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Abstract: This paper provides an overview of modern research on magnetoplasma methods of
influencing gas-dynamic and plasma flows. The main physical mechanisms that control the inter-
action of plasma discharges with gaseous moving media are indicated. The ways of organizing
pulsed energy input, characteristic of plasma aerodynamics, are briefly described: linearly stabilized
discharge, magnetoplasma compressor, capillary discharge, laser-microwave action, electron beam
action, nanosecond surface barrier discharges, pulsed spark discharges, and nanosecond optical
discharges. A description of the physical mechanism of heating the gas-plasma flow at high values
of electric fields, which are realized in high-current and nanosecond (ultrafast heating) electric dis-
charges, is performed. Methods for magnetoplasma control of the configuration and gas-dynamic
characteristics of shock waves arising in front of promising and advanced aircraft (AA) are described.
Approaches to the control of quasi-stationary separated flows, laminar–turbulent transitions, and
static and dynamic separation of the boundary layer (for large PA angles of attack) are presented.

Keywords: mathematical modeling; analytical model; thermodynamic model; numerical simulation;
physical modeling

1. Introduction

The application of plasma technologies in aerodynamics contributes to a permanent
interest, which is mainly related to the potential impact on the integral and local flow
characteristics of bodies: modification of the shape and the intensity of densification jumps,
control of boundary layers and flow separation areas, and the impact on vortex structure in
a flow, a cavern, and others. For instance, several new methods of control and modification
of a gas flow near AA were proposed in the article [1]. These methods were applied in
plasma generation, magnetoplasma control of a flow and generation of the energy in it by
the counterflow of a hot gas and other thermal effects.

The attractiveness of MagnetoPlasma Aerodynamics (MPA) is associated with the
reliability and absence of control elements in the gas-plasma flow, the flexibility of con-
trolling the spatio-temporal impact, the smallness of the inertia of the impact [2–13], the
weight and energy consumption, the geometric dimensions of the plasma actuators, as
well as the possibility of changing the plasma-dynamic characteristics of the flow using
electric and magnetic fields, broadband radiation and external thermal effects. At the same
time, the relatively low power consumption of plasma actuators makes it possible to create
fundamentally new systems for controlling the trajectory of Advanced Aircraft (AA).

Thus, an important practical advantage of the effect of plasma on a gas-dynamic
flow is its speed. At the same time, this kind of influence can be effective in a wide
range of frequencies and gas-dynamic flows, ranging from stationary flows to separated
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and turbulent flows. Electric discharge technologies based on the creation of plasma
formations using electric discharges, laser or microwave plasma can be effective ways
to reduce the ignition time and control supersonic gas flows in the propulsion systems
of advanced aircraft. The idea of using plasma methods for fuel ignition is based on the
non-equilibrium generation of chemically active particles or clusters that accelerate the
combustion process. As a rule, it is assumed that a possible gain in the energy expended to
accelerate combustion in plasma methods is achieved by creating a non-equilibrium state
of the plasma in the discharge.

Long studies of complicated physical processes occurring at high altitudes (about
20–30 km) and flight speeds of advanced aircraft (Mach number ≥ 6) have led to the
emergence of a new scientific direction, which is physical gas dynamics (the subject of
study is high-speed and high-temperature gas flows normally accompanied by a great
amount of non-linear physical processes). One of the most exciting scientific directions (in
physical gas dynamics), which is related to recently discovered methods of AA control, is
based on MPA. Magnetoplasma aerodynamics studies the phenomena and processes of
interaction between a high-temperature gas flow and electric and magnetic fields. The main
advantages of MPA (over gas-jet and mechanical actuators) in the methods of controlling
high-speed flows are illustrated in articles [14,15] and the review [11]. As a reminder, a
technical device employed in controlling gas-dynamic flows by plasma is a plasma actuator.

The term “plasma dynamics” used in the review implies a branch of physics that
includes a mathematical description (as a continuum) of plasma dynamics (considering the
electromagnetic fields and the currents), radiative transfer processes in plasma (in a wide
wavelength range), and its interaction with solids (electrodes, vessel walls, etc.).

In general, technical devices for controlling a gas-plasma flow can be roughly divided
into the following main classes: acoustic; mechanical; electric; thermal; plasma–chemical.
This review only considers the mechanical class of device (plasma actuators), which con-
trols a gas’s dynamic flow by plasma. As of now, the following main devices can be
categorized as the main types of plasma actuators: pulsed surface discharges with a solid
insulator; pulsed electric discharge jet actuators (magnetoplasma compressors, capillary
discharge, etc.); stationary arcing; microwave discharge; laser discharge; actuators based
on combined thermal and MagnetoHydroDynamics (MHD) effects.

The research areas mentioned above correspond to a class of currents related to the
external flow stream of an AA construction surface. Nowadays, methods and technologies
aimed at intensifying the processes of mixing fuel components, reducing induction time,
stabilizing combustion, and increasing the fuel burnout rate in modern and advanced
propulsion systems are intensively researched.

It is worth mentioning that the possibilities for experimental research on these sorts
of flows near the surface and inside the construction of AA involve a lot of technical
difficulties and require large financial investments. Therefore, the study of the possibilities
of controlling a flow by magnetoplasma (with AA aerodynamics) requires the development
of physical and mathematical models and computational models appropriate for the
analysis of magnetohydrodynamic flows in high-speed, radiating, non-equilibrium gas
and plasma streams in a highly heterogeneous environment. However, in this case, high
accuracy of calculations is necessary (particularly in the calculations of temperature and
heat flux distributions), and strict requirements are imposed on the software package and
numerical methods for modelling high-speed gas-plasma flows near bodies with complex
geometric shapes. It is also important to note that the mathematical modelling of a gas flow
reacting in an AA engine includes the choice of a chemical kinetics scheme.

There is a need to explore new methods of controlling the motion of advanced aircraft
and high-speed gas and plasma flows under the conditions considered here. Conse-
quently, there is a need for the review, which analyses experimental and mathematical
modelling [1–15], currently playing an enormous part in the development of AA:



Aerospace 2023, 10, 662 3 of 34

• Controlling the flow and surface flow of the AA with volumetric ponderomotive
forces. It is worth noting that controlling the flow near AA with the magnetoplasma
effect is based on controlling the main flow as well as the boundary layer;

• Controlling plasma-stimulated combustion in high-speed gas and plasma flows.

The initial effect may be accompanied by flow resistance reduction, modification of
the boundary layer (e.g., by controlling laminar–turbulent transition), and emergence of
controlling forces and momentum on aerodynamic surfaces, may lead to the changing of
the Shock Wave (SW) structure of the stream in a high-speed motor circuit, may also be ac-
companied by reducing thermal stress on the surface of AA and separate components of its
structure, reducing wave impedance and frictional resistance by generating or suppressing
flow separation area, and may lead to the suppression of the unstable flow pattern of AA.

