the
classical thin-airfoil theory [26], Deng et al. [27] proposed a novel general parameterization
method, named PAERO, which uses four aerodynamic performance parameters, namely
the Mach number, the angle of attack, the lift coefficient and the pitching moment coefficient,
and a number of optional parameters to represent the mean camber line of the airfoil. In the
original method, the airfoil thickness distribution is represented by either the CST method
or B-spline curves. In addition to being a general flexible shape parameterization, this
method provides four aerodynamic performance parameters to manipulate the design
space directly based on the thin-airfoil theory.

Following the previous work [26], this paper aims to extend the PAERO method by
absorbing the advantages of deep learning technology. The airfoil thickness distribution
will be represented by a data-driven generative model, which is built from the standard
dataset of UIUC. The trained model can ensure a physically reasonable geometry due to
its learning ability. The proposed parameterization method is expected to have the follow-
ing advantages: (1) it can generate airfoil shapes with given aerodynamic performance
parameters; (2) the aerodynamic performance parameters can be used as design variables,
providing an efficient way to narrow down the design space; (3) the compact thickness
representation can avoid a physically unreasonable geometry and reduce the design space
as well.

2. Methodology
2.1. Problem Definition

The airfoil shape and coordinate system of interest are shown in Figure 1. It has a round
nose with a radius equal to rLE and a trailing-edge thickness equal to ∆z(t)TE. The coordinate
system origin lies on its leading edge. Its chord line coincides with the x axis, with the chord
length being c. In order to parameterize this airfoil, its shape was decomposed into two
basic components, namely the mean camber line and the thickness distribution, denoted as
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z(s)(x) and z(t)(x), respectively. For brevity, the coordinates are normalized by the chord

length, introduced as X = x
c , Z(s)(X) = z(s)(X)

c and Z(t)(X) = z(t)(X)
c . Given the mean

camber line and the thickness distribution, the upper surface of this airfoil can be written as

zu

c
= Z(s)(X) +

1
2

Z(t)(X), (1)

and the lower surface of this airfoil can be written as

zl
c
= Z(s)(X)− 1

2
Z(t)(X). (2)
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The following sections will complete the defining equations for the mean camber line
Z(s)(X) and the thickness distribution Z(t)(X).

2.2. Representation of Mean Camber Line

According to the thin-airfoil theory, the mean camber line of an airfoil is related to
its aerodynamic performance parameters, including the lift coefficient and the pitching
moment. The idea of the PAERO method [26] is to use these aerodynamic performance
parameters as design variables. The mean camber line, Z(s)(X), can be expressed as follows:

Z(s)(X) = (α− A0)X− 1
π

∫ 1

0

[
∑N

n=1 An sin
(
n× acos

(
2X′ − 1

))]
ln
∣∣∣∣X− X′

X

∣∣∣∣dX′, (3)

where the first three coefficients, namely A0, A1 and A2, can be calculated as follows:

A0 = 3

[
α−

∆z(s)TE
c
− 1

3π
CL −

4
3π

CM + ∑N/2
i=2

A2i
(2i− 1)(2i + 1)

]
, (4)

A1 =
1
π

CL − 2A0, (5)

A2 = − 1
π

CL −
4
π

CM + 2A0, (6)

where the angle of attack, α, the lift coefficient, CL, and the pitching moment coefficient
around the quarter-chord point, CM, are design variables. In addition, ∆z(s)TE is the height of
the camber line on the trailing edge, and c is the chord length.

When the freestream Mach number, denoted as Ma, is less than one, the Prandtl
Glauert rule can be used to take the compressibility effect into account, and the effective
aerodynamic coefficients are written as follows:

CL = CL,Ma ×
√

1−Ma2, (7)

CM = CM,Ma ×
√

1−Ma2. (8)

Finally, the design variables for the mean camber line can be expressed as follows:
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DV(s) =
(

MaDV , αDV , CL,DV , CM,DV , A3, . . . . . . AN , ∆z(s)TE

)
, (9)

where the subscripts “DV” are added to avoid confusion with the actual aerodynamic
performance parameters. The design Mach number, MaDV , can be given according to
the design requirements. Because the design lift coefficient, CL,DV , depends on both the
angle of attack, αDV , and the mean camber line, either CL,DV or αDV can be fixed in the
optimization design.