Plasma-stimulated effects may result in plasma activation of the fuel and an oxidant,
initiation of chemical reactions provided that the flow has a high speed, stabilization of the
flame front, plasma–chemical fuel conversion, and the kinetic effect on the reacting flow.

2. Methods for Controlling the Flow around the External and Internal Surfaces of AA
2.1. Methods Description

As it has already been mentioned, the primary focus these days is on active methods
of influencing the flowing process of AA that not only stabilize the boundary layer but
also generate a desired flow regime in a selected area on the AA surface. Magnetoplasma
aerodynamics provides a rather large set of tools to accomplish these goals. There are two
ways of affecting gas-plasma flow that are most commonly used in practice:

• Dynamic influence based on Lorentz force and electrostatic force (in the presence of
uncompensated charges in the environment);

• Thermal influence.

The characteristic length and time scales of a high-speed gas-plasma stream are the
maximum geometrical dimensions of AA and the time a stream particle spent near a plasma
actuator (or AA). In the meantime, a considerable number of characteristic times that have
a value of the order of 10−10 to 10−2 s occur in a plasma flow with chemical reactions
and electric charge relaxation as well as translational, rotary, and oscillating relaxations.
Minimum time scale is determined by the establishment of electroneutrality in a plasma
flux and has a value of the order 10−11 to 10−9 s. Maximum characteristic time varying
from 10−3 to 10−1 corresponds to the time spent in a gas-plasma environment near (or
within) AA.

In this case, the main physical mechanisms of influence on the characteristics and
structure of the flow close to the surface and inside AA are a change in the thermodynamic
properties of the gas (thermal influence), modification of structural elements of the flow
field, generation or stabilization of the local flow separation areas, a change in bound-
ary layer characteristics (dynamic or thermal influence), and others. Such effects in the
magnetoplasma aerodynamics of AA may be realised by generating microwave plasma,
plasma in electric discharges of direct and alternating current, mixing the initial flow with
high-enthalpy plasma jets containing active radicals, etc. Surface discharge, a laser torch,
as well as a beam of electrons (to initiate “emergency” ignition of the fuel mixture in the
working channel of AA) can be used for the purpose previously mentioned.

Volume gas discharges are employed in controlling flowing regimes around bodies of
various shapes; surface discharges make it possible to impact boundary (dynamic, thermal)
layers near the streamlined AA surfaces. The definition of physical mechanisms causing the
change of modes of discharge development in a gas flow, optimization of energy input into
the flow, analysis of physical and chemical kinetic processes in discharge plasma, research
of discharge effects on the value of surface friction, heat exchange, and the local structure of
a flow (flow separation areas, compaction jumps) remain relevant in this kind of research.

The beginning of the paragraph is devoted to different types of surface discharges
(volume discharges are described below) and the physical mechanisms of their impact on
the gas-plasma stream. The first significant feature of a surface discharge is that a solid
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wall largely defines the energy input mode and the plasma parameters of the discharge,
limiting the current channel and stabilizing its position in space (a solid wall essentially
limits the spectrum of possible oscillations in plasma). The next distinctive feature is that
the Dielectric Inter-Electrode (DIE) (placed in a homogeneous electric field) disturbs its
uniformity. In this situation, plasma surface discharge always occurs along the DIE surface.
And the voltage at the inter-electrode gap is lower (compared to an air gap without a DIE),
provided there is a DIE.

The whole range of surface discharges (see Figure 1) with a solid dielectric can be
described by two typical cases.
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Figure 1. A system of electrodes with a predominant tangential (a) and normal (b) component of the
electric field.

First typical case. In this situation, the inhomogeneous electric field is mainly deter-
mined by the tangential (to the surface of a DIE) component of the electric field strength at
all points of the dielectric surface (Figure 1a).

Second typical case. The inhomogeneous electric field is characterized by the predom-
inance of the normal (to the surface of a DIE) component of the electric field strength
(Figure 1b).

These and intermediate options for surface discharges with a solid insulator can be
explained with a simple circuit diagram. If the capacitance C1 is high, a “sliding” discharge
with capacitive feeding is realised, if the electrical resistance R1 is high, the discharge
develops as a “barrier” discharge due to surface conductivity. Capacitance C1 depends on
the dielectric constant of the insulator ε1. The resistance R1 depends on surface conductivity
σ that is related to the conductivity of the insulator and to its surface state.

Further in the review, we consider various options for the use of pulsed plasma-
dynamic and non-equilibrium discharges (see, e.g. Figure 2).
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Figure 2. Conventional scheme of a nanosecond “sliding” or “barrier” surface discharge: R1, C1 are
the resistance and capacitance of a solid dielectric; R2, C2 are the resistance and capacitance of solid
air in the interelectrode gap.

2.2. Pulsed Plasma Dynamic Surface Discharges

The circuit (1st typical case) of a Line-Stabilised Surface Discharge (LSSD) and general
structure of the plasma discharge in the cross-section consist of 1—dielectric inter-electrode;
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2—power electrodes; 3—initiating electrodes; 4—discharger; 5—light-erosion vapour area;
6—contact boundary; 7—plasma-gas area; 8—the front of the outer discharge boundary
with surrounding gas; C0—capacitance of the capacitor bank; L0—inductance of an LSSD
switching system; W0—energy stored in the capacitor bank.

These are the characteristic electrical parameters: inter-electrode element made from
Al2O3 with the length varying between L = (25–100) cm; the characteristics of the electric
circuit of a discharge varying in the ranges C0 = 3 µF, R0 = 0.01 Ω, U0 = (25–100) kV,

W0 =
(C0U2

0)
2 ≈ (1–20) kJ, L0 = 0.5 µH.

As a reminder, LSSD is one of the forms of pulsed high-current discharge in gas
occurring during a pulsed discharge of a capacitor bank into an inter-electrode gap above
the special insulating element. A discharge of this type can be carried out both in an inert
gas environment and in the air [16].

Given the characteristic electrical parameters of the discharge circuit, the current pulse
of an LSSD is a damped sinusoidal signal with a first current half-period duration of
t1 ≈ (3–15) µs, which contains approximately four half-periods, and the duration of the
first discharge half-period is longer than the other. The characteristic scale of the discharge
current amplitude ranges from a few tens to hundreds of kiloamperes (with almost no
influence of the gas type on the current characteristics of the discharge). It also should be
noted that a sufficiently large value of current during the second and third half-periods
leads to a considerable influence of electromagnetic forces on the characteristics of the
discharge plasma of an LSSD.

The possible range of LSSD operating in the air (at pressure ≥ 1 atm, discharge
channel length L < 1 m) corresponds to variations in the capacitance of the capacitor bank
C0 = (1–6) µF and an initial voltage U0 = (25–200) kV. LSSD is characterized by a strong
decay of the discharge current with a maximum joule energy release into the plasma in the
first half-period (t1 ≤ 10 µs) of the discharge current J.

The most important complex parameter Pel (average specific electric power) that
determines nearly all LSSD characteristics may be suggested as Pel =

W1
(Lt1)

(in the formula,
W1—energy supplied to the LSSD plasma at the end of the first half-period of current) and
its variation range is Pel = (1–100) MW

cm for the discharge circuit parameters mentioned
above. The energy release dynamics depend on the efficiency of the transformation of the
primary energy source W0 (capacitor bank) into the energy of discharge plasma Epl(t),
which can be defined as the transformation efficiency factor η(t) = Epl(t)/W0 for arbitrary
time t.

Furthermore, the kinetic energy of the LSSD plasma ηkin ≈ (0.03–0.05)% is signifi-
cantly lower than the internal ηint ≈ (40–60)% energy of the plasma during discharge. In

the calculations, ηkin(t) = Ekin(t)/W0, ηint(t) = Eint(t)/W0, Ekin(t) =
∫
V

(
ρ

(→
V
)2

/2

)
dV,

and Eint(tm) =
∫
V

edV, where
→
V—velocity vector; ρ—LSSD plasma density; e—specific

internal energy of the LSSD plasma.
According to the calculations in the article [16], two different modes of LSSD are possi-

ble for this range: “explosive” and “magnetogasdynamic”. Physical processes (W0
®QJ

®

Eint + Ekin + Epl) occurring in these modes are further considered with two energy-power
options of LSSD: “explosive” mode—Pel ≈ 10 MW

cm (U0 = 50 kV, L = 50 cm), “magne-
togasdynamic” mode—Pel ≈ 100 MW

cm (U0 = 100 kV, L = 25 cm). Based on the results
presented in the article [16], during the first half-period of discharge current, J lateral
expansion of an LSSD discharge channel has an approximately constant velocity (∼ 2km/s,
Pel ≈ 10 MW

cm ; ∼ 4km/s, Pel ≈ 100 MW
cm ). If Pel ≥ 40 MW

cm , the spatial size of a LSSD discharge
channel along the Z-axis is larger than along the Y-axis. There is radiation and magne-
togasdynamic change of the parameters in the rupture area; the outer boundary of the
discharge is a GD-rupture with parameters different from the parameters of a strong UW
(e.g., ρ1/ρ0 < (γ + 1)/(γ− 1)). This effect is most prominent in the direction of the Y-axis
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due to a “stiff” non-deformable limiter in the form of DIE along the Z-axis and its absence
in the direction of the Y-axis.

The main characteristic of LSSD broadband radiation is the brightness temperature.Tbr,i.
The dynamics of the brightness temperature Tbr,i(t) change in the corresponding spectral
interval are investigated in the works [17,18]. These results show:

- In the initial and final stages of discharge, the distribution of electro-discharge plasma
radiation is close to the spectrum of black body radiation—the bright temperatures in
all studied spectral intervals are almost identical [17,18];

- LSSD Brightness temperatures reach maximum in moments of time close to maxi-
mum energy input power (maximum current) (at Pel ≈ 10 MW/cm—Tbr2,3 ~ 30 kK;
for Pel ≈ 100 MW/cm—Tbr,2 ~ 30 kK, in argon Tbr,3 ~ 40 kK and in the air Tbr,2,3 ~ 40 kK)
and significantly fall for the second and third spectral intervals in the second
(16 kK—MW/cm; 25 kK—Pel ≈ 100 MW/cm) and the third half-periods of full cur-
rent (13 kK—Pel ≈ 10 MW/cm; 20 kK—Pel ≈ 100 MW/cm) [17,18];

- The distribution of the radiation intensity by spectrum (and therefore Tbr,i), at mo-
ments close to the maximum discharge current, is markedly different from the energy
distribution of the completely black body, both in air and argon, only for the variant
with Pel ≈ 100 MW/cm [17,18].

As a rule, the aerodynamic performance of the AA is improved by optimizing the
shape (mainly resulting in reduced wave resistance) of the structure’s surface. For example,
a method for controlling the aerodynamic characteristics of the airfoil AA by modifying the
configuration of the bearing surface by means of a magnetoplasma impact is proposed in
the work [16]. Following the work of [16], the main mechanisms for influencing (in terms
of practical use) linear surface discharge (LSSD) gas flow near AA can be attributed to the
LSSD plasma channel system, which creates an obstacle (approximately as a «solid» barrier)
for an incident flow. As a result, not only the curvature of the AA profile changes but also
the aerodynamic characteristics of the profile.

The studies carried out in the works [19–22] showed that it is possible to control the
burning mode in the combustion channel of a hypersonic scramjet engine-type power plant
using a pulse-periodic transverse air injection upstream and downstream of the ignition
area of the fuel components (see Figure 3, for example). Here we shall notice that the
LSSD-type surface discharge can be used for the same purpose.
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The method of initiation of long radiating discharges in dense gas environments, based
on the use of the so-called «sliding» discharge technique, was widely used for improving the
aerodynamic characteristics of AA. The essence of the method consists of the preionization
of a gas in an interelectrode gap by charging currents of the distributed surface capacity of
a dielectric. Another possible way to initiate high-current surface discharges is through the
use of the so-called «barrier» discharge. Barrier discharge is a type of sliding discharge and
therefore inherits its main disadvantages.

2.3. Pulsed Nanosecond Surface Discharges

Consider in more detail the second typical case of surface discharges with solid dielec-
tric: the interaction of streamers and spark discharges with the surface of the interelectrode
dielectric insert. The main physical mechanisms of nanosecond discharge interaction with
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the insert surface are shown in Figure 4. It follows from Figure 4 that the spread along
the surface of discharge streamers is accompanied by photoemission (a photoeffect caused
by UV radiation) of electrons and charge accumulation (adsorption) on the surface of the
interelectrode insert. As seen in Figure 4, the interaction of streamers and spark discharge
with the surface of the insert is of different character (Figure 5) [23].
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Figure 4. Interaction of streamers with the surface, various mechanisms: 1—through a dustable
surface charge, 2—through surface conductivity, 3—through dielectric polarization, 4—through
photoemission and thermoemission (in the case of a spark), 5—dielectric.