2.3. Representation of Airfoil Thickness Distribution
2.3.1. CST Method

The CST method is a widely used parameterization method. It combines a class
function and a shape function. The surface coordinates of an airfoil with a trailing-edge
thickness of ∆z(t)TE can be expressed as

Z(t)(X) = 2×
[(

X0.5 × (1− X)
)
× S(X) +

1
2
× X×

∆z(t)TE
c

]
, (10)

where S(X) is the shape function defined as the linear combination of Bernstein polynomials,
written as follows:

S(X) = ∑n
i=0 aiBi,n(X), (11)

Bi,n(X) =
n!

i!(n− i)!
× Xi × (1− X)n−i, (12)

where Bi,n(X) is a Bernstein polynomial of degree n.

2.3.2. SVD Method

The idea of SVD is to extract the orthogonal basic modes through a proper orthogonal
decomposition of the chosen dataset. A matrix is first assembled by using the Z coordinates
of the airfoil thickness distribution, while the corresponding X coordinates are kept the
same for all airfoils. The matrix, H, is written as follows:

H =


Z(t)

11 · · · Z(t)
m1

...
. . .

...
Z(t)

1n · · · Z(t)
m1

, (13)

where n is the number of coordinate points and m is the number of samples. Then, this
matrix is further decomposed by singular value decomposition as follows:

H = UΣVT , (14)

where the columns of U, namely
(

U1, U2, · · ·Umin(m,n)

)
, represent the orthogonal thickness

modes. A new thickness distribution can be expressed as a linear combination of these
modes, written as follows:

Z(t)(X) = ∑k
i=1 aiUi(X) + X×

∆z(t)TE
c

. (15)

Figure 2 shows the first ten thickness modes extracted from the UIUC dataset. Note
that the number of samples, m, is equal to 1433 and the number of coordinate points, n, is
equal to 121. The coordinate distribution is expressed as follows:

Xi =
1
2

(
cos

2π(i + 119)
240

+ 1
)

, i = 1, 2, · · · , 121. (16)
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2.3.3. Deep Learning Method

The Generative Adversarial Network (GAN) [28] is a widely used model that can
learn the main features of data and generate a dataset similar to the original data. The
architecture of the standard GAN is shown in Figure 3a, where S is the training dataset.
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Figure 3. Architectures of (a) GAN and (b) InfoGAN.

It is composed of two players, namely the generator, G, and the discriminator, D.
G obtains the random noise, w, from the random distribution, Pw, and generates the data,
G(w). D judges whether the input data come from the real distribution, Pdata, or are
generated by G. G constantly adjusts parameters to cheat D, making it unable to determine
the source. The two players play games with each other and finally reach the Nash
equilibrium, so that the generative distribution, PG, of G is the same as the distribution of
the real data, Pdata. Generally, the training loss function of GAN can be expressed as follows:

minGmaxDV(D, G) = Es∼Pdata [log D(s)] +Ew∼Pw [log(1− D(G(w)))]. (17)

In fact, GAN is very easy to collapse during training, with the result that the generator,
G, can only generate a small part of the training data to completely cheat the discriminator,
D. Therefore, the WGAN [29] model was proposed to solve this problem by improving the
activation function and the training process. The loss function of WGAN can be expressed
as follows:

minGmaxDV(D, G) = Es∼Pdata [D(s)]−Ew∼Pw [D(G(w))], (18)
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‖ ∂D/∂
(

vD, bD
)
‖≤ γ, (19)

where vD and bD are the training parameters of D and γ is the weight gradient clipping
boundary used to ensure the stability of model training.