Figure 5 shows two types of streamers (recorded in experimental studies [24]) that
can be formed in a nanosecond surface discharge: the first type is associated with an
increase (due to the accumulation of bulk spatial charge) in electric field intensity along the
insert surface; the second type is associated with distortion (due to the accumulation of
photoemission electrons on the insert surface) of the shortest electric field power lines.
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Experimental studies [23,24] investigated the influence of the geometric parameters of
dielectrics (thickness, length) as well as the physical properties (conductivity, dielectric per-
meability) of various dielectrics and semiconductors. Studies have concluded that dielectric
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permeability is weak (works [23,24] used BK7 optical glass with dielectric permeability
2.3–4.5 as well as aluminum oxide) in the process of forming a pulsed nanosecond surface
discharge. In these studies, it was also noted that specific surface conductivity influences
physical processes in the discharge, apart from dielectric permeability. This conductivity in
air experiments may depend on the humidity and properties of the Earth’s atmosphere.

The necessary conditions for the breakdown of the «sliding» or «barrier» surface
discharges are the achievement of a sufficiently large charging current Jzar of the distributed
capacitance of the interelectrode dielectric insert: Jzar = d(CU)/dt, where the C = εε0hx

δ is
the distributed dielectric capacitance; U is the voltage; ε, ε0 are the dielectric permeability
of the vacuum and interelectrode dielectric insert material; h, δ are the width and thickness
of the interelectrode dielectric insert; and x is the current coordinate of the ionization wave
(current front). The specific current required Jzar depends on a number of factors (length of
discharge interval, gas type, etc.).

At the same time, it is obvious that to organize (in this way) a reliable breakdown of
the discharge gap, it is necessary to use dielectrics with low thickness δ and with special
electrical properties (high values of dielectric permeability ε0 and electrical strength); apply
a high operating voltage U and the rise rate d(U)/dt. The need to use dielectrics with
special properties greatly limits the choice of construction materials and complicates the
technology of this kind of plasma actuator. Note that the linear-stabilized surface discharge
is largely free from the noted shortcomings of the «sliding» and «barrier» surface discharges.

Pulse-distributed surface «sliding» discharge (surface discharge with solid dielec-
tric) of nanosecond duration (plasma sheet) can be used as a plasma actuator to affect
flow [25–29]. It consists of surface-sliding dielectric channels (streamers, Figure 5), forming
a plasma layer comparable in thickness to the boundary layer of supersonic flow (~0.5 mm).
With the help of such discharges, it is possible to transfer energy and ultraviolet radiation
into the near-surface (subsonic, transsonic or supersonic) gas flow area.

In the works [30–32], it is shown that by acting (by means of ejection Joule heat) on
the gas-plasma medium with the aid of a surface sliding discharge, it is possible to reduce
(more than twice) the wave resistance of the streaming wing in the transsonic flow.

Figure 6 shows a system of electrodes (two typical cases) used to create a pulsed
sliding nanosecond surface discharge. When a high-voltage voltage pulse is applied to
electrode 4, the dielectric surface 3 exhibits an offset current, which is determined by the
voltage value, the steepness of its growth, and the variable capacity between the surface
discharge plasma and electrode 2, covering the opposite side of the dielectric. In this case,
the sliding surface discharge acts as an ionizer around the first electrode 1, wherein the
constant voltage component creates a sliding corona discharge between electrodes 1 and 4.
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Figure 6. Configuration of electrodes for sliding surface discharge: 1—anode; 2—cathode;
3—interelectrode dielectric insert; 4—additional electrode.

The two main advantages of such a discharge Figure 6a shows that a large area of
plasma can be created (this requires at least 7 kV per centimeter between electrode 1 and
electrode 2). In addition, this discharge is resistant to the transition from a smoldering
discharge to an arc discharge. In the work [33], studies have been carried out on the
management of flow separation at the flow of the profile NACA0015. Studies have shown
that irregular (impulse) action with a surface sliding discharge is more likely to delay the
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flow, requiring less plasma actuator power. Experimental studies on changing the structure
of the current near the AA with a sliding discharge are presented in the papers [34,35].

Interesting experiments (for attack angles up to 20 degrees and a flow rate of 110 m/s)
were performed by a scientific group from Russia [36–39]. The influence of air humidity on
the sliding surface discharge while controlling the flow is described in [40,41].

In all the above experimental cases [30–32] and [33–41], perturbations (from «thermal»
and «plasma» effects) are determined by parameters of thermal and plasma sources (actua-
tors), geometry of the arrester, component composition of the environment, etc. In order to
study the physical basis of the change in the current structure near the AA, we will obtain

an expression for vorticity
→
Ω = rot(

→
V). To do this, the rotor operation is applicable rot(

→
V) to

the Navier–Stokes equation (including kinematic viscosity v = const), which additionally
takes into account the influence of electrical and magnetic fields:

∂
→
Ω

∂t
+

(→
V∇

)→
Ω =

1
ρ2∇ρ×

(
∇P− 1

c

[→
j ×

→
H
])

+∇ρ×→g + v∆
→
Ω +

1
ρ
∇ρ∗ ×

→
E − ρ∗

ρ2∇ρ×
→
E ,

wherein
→
Ω = rot(

→
V)—vortex vector; ρ, V, P—density, velocity vector, flow pressure;

→
E ,
→
H,

→
j —vector of electric, magnetic and current density strength, ρ∗ = e∑

k
Zknk—space charge,

v—kinematic viscosity,
→
g —acceleration of gravity. Here we note that the part

∣∣∣∣ 1
ρ∇ρ∗ ×

→
E
∣∣∣∣

also the part
∣∣∣∣ 1

ρ∇ρ×
→
E
∣∣∣∣ may be neglected. Then the equation for vorticity

→
Ω = rot(

→
V) will

take a simpler look:

∂
→
Ω

∂t
+

(→
V∇

)→
Ω =

1
ρ2∇ρ×

(
∇P− 1

c

[→
j ×

→
H
])

+∇ρ×→g + v∆
→
Ω

This equation implies that a vortex movement may occur when

∇ρ×
(
∇P− 1

c

[→
j ×

→
H
])
6= 0; the condition of vortex formation (vortex is not formed if

∇P ≈ 1
c

[→
j ×

→
H
]

) with an external magnetic field tвихр ≈ Ω∗ρ∗ε2∣∣∣∣P∗∓ H2∗
8π

∣∣∣∣ < min(
tкoнв ≈ L∗

V∗ , tдифф ≈
r2

0
v

)
.

Note that for a gas-plasma flow moving at some speed along a heated surface, see
Figure 7a. The pressure gradient ∇P is directed against the flow, but the temperature gra-
dient ∇T—directed toward the interelectrode insert surface. As follows from the equation

for vorticity
→
Ω in the case of «thermal action» the circulation of the vortex

→
Ω is determined

by the form ∂
→
Ω/∂t ∼ ∇P×∇T (a consequence of the non-collinearity of pressure and

temperature gradients). Thus, the «thermal effect» twists the flow counterclockwise [42,43].
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For the gas flow at the surface from the surface «barrier» surface discharge (Figure 7b),
on one half-period of the discharge current, when the open (gas flow) electrode has a
positive potential relative to the closed (located under insert) electrode, electrons drift to
the edge of the open electrode. Since electrons are much more mobile than ions, when they
move in the plasma, a gradient of volumetric charge is created, directed to a positive elec-
trode, and an electric field is directed to the lower electrode. In this situation (according to

the vortex equation), the circulation of the vortex is determined by a part ∂
→
Ω/∂t ∼ ∇ρ∗ ×

→
E

(the consequence of the non-collinearity of the volumetric charge gradient and electric field
intensity), which in this case twists the incoming flow counterclockwise [42,43] to create a
vortex interacting with the outer flow.

The basic idea of the given approach is the viscous–non-viscous interaction of the
formed vortex and gas-plasma flow. For energy reasons, it is clear that there will be a
capacity limit on the actuator, above which the use of «thermal» or «plasma» impact is not
effective. So, the question arises as to the shape of the pulse and the location of the actuator
for a more effective impact on the flow.

In the work, Ref. [44] experimentally investigated the characteristics of a distributed
sliding discharge surface length of 300 ns (plasma sheet) in heterogeneous supersonic air
flow with a vortex zone behind a thin wedge (Figure 8) in an impact tube channel. The
spatial distribution of the discharge radiation, the spectral composition of the radiation,
and the discharge current in the fluxes behind the flat shock waves with Mach numbers
2.4–3.5 (Mach numbers 1.16–1.47, the density 0.02–0.20 kg/m3) have been analyzed in
the work [44]. It is shown that in flow with vortex zones, «sliding» surface discharge
develops in the form of a channel width of 1–3 mm, located in the area of reduced density
at a distance (5.5–9.0) ± 2 mm from the bottom of the wedge. The electron concentration
in the discharge channel, which is significantly (10–20 times) higher than the electron
concentration at discharge initiation in a homogeneous medium, has been found.
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Figure 8. Schematic representation of gas flow near the wedge and distributed sliding surface
discharge: 1—flow; 2—discharge area; 3—discharge channel; 4—wedge.

The research [45–47] elaborates further on the paper [44]. In this case, gas flows
with Mach numbers 1.30–1.60 were created behind flat shock waves with Mach numbers
2.8–4.2 in the shock tube (Figure 9). On the lower wall of the shock tube (Figure 9) was
placed a small obstacle of dielectric in the form of a 48.0 × 6.2 × 1.9 mm3 rectangular
block. The long part of the obstacle was perpendicular to the glass (walls) of the shock
tube. Quasi-static current field (installed for ~200 µs) contained an angled shock wave that
interacted with the boundary layer on the top wall of the shock tube.
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Figure 9. Structure of the plasma gas flow in the discharge chamber with a barrier on the bottom wall:
1—discharge area; 2—research area; 3—flow; 4—obstacle; 5—oblique shock wave; 6—shock wave.

Schemes of two types of interaction that are realized when an oblique shock “falls”
onto the boundary layer are shown in Figure 10. In the case of a laminar boundary
layer, the interaction with the boundary layer can be continuous but contain a region of
reduced density (Figure 10a); in the other case, interaction occurs with the formation of
flow separation (Figure 10b). A pulsed surface “sliding” discharge was initiated on the
upper wall of the shock tube in the time range of 70–1200 µs after the shock wave passed
through the obstacle. Synchronization of the discharge started with the passage of the
shock wave front and was carried out from the signals of pressure piezo sensors in the
shock tube channel.
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The discharge was triggered at a specified time after the shock wave passed the test
area in the discharge chamber, including the stage of quasi-static flow around the obstacle
by the supersonic flow. In the experiments, the discharge current, emission spectra, spatial
characteristics of radiation at the initiation of discharge at different stages of non-stationary
supersonic flow, and different parameters of flows behind shock waves are recorded
and analyzed.

Based on the analysis of the dynamics of shock waves from the discharge region, it is
shown that this type of discharge provides a high energy impact on both the laminar and
turbulent boundary layers. By comparing the experimental and computational dynamics of
the flow in the shock tube channel, it was established [45–47] that the fraction of discharge
energy converted to heat during energy conversion to heat during energy supply (~200 ns)
increases from 15% to 65% with an increase in medium density from 0.05 to 0.45 kg/m3.
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The temperature of the near-surface layer of the gas increases by 600–1000 K. It has also
been established that the initiation of a «sliding» surface discharge leads to an increase in
the mean pressure at the channel wall in the flow behind the shock wave by 6–18% (at flow
Mach numbers 1.1–1.6 and densities 0.06–0.20 kg/m3).

In the work [36], it was proposed to use a pulsed nanosecond «sliding» surface
discharge in the plasma actuator. The values E/n (n is the concentration of neutral particles
and E is the intensity of the electric field) in discharges of this type may exceed the threshold
of breakdown several times. The high values of the reduced electric field seem to be
the obvious advantage of this discharge. The first experiments [36] showed that with
nanosecond pulse discharge, it is possible to reliably manage the separation of the boundary
layer at speeds of up to 75 m/s with a linear power consumption of less than 1 W/cm.
Later, the effect of the pulse sliding discharge on the flow separation was experimentally
investigated in [38]. Here, the high efficiency of pulse discharge was demonstrated up to
110 m/s. It was concluded that the main mechanism of plasma impact was perturbation
introduced into the boundary layer, not gas acceleration. It has been shown that changing
the pulse rate in a plasma actuator optimizes its impact on resistance force, lift force and
flow connection. The optimum frequency turned out to be ~U∞/L, where U∞ is the speed
of the main flow and L is the typical distance along the surface to the separation zone. This
result was later confirmed in an experiment [48] for Reynolds numbers up to 106 and a
maximum free flow rate of 60 m/s.

2.4. Pulse Nanosecond «Barrier» Surface Discharges

Figure 11 provides a typical diagram of nanosecond surface dielectric «barrier» dis-
charge (Surface Dielectric Barrier Discharge (ns-SDBD)) [49–52]: Two flat electrodes (a high-
voltage electrode (1) are shown above and a low-voltage (grounded) electrode (2) at the
bottom in Figure 11) are separated by an interelectrode dielectric insert.
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3—plasma layer.

The plasma channel of the SDBD discharge at the beginning of the puncture process
occurs on the edge of the high-voltage electrode after the high-voltage pulse is applied to it.

Development of SDBD-discharge in air at atmospheric pressure under the action of
28 kV high-voltage pulses on high-voltage electrodes is demonstrated in works [50,51,53,54].
The half-width of the pulse was 23 ns, and the rise time and the drop time of the pulse
were 8 ns and 15 ns, respectively. The frequency of repetition of high-voltage pulses was
1 kHz. The low-voltage electrode was covered with a 0.4-mm-thick PVC film. The dielectric
permeability of the film was ε ≈ 2.7.