Because the noise variables, w, of the standard GAN are uninterpretable, the Info-
GAN [30] model was proposed to add a number of latent variables that are interpretable.
The architecture of the InfoGAN model is shown in Figure 3b. Like GAN, this model also
has a G and a D that play games with each other and ultimately enable the G to synthesize
data similar to the training data. Unlike GAN, the input variables of G include the latent
variables, u. InfoGAN adds the auxiliary distribution, Q, to restore the u inputted to
the G. Both Q and D can share the convolution layers. InfoGAN maximizes the mutual
information, I(u; G(w, u)), of the latent variables, u, and the generated samples, G(w, u).
By training, the main features of the data can be extracted into u.

In practice, it is difficult to calculate the mutual information directly, so the lower
bound, L1, of the mutual information is generally calculated as follows:

L1(G, D) = Es∼G(w,u)

[
Eu′∼P(u|s)

[
log Q

(
u′
∣∣s)]]+ H(u) ≤ I(u; G(w, u)), (20)

where H(u) is the entropy of u. If the distribution of u is fixed, H(u) becomes a constant.
Combined with the mutual information, the loss function for the InfoGAN training can be
expressed as follows:

minG,QmaxDVI(D, G, Q) = Es∼Pdata [log D(s)] +Eu∼Pu ,w∼Pw [log(1− D(G(w, u)))]− λL1(G, Q), (21)

where λ is introduced to balance the loss function and Pu is the prior probability distribution
of the latent variables.

The dataset S used for training the generative model is from the UIUC airfoil database.
The thickness distribution of an airfoil can be regarded as showing a symmetric airfoil.
The generator, G, obtains the latent variables, u, and the noise variables, w, from the
random distribution and then synthesizes the airfoils. The discriminator, D, determines
whether the airfoil is correct. Q attempts to restore the latent variables, u′, by extracting the
features. Eventually, G can synthesize a reasonable symmetric airfoil through the latent
variables and the noise variables, and almost all geometric information is extracted into the
latent variables. Therefore, the latent variables, u, of InfoGAN can be used for the airfoil
thickness representation.

For a symmetric airfoil with a trailing-edge thickness of ∆z(t)TE, its coordinates, Z(t)(X),
can be expressed as follows:

Z(t)(X) = G(X; u) + X×
∆z(t)TE

c
. (22)

Finally, the design variables for the airfoil thickness distribution can be expressed
as follows:

DV(t) =
(

u, ∆z(t)TE

)
=
(

u0, u1, u2, · · · · · · uN , ∆z(t)TE

)
. (23)

2.4. Summary

The schematic diagram of the proposed airfoil parameterization is shown in Figure 4.
The PAERO method is used to represent the mean camber line, and the generative model is
used to represent the airfoil thickness distribution. The parameters used for the camber
representation include two types, namely the aerodynamic performance parameters and
the optional parameters. The parameters used for the thickness representation are the latent
variables of the generator, G.
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For an airfoil with a trailing-edge height of ∆z(s)TE and a trailing-edge thickness of ∆z(t)TE,
the design variables can be expressed as follows:

DV =
(

DV(s), DV(t)
)
=(

MaDV , αDV , CL,DV , CM,DV , A3, . . . . . . AN , ∆z(s)TE, u0, u1, u2, · · · · · · uN , ∆z(t)TE

)
.

(24)

Note that when the method is used to generate airfoil families, four aerodynamic
performance parameters need to be specified; when it is used for aerodynamic shape
optimization, only two aerodynamic performance parameters are needed, due to the fact
that the lift coefficient is dependent on the angle of attack. The optional parameters for the
mean camber line can be selected according to the design requirements. The number of
latent variables needed to generate the airfoil thickness distribution will be discussed later.

In summary, the coordinates of the upper surface, zu, and the coordinates of the lower
surface, zl , for an airfoil can be expressed as follows:

zu

c
= Z(s)

(
X; DV(s)

)
+

1
2

Z(t)
(

X; DV(t)
)

, (25)

zl
c
= Z(s)

(
X; DV(s)

)
− 1

2
Z(t)

(
X; DV(t)

)
. (26)

It should be pointed out that the chosen formulation does not exactly follow the theory
of camber and thickness, as it neglects the X component of the normal to the camber line
when adding the thickness. We adopt this common simplification to avoid negative X
coordinates at the leading edge.

3. Results and Discussion
3.1. Model Training and Airfoil Thickness Synthesis
3.1.1. Data Preparation

The UIUC airfoil database includes most airfoils used in a wide range of scenarios,
including aircraft, gas turbines, wind turbines, etc. Many studies [15,17,19,23] have adopted
this database as the training basis for a neural network model. However, some of the airfoil
data in the database are incomplete or impractical. Therefore, the airfoil database is filtered
and normalized by using the method suggested by Li et al. [31]. The process is divided
into the following four steps:

(1) Remove the airfoils with incomplete data, and order the airfoil coordinates in a
counterclockwise direction starting from the trailing edge, as shown in Figure 5.

(2) Convert a blunt trailing edge into a sharp trailing edge, adjust the angle of attack to
0 degree, and synchronize the x coordinates.

(3) Remove the airfoils with more than one local maximum thickness.
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(4) Remove the airfoil mean cambers.
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Finally, 1433 symmetrical airfoils were selected from the UIUC database with a total of
1550 existing airfoils. Typical samples obtained from the database are shown in Figure 6.
The database only stores the normalized Z coordinates of the airfoils, and the corresponding
normalized X coordinate distribution is as follows:

Xi =
1
2

(
cos

2π(i− 1)
240

+ 1
)

, i = 1, 2, · · · , 241. (27)
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Figure 6. Dataset for symmetrical airfoils.

3.1.2. Model Training

A symmetrical airfoil can be defined by a number of key geometric features, such as the
leading edge radius, the airfoil thickness, and the location of the maximum thickness. An
InfoGAN model is established to extract these interpretable features as design variables for
airfoil parameterization. The schematic diagram of the InfoGAN model is shown in Figure 7.
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The training set contains a total of 1433 symmetrical airfoils, each of which is represented
as a vector in the format of 241× 1. The latent variables, u, and the noise variables, w, are used
as the input of the generator, G, where u follows a uniform distribution in [0, 1], and w follows
a normal distribution with a mean of 0 and a variance of 1. G includes the multi-layer
full connected layers and a mode layer. The modes come from the SVD decomposition
of symmetric airfoils. The research by Li et al. [14] showed that the first 20 modes were
already sufficient for fitting the airfoils. In addition, using the modes as the last layer of G
is helpful for ensuring a smooth surface and a symmetrical geometry. The discriminator, D,
is composed of a number of convolution layers and a full connected layer. The convolution
layers extract the features of the airfoil, and the full connected layer integrates them for
judgment. An independent full connected layer, Q, is set behind the convolution layers of
D to extract the features of the generated airfoil and tries to restore the input information, u.

The parameters for the neural network were chosen by experience [32]. The final
network parameters of the generator and the discriminator are shown in Table 1, where FC
layer means a full connected layer and C layer means a convolution layer. The models were
implemented in the open-source software PyTorch [33], and the final model parameters
were determined by trial and error [32]. The parameters related to D’s convolution kernel
are set as follows: kernel size = 7, step size = 2 and padding = 3. The training parameters
are set as follows: batch size = 64, learning rate = 0.0001 and training round epochs = 500.

Table 1. Neural network parameters for the generator and the discriminator.

Generator Discriminator

Layer Neurons AF Layer Filters AF

FC layer 128 ReLU C layer 10 LeakyReLU
FC layer 128 ReLU C layer 20 LeakyReLU
FC layer 64 ReLU C layer 40 LeakyReLU
FC layer 20 ReLU C layer 80 LeakyReLU
SVD mode layer FC layer 1

FC layer(Q) 3 Sigmoid

3.1.3. Symmetrical Airfoil Synthesis

The input variables of symmetrical airfoil generator include the latent variables, u,
and the noise variables, w. Here, we chose dlatent = 3 and dnoise = 10 as an example to
study the generated samples, as shown in Figure 8.