The distribution of a cathode-directed (positive) SDBD-discharge can be conditionally
described by means of four stages.
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In the first stage, the discharge grew over the grounded electrode (1 ns, 3 ns and 4 ns).
The discharge propagation rate at this stage was approximately 1 mm/ns. At the same
time, you can see the broadband radiation of the entire streamer channel, not only the
wavefront of the ionization wave.

The second stage took 5 ns (6 and 10 ns) and was observed when the length of
the streamers exceeded the length of the lower electrode (the speed of the streamer
propagation < 0.3 mm/ns).

The third stage (the «dark» phase of SDBD-discharge) came when the radiation dis-
charge was not observed (from 13 ns to 20 ns). In the third stage, during the time of the
distribution of streamers, the surface of the interelectrode dielectric insert was charged.
Thus, when the ionization wave reached the electrode surface, the potential of the electrode
became smaller than the potential of the interelectrode dielectric insert surface.

This led to the start of a reverse-discharge wave (fourth stage), which contributed to
the removal of the charge (second burst of radiation) from the dielectric surface of the SDBD
discharge (22 and 37 ns). Anode-directed (negative) discharge developed almost as well as
cathode-directed discharge [52]. Thus, an SDBD discharge (any polarity) radiates not only
a front of ionization but also plasma channels. This circumstance indirectly indicates the
presence of a high intensity of electric field in a sufficiently large area behind the front of
the ionization wave.

The possibility of a significant effect of SDBD on the gas-plasma flow is mainly de-
termined by rapid heating, which is related to characteristics such as discharge energy,
efficiency and energy transmission speed from electric current carriers (electrons) into the
internal energy of the gas-plasma medium. The dynamics and physicochemical kinetics of
heating gas-plasma medium by SDBD discharge are determined by the degree of freedom
of molecules (translational, rotational, oscillating or internal) and the transfer of energy as
a result of interaction with electrons generated by the discharge. This heating process in
weakly ionized non-equilibrium plasma is determined by the [55] reduced electric field
E/n (n—concentration of neutral particles), on which the average energy of electrons in
the discharge and all other electronic characteristics depend. Another important charac-
teristic of rapid gas heating in ns-SDBD is the dynamics of gas temperature change. The
dependence of the positive temperature of the molecules in ns-SDBD on the voltage during
the discharge phase and 1 µs after it for different polarity discharges shows that with an
increase in voltage, the temperature increased in both polarities of the discharge. From
the data obtained, it appears that air at atmospheric pressure can be noticeably heated
(by 150 K) during the discharge stage at times of the order of 10 ns and that this heat-
ing is significantly increased and reaches hundreds of degrees after 1 µs after the pulse.
Systematic measurements of ns-SDBD characteristics, including the limit length and rate
of ionization wave propagation, as well as the plasma layer thickness, were made in the
air [51] at different pressures and voltage pulses.

The discharge propagation length was reduced from 50 to 5 mm with an increase in
pressure from 0.1 to 1 atm. The plasma layer thickness decreased from 1.5 to 0.2 mm. Thus,
the increase in air pressure leads to a proportional reduction in plasma layer size.

In [56,57], the share of energy quickly transferred to heat in SDBD discharge was
determined. After 50 ns, the discharge was 25% at E/n = 164 Td and increased to 75% at
270 Td. The initial pressure was atmospheric, and the initial gas temperature was between
300 and 1000 K. Thus, numerous experiments show that the efficiency of rapid (on times
less than 1 µs at 1 atm) heating of air in the discharge plasma increases with the growth
of the led electric field E/n and gas pressure. At high (>400 Td) electric fields, the energy
quickly transfers to heat in the air plasma of the same order as the energy invested in the
discharge. Thus, available experimental research shows a high efficiency of rapid heating
in SDBD discharge in air at high (up to ~1000 Td) electric fields and pressures.

Thus, the results of these works [58–65] clearly demonstrate the thermal nature of
impact wave interaction with non-equilibrium plasma. The effect of plasma ns-SDBD
actuators on turbulent shear layers (both in the case of a normal mixing layer and the flow
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near the wall with the reverse step) has been experimentally investigated in the cycle of
the work.

The result of the interaction between the nanosecond SDBD discharge and the ejected
shock wave in front of the cylinder in a flow at M = 5 is represented in ref. [65]. The gas
temperature in the plasma layer was only a few tens of degrees above the flow braking
temperature (T = 340 ± 30 K). The interaction between the compression wave created by
the expanding gas from the discharge area and the head of the deflected shock wave causes
it to shift upwards in the flow direction, thereby increasing the wavelength departure
distance from the body surface by 25%.

Scaling of the Nanosecond Pulse Plasma Actuator was Investigated in [66–68]. Flow
separation control experiments were performed on a rectangular wing (size 0.5 × 1 m2)
using DBD discharge in subsonic flow with Reynolds numbers Re = (0.35–0.875) × 106

by chord. Surface pressure measurements and flow visualization showed that plasma
actuators can significantly reduce or eliminate the flow separation from the wing, which
results in a reduction of the negative pressure peak near the front edge on the top surface of
the profile. Data were obtained from a wide range of attack angles, flow velocities, plasma
excitation frequencies and input power. In works [67–69], the possibility of using different
voltage pulses was also discussed, including microsecond and nanosecond pulses. As
in [66], it has been shown that the efficiency of the actuator is highly dependent on the
discharge frequency.

2.5. Surface Glow DC Discharge between Sectioned Electrodes

Calculations and experimental studies on the spatial structure of the high-speed gas
flow in a flat channel with a glow surface discharge are given in works [69–71]. Note
that in all of the listed works [69–71], the flow of high-speed gas near the flat surface
(actually a plate) was considered. Thus, recall, the classic theory [72] of viscous–non-
viscous interaction near a flat surface crossed by a flow of gas at high speed.

In this theory, the pressure distribution along the surface of the streamlined plate is
related to the thickness of the growing boundary layer and is calculated using the viscous
interaction parameter:

_
χ = M3(C/Rex)

1/2, where M = V∞
α∞

, C = µbρb
µ∞ρ∞

, Rex = ρ∞V∞x
µ∞

, ρ,
µ—density and dynamic viscosity coefficient, V∞, a∞—speed of an oncoming flow and
speed of sound in it, x—distance along the surface of the plate from its front edge, and
indexes b and ∞ specify the properties on the outer limit of the boundary layer and in the
incoming gas flow.