Figure 8a shows the results of airfoil synthesis by changing each latent variable, while
the noise variables, w, remain 0. It can be seen that each component of u is related to
one of the geometric features. u1 is related to the leading edge radius, u2 is related to the
airfoil thickness, and u3 is related to the location of the maximum thickness. Figure 8b
shows the results of airfoil synthesis by changing the first three components of w, while the
latent variables, u, remain 0.5. It can be seen that there is no significant difference between
the generated airfoils, indicating that the features of symmetric airfoils have been mainly
extracted into the latent variables, u.

Figure 9 shows the symmetric airfoils randomly generated by the InfoGAN method
and the traditional parameterization methods. The InfoGAN method adopts a generator
with six latent variables. The CST method adopts a 5th-order polynomial, so that there are
six design variables. The SVD method adopts the first six modes. The variable range of the
generative model is [0, 1], and the variable range of CST and SVD comes from the fitting
results of the dataset. It can be seen that all of the symmetric airfoils generated by the Info-
GAN generator maintain the features of the existing airfoils, and a number of the symmetric
airfoils generated by the CST and SVD methods are actually physically unreasonable.
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In order to test the accuracy of the trained model, the existing airfoils in the database
have been fitted. Fitting an existing airfoil can be turned into an unconstrained optimization
problem. The latent variables of the generator are taken as the design variables, and Powell’s
BOBYQA [6] algorithm is used to minimize the root mean square error (RMSE), which is
expressed as follows:

RMSE =

√
1
n ∑n

i=1(Zi,G(X)− Zi,data(X))2, (28)

where n, equal to 241, is the total number of the coordinate points, and Zi,G(x) and Zi,data(x)
are the normalized Z coordinates of the generated airfoil and the airfoil to be fitted, respectively.

While keeping the noise variables, w, at 0, the optimization algorithm searches the
design space spanned by the latent variables, u, to minimize the RMSE. The average fitting
errors of all the symmetric airfoils in the database are shown in Table 2. It can be seen that
when the number of latent variables is greater than 8, the RMSE is less than 5× 10−4, which
is the tolerance for wind tunnel geometries [34].
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Table 2. Errors of fitting symmetric airfoil database.

dlatent RMSE (×10−4)

2 33.11
3 12.01
4 7.253
6 6.234
8
10

5.067
3.367

Note that in some cases, the upper surface and the lower surface will cross each other
near the trailing edge, as shown in Figure 10. This phenomenon was also observed by
Chen et al. [15], who suggested adding a regularization term to the loss function to avoid
this risk. We find that this problem can be easily solved by fitting the airfoil to a high-order
CST polynomial, as shown in Figure 10.
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3.2. Verification of Aerodynamic Performance Parameters

This section will test the accuracy of aerodynamic performance parameters. CFL3D [35],
an open-source CFD solver based on multi-block structured grids, was used for high-fidelity
aerodynamic performance calculations. The CFD solver was first validated by the wind tunnel
test of the airfoil E387 [36]. The flow conditions are Ma = 0.1, α = 0◦ and Re = 0.2 × 106.
Note that the wind tunnel test data were measured by allowing a free transition. The
Spalart–Allmaras one-equation turbulence model coupled with an eN empirical method
for the transition prediction was adopted. Three types of grids were used to calculate the
aerodynamic performances. The farfield is 15 times the chord length, and the height of the
first layer is set to 1 × 10−5 to ensure y+ < 1.0. As shown in Table 3, the results of grid No. 2
are close to those of the densest grid, No. 3. Considering the computational cost, grid No. 2,
shown in Figure 11, was adopted in the simulations. The comparison of the numerical
simulation and the wind tunnel test is shown in Figure 12, indicating a satisfying accuracy.

Table 3. Grid sensitivity study for the E387 airfoil (Ma = 0.1, α = 0◦ and Re = 0.2 × 106).

No. Grid CL CD CM

1 143× 49 0.3773 0.01012 −0.07740
2 257× 97 0.3817 0.009681 −0.07792
3 451× 97 0.3876 0.009594 −0.07860
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The airfoil performance parameters at a low Mach number were first tested. The
aerodynamic performance parameters were set as follows: MaDV = 0.2, αDV = 2.0,
CL,DV = 0.40 and CM,DV = −0.05. The optional parameters are not considered here. The
generator, G, synthesized the thickness distributions based on the latent variables, u, of
a random distribution. The dimension of u is three, and the value range is [0, 1]. High-
fidelity CFD simulations were used to verify the accuracy of the aerodynamic performance
parameters. The simulation conditions were Ma = 0.2, α = 2.0 and Re = 4× 106. The
simulations were performed assuming a fully turbulent flow. A total of 50 airfoils were
randomly generated, and the test results are shown in Figure 13. The given aerodynamic
performance parameters are represented by a star, and the airfoils are displayed on their
corresponding aerodynamic performance coordinates. It can be seen that due to the viscous
effect, CL < CL,DV and CM > CM,DV . However, the aerodynamic performances of most
airfoils are close to the given parameters.

Then, the airfoil performance parameters at a high Mach number were tested. The
aerodynamic performance parameters were set as follows: MaDV = 0.6, αDV = 2.0,
CL,DV = 0.50 and CM,DV = −0.07. In addition, the optional parameters, A3 and A4, were
considered as well. Following the work of [26], the recommended range of A3 and A4 is
[−0.02, 0.02]. The flow simulation conditions were Ma = 0.6, α = 2.0 and Re = 6.5× 106.
The simulation results of 50 randomly generated airfoils are shown in Figure 14. It can
be seen that for most of the generated airfoils, CL < CL,DV , CM > CM,DV , and their
aerodynamic performances are still close to the given parameters. In summary, it can be
concluded that the aerodynamic performance parameters can significantly determine the
aerodynamic performances of the airfoil family even at a high Mach number. In contrast,
the optional parameter Ai does not significantly affect the aerodynamic performances.
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3.3. Airfoil Shape Optimization

In this section, the capabilities of the proposed parameterization method will be tested
in the context of airfoil shape optimization. Three parameterization methods are adopted
for comparison, namely the combination of PAERO and InfoGAN, the combination of
PAERO and CST, and CST for the entire airfoil surface. Note that the PAERO method
is only adopted for the camber representation, the InfoGAN generative model is only
adopted for the thickness representation, and the CST method is a general parameterization
method, which can be used for representing either the airfoil thickness distribution or the
airfoil surface.

The problem of airfoil drag minimization is considered here. The objective function,
the design variables and the constraints are described in Table 4. The design conditions
are Ma = 0.6, CL = 0.5 and Re = 6.5 × 106. The chosen optimization algorithm is
Powell’s BOBYQA [6], a gradient-free algorithm based on quadratic approximation. The
convergence is thought to be reached when the change in the objective function is less than
a tolerance of 1× 10−5. The maximum number of iterations is set to 500. The constraints
are as follows: the airfoil area is not less than 0.07, and the pitching moment coefficient
around the quarter-chord point is not less than −0.07. The aerodynamic constraints and
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the geometric constraints are added to the objective function as the penalty functions, so
the objective function is expressed as follows:

Obj = λ0CD + λ1max
(

1 +
0.07
CM

, 0
)
+ λ2max

(
1− aera

0.07
, 0
)

, λ0 = 100, λ1,2 = 10, (29)

where λ0, λ1 and λ2 are the Lagrange multipliers.

Table 4. Statement of airfoil optimization for drag minimization.

Functions Description Quantity

Minimize CD Drag coefficient 1

With respect to DV
α

Design variables
Angle of attack

12
1

Subject to
CL = 0.5
CM ≥ −0.07
area ≥ 0.07

Lift coefficient
Quarter-chord pitching moment
Area constraint

1
1
1

The value range of design variables is shown in Table 5. MaDV and CL,DV are fixed,
and αDV and CM,DV are allowed to be changed. The optional parameters, namely A3, A4,
A5 and A6, are added as well. The thickness representation maintains the same degree of
freedom as the camber representation. The thickness distribution is generated by either
the generative model controlled by six latent variables or the CST method with a 5th-order
polynomial. The value range for the CST method is derived from the fitting results of the
UIUC symmetric airfoil database, and all design variables are assumed to be positive. For
representing the entire airfoil surface, the CST method adopts two 5th-order polynomials
for the upper surface and the lower surface, respectively, and the value ranges come from
the fitting results of the UIUC airfoil database as well. The value range for the upper surface
is [0.01, 0.4], and the value range for the lower surface is [−0.4, −0.01].