In the asymptotic theory of weak Lisa–Probstein interaction shown (for a flat plate
with adiabatic index γ = 1, 4 and the number of Prandtl Pr = µ∞cP∞

λ∞
= 0.725, cP∞,

λ∞—constant pressure specific heat capacity and thermal conductivity of the oncoming
gas flow), the distribution of the pressure induced by the viscous interaction of the in-
cident flow with the boundary layer is determined by the following dependence (with
second-order accuracy of this theory): P/P∞ = 1 + 0.31

_
χ + 0.05

_
χ2. The work [72] contains

experimental data on the pressure distribution on the heat-insulated plate located at the
zero angle of attack to the oncoming flow. This data is well described by the specified
asymptotic theory of viscous interaction parameter values

_
χ < 3. The asymptotic theory

of strong interactions gives good results when
_
χ > 3. With the first order of accuracy

by
_
χ−1 obtained [72]: P/P∞ = 0.514

_
χ + 0.753. A comparison of Bertram’s experimental

data for heat-insulated plates with the P/P∞ = 0.514
_
χ + 0.753 dependency presented

in [72] also indicates a good match. In the case of a glow DC surface discharge near a
flat surface, the following aerodynamic coefficients are of interest. Pressure coefficient

CP = P−P∞
0.5ρ∞V2

∞
and the coefficient of friction, C f =

τw
0.5ρ∞V2

∞
= µ∂u/∂

→
n

0.5ρ∞V2
∞

and the coefficient of

heat exchange St = qw
0.5ρ∞V2

∞
, where τw, qw—frictional stress and density of convective heat

flow on the flat surface. These ratios suggest that for P→ P∞ (for example: a∞ → V∞ ) and
_
χ→ (C/Rex)

1/2 coefficients CP → 1 and C f → 1 . That is, to reduce the motion resistance
of the high-speed gas flow in the flat channel, it is necessary to increase the temperature
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(and thus the speed of the sound. Another modification of the action of high-speed flow on
the surface of the plate can be organized by means of a surface DC glow discharge, either
by heating the gas near the electrodes or by the action of volume forces having a Lorentz
character. In this case (at a sufficiently high temperature near the surface of the discharge
electrodes), the coefficient of friction may be negative

(
C f < 0

)
with the occurrence of a

reversible (negative speed) current.
First, we show the influence on the aerodynamics of the flow of the plate and on the

viscous interaction characteristics of the local heating of two areas on the surface of the plate
(Pinf = P∞), heat-imitating electrodes built into the streamlined surface. The temperature
of the local surface heating varied between 300 and 800 K, corresponding to the surface
temperature measurements of the electrodes in experiments [73,74].

The next range of determining gas dynamic parameters [75] was selected for the study
of the interaction of the abnormal glowing discharge with the supersonic gas flow at the
plate surface: pressure P∞ = 0.635 tor, speed M∞ = 5–8, temperature T∞ = 41–290 K. The
surface temperature is assumed to be constant and equal Tw = 290 K.

The scheme of the solved problem is shown in Figure 12. Supersonic gas flow with
parameters P∞, ρ∞, T∞, V∞ (respectively: pressure, density, temperature and speed) is
applied to the sharp plate, resulting in a classical flow configuration above its surface in
the compressed layer between the shock front and the surface and in the boundary layer at
the surface. Two electrodes located across the direction of the gas flow are arranged on the
same level as the plate surface, as shown in Figure 12.
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Figure 12. Scheme of the problem of flow around a sharp plate by a supersonic flow of compressible
gas, on the surface of which a DC glow discharge burns in an external magnetic field: 1—cathode;
2—anode; 3—dielectric.

The feature of the combined problem to be solved is the joint solution of a full system
of two-dimensional Navier–Stokes equations to determine the properties of the compressed
impact layer as well as the boundary layer between the shock wave front and the plate sur-
face, and systems of DC glow discharge equations describing the electrodynamic structure
of the current pole. To solve the equations of the glow discharge, an ambipolar model is
used [75].

A comparison of the surface pressure profiles for these three series shows that, firstly,
with the increase in the electrode temperature, there is a natural electrode pressure increase,
which indicates the formation of shock waves departing from the areas of local surface
heating. This can also be seen on pressure lines. Secondly, as the temperature increases, the
disturbed pressure profile is visibly bruised, which indicates the transmission of pertur-
bation not only by the flow but also against the flow, which can be attributed to the free
interaction effect [74]. Let us note another important effect. At high temperatures in the
electrodes, there is a flow separation, as evidenced by the fact C f < 0.

Below are the results of the studies of the flow of the plate with heated electrodes and
DC surface glow discharge switched on (Transverse magnetic field influence is taken into
account). Area discharge parameters and transverse magnetic field induction correspond
to experimental data [73].
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A glowing DC discharge is ignited between the electrodes using an electrical circuit,
powered by an electromotive power supply (EMF, ε) and Ohmic Resistance R0. An external
magnetic field may be superimposed across the flow. The external magnetic field is
applied so that its induction vector is oriented either along or against the axis Z. Low-
current glowing discharge with typical current I ~ 1 mA is considered with a voltage
between electrodes 100–1000 volt; therefore, its own magnetic field is not considered. The
characteristic value of the external magnetic induction module is selected in the range
0.01–0.5 T.

An increase in the absolute value of induction of the magnetic field to level 0.5 T
leads to a natural increase in the influence of magnetic force on the flow of the plate with
discharge. With parameters Tw = 800 K, E = 1.2 kV, Ro = 12 kΩ, and B = +0.5 T, the magnetic
field influence is already very strong (the pressure between the electrodes increases about
twice, and near the anode it triples). The return current area in front of the anode is
significantly increased (see the area C f < 0).

2.6. Pulse-Periodic Nanosecond (Volumetric) Discharge

During the pulse breakdown of a gas medium in the nanosecond and subnanosecond
time domains, the development time of the electrical discharge becomes comparable to the
timescales of elementary processes. For example, the time it takes for an electron avalanche
to reach a critical size in such an electrical discharge is comparable to or less than the
average lifetime of excited gas molecules. An important feature of this type of discharge is
that the critical number of electrons and the corresponding number of excited molecules
in the avalanche decrease with increasing externally applied electric field intensity. This
leads to a noticeable decrease in the photon output from the electron avalanche, causing
the discharge to stop being streamer-like. That is, the electron avalanche initiated by one or
more electrons does not lead to the formation of a streamer and its transition into a spark
(channel) discharge form. However, the formation of a large number of electron avalanches
due to photoelectrons from the cathode is necessary to complete the discharge. This volume
of electrical discharge is observed in air, nitrogen, and other gases under pressures ranging
from a few atmospheres to several tens of nanoseconds. When a large current is reached in
the discharge gap, not one but many spark channels are formed within it [76].