Table 5. Design variables and their value ranges.

Variable Type Symbol Value Range

Camber representation

MaDV
CL,DV
αDV

CM,DV
A3, A4, A5, A6

0.6
0.5

[1.8, 2.2]
[−0.06, −0.08]
[−0.02, 0.02]

Thickness representation (InfoGAN) u0, u1, · · · , un [0, 1]
Thickness representation (CST) a0, a1, · · · , an [0.01, 0.4]

The optimization tests were repeated 10 times for each method by using random
initial design variables. The convergence histories are shown in Figure 15. The shaded
regions in the figure show the convergence histories of different tests, and the solid lines
are the average convergence histories. It can be seen from the convergence histories that the
method of using the InfoGAN model for thickness representation has the best performance.
It converged near the minimum point after about 30 iterations, far fewer than the other
two methods. Note that the large initial objective function shown in the figure is due to
the fact that the area of the initial shape does not satisfy the design requirements and a
large penalty function is imposed. The final designs of airfoils are shown in Figure 16. The
optimized results of the InfoGAN model maintain the features of the existing airfoils and
are all physically reasonable. On the contrary, the optimized results of the CST method are
divergent, indicating a less compact and bumpier design space. Thus, it can be concluded
that the proposed method is significantly more efficient and more robust than the traditional
CST method.
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4. Conclusions

In this paper, a compact airfoil shape parameterization is proposed by adopting
the recent PAERO method for the camber representation and the data-driven InfoGAN
model for the thickness representation. The InfoGAN model shows an excellent ability to
learn the thickness distributions of existing airfoils. Its generator can compactly represent
the thickness distribution and relate some of the key geometric features to the latent
variables. Moreover, it can filter the unrealistic thickness distribution, resulting in a highly
compact design space for airfoil design. In addition, it is confirmed that the aerodynamic
performance parameters can significantly determine the aerodynamic performances of
the airfoil family at subsonic flows and the optional parameters do not significantly affect
the aerodynamic performances. In the test of airfoil shape optimization, it is found that
the proposed method is significantly more efficient and more robust than the traditional
CST method.

Author Contributions: Conceptualization, F.D.; methodology, J.Y.; software, J.Y.; validation, J.Y. and
F.D.; formal analysis, J.Y.; investigation, J.Y.; resources, F.D.; data curation, J.Y.; writing—original
draft preparation, F.D. and J.Y.; writing—review and editing, F.D.; visualization, J.Y.; supervision,
F.D.; project administration, F.D.; funding acquisition, F.D. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by National Natural Science Foundation of China (No. 12032011).



Aerospace 2023, 10, 650 17 of 18

Data Availability Statement: Some or all data, models, or codes that support the findings of this
study are available from the corresponding author upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

Ai ith Fourier coefficient
CD drag coefficient
CL lift coefficient
CL,DV design variable corresponding to lift coefficient
CM pitching moment coefficient around the quarter-chord point
CM,DV design variable corresponding to pitching moment coefficient
D discriminator
DV design vector
dlatent latent dimension
dnoise noise dimension
G generator
Ma freestream Mach number
MaDV design variable corresponding to freestream Mach number
Pu prior distribution of latent variables
Pdata data distribution
PG generative distribution
Pw prior distribution of noise variables
Q auxiliary distribution
Re Reynolds number
u latent variable for generative model
w noise variable for generative model
Z(s) normalized mean camber curve
Z(t) normalized thickness distribution
α angle of attack
αDV design variable corresponding to angle of attack
λi ith Lagrange multiplier

∆z(s)TE ordinate of the mean camber curve on the trailing edge

∆z(t)TE trailing-edge thickness
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