A particular interest is the nanosecond electrical discharge initiated by a beam of fast
electrons. In this case, a pulsed-periodic nanosecond (volume) discharge can be obtained
even at pressures of tens of atmospheres and with an interelectrode voltage below the static
breakdown voltage [76].

Currently, technical methods for non-equilibrium plasma-stimulated ignition of fuel
mixtures using pulsed-periodic nanosecond (volume) discharges are actively being dis-
cussed. Such additional non-equilibrium excitation (in addition to heating) created by the
nanosecond (volume) discharge can lead to a reduction in the induction period of ignition
of the fuel mixture and a decrease in the temperature limit of ignition. In this case, the
impact of the gas discharge plasma on the process of igniting fuel mixtures is reduced
to accumulating chemically active particles in the discharges, which participate in chain
chemical reactions and lead to the ignition of the mixture. Depending on the magnitude
of the reduced field strength E/N, which is realized in the discharges used, either atomic
particles or electronically excited O2(a1∆g), O2(b1Σg), and vibrationally excited molecules
are preferentially accumulated. The presence of electronically and vibrationally excited
molecules significantly increases the rate of chain reactions involving them and allows
for the possibility of igniting fuel mixtures at relatively low initial temperatures. This is
significant for increasing the completeness of fuel combustion in gas streams with sharply
non-homogeneous temperature profiles (when there are regions of relatively cold gas),
analyzing the possibility of using lean fuel mixtures, etc.

An important characteristic of plasma-stimulated ignition of fuel mixtures is the rate
of heating of the mixture in the discharge zone. Experimental studies show significantly
faster gas heating (compared to vibrational relaxation times) in discharges, which is associ-
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ated with the quenching of electronic excitation of atoms and molecules. “Fast” heating
will be referred to as heating that occurs on timescales significantly smaller than vibra-
tional relaxation times (VT, VV, and VV′ exchange times). In a number of experiments
(see, for example, [77,78], and others), anomalously high (compared to vibrational relax-
ation rates) gas heating rates at the initial stage of discharge combustion were observed at
E/N > (80–100) Td fields. Additionally, up to 10–15% of the discharge energy was deliv-
ered to heating the gas, with noticeable dissociation of oxygen molecules (the degree of
dissociation reaches 50%).

This study [79] is devoted to investigating the conditions of ignition and subsequent
formation of a combustion wave in an acetylene–air stoichiometric mixture near a high-
voltage electrode of the surface barrier discharge. In this experiment [79], ignition and
spreading of the combustion wave in the air and C2H2 mixture were observed at P = 1 atm
and T0 = 300 K. Based on the 2D discharge calculations and estimates of ignition in [79],
it was concluded that it is possible to ignite the fuel mixture in the cathode region of this
discharge with a single nanosecond pulse.

Experimental studies on the use of several plasma actuators have been carried out
simultaneously in [80]. In this study [80,81], the problem was formulated as follows:
Near a metal wall simulating the surface of an electrode, a hot layer of thickness 0.01 mm
was created using a heat source for 40 ns. The power of the source was chosen such
that by the end of its action, the maximum temperature in the layer was approximately
T0 ~ 1500 K, according to calculations [79]. The initial concentration of O atoms in the layer,
[O]0 = 1.5 × 1018 cm−3, was taken from [79] in the hot zone near the edge of the electrode.
The goal of the modeling was to determine the conditions under which the mixture ignites
and a combustion wave forms before the layer cools due to heat transfer to the metal
electrode. One-dimensional numerical modeling is based on solving the Navier–Stokes
equation together with mass conservation equations for each component [80]. A kinetic
equation system was written for 103 components and 700 reactions. The results of testing
the system and the main reactions are presented in [81]. The calculations show that even
during the discharge stage (40 ns), fuel conversion begins in the mixture, resulting in the
formation of CO and H2. The hot region with partially converted fuel expands, and ignition
begins at 4 microseconds. The temperature increases, including due to the combustion of
CO and H2. At first, the flame front moves towards the electrode, then the temperature
drops due to cooling, the flame front changes direction, and then it all repeats; overall, the
region expands. Ignition occurs only in the hot layer (T = 1500–2100 K), without taking into
account oxygen atoms accumulated during the discharge. Overall, work [81] has shown
that thanks to nanosecond discharge actions, a decrease in the initial ignition temperature
by 250◦ and the induction time by 100 times can be achieved.

2.7. Magnetoplasmic Control in High-Speed Gas and Plasma Flows

Let us consider the possibility of magnetoplasmic control in high-speed gas flows
using the example of the concept of accelerated deceleration and electromagnetic thermal
protection [82] of the surface of a spacecraft (the returning capsule of the Stardust space-
craft). In this case, the high speeds of the spacecraft (8–12) km/s and large transverse
geometric dimensions (D = 2R0 ≈ 0.8 m) lead (in the region of flow deceleration, i.e., the
front critical point) to high temperatures (10–12) K and degrees of ionization (which can
reach values of 10–20%) of the gas-plasma flow. In this case, the thermodynamic state of
the plasma is close to equilibrium. The idea of accelerated deceleration of the spacecraft
in the upper atmosphere—the MHD parachute—is to prevent high thermal loads on the
surface, rather than protect it, by providing MHD braking at altitudes where thermal fluxes
are still low. Effective braking can be achieved in plasma volumes much larger than the
nose of the spacecraft. Additionally, organizing MHD interaction at such scales potentially
does not require the creation of high magnetic field values. Under the conditions consid-
ered, it can be expected: (a) a very intense MHD interaction (MHD interaction parameter
estimation Sm ≈ 1–50) with a significant reduction in the influence of the Hall effect; (b) the



Aerospace 2023, 10, 662 18 of 34

possibility of a noticeable influence of the self-induced magnetic field generated by currents
in the plasma (Reynolds magnetic number estimation Rem ≈ (2–15). The magnetohydro-

dynamic (MHD) interaction parameter (Stewart parameter) Sm =

〈→
j ×

→
B
〉

/
(
ρ0V2

0 R2
0
)

represents the ratio of the mean integrated ponderomotive force
〈→

j ×
→
B
〉

/R2
0 to the to-

tal momentum flux ρ0V2
0 . The sign “< >“ represents the mean integral over the volume

< f >=
∫

f dV/
∫

dV of the function f . The magnetic Reynolds number is defined as:
Rem = µ0〈σ〉R0V0, where µ0—the magnetic permeability of vacuum; 〈σ〉—the mean in-
tegrated conductivity of the spatial domain estimated from flow parameters with zero
magnetic field, R0—the maximum transverse size of the spacecraft, and ρ0, P0, T0, V0—the
gas dynamic parameters of the inflow to the spacecraft.

In works [82–89], the magnetic field created by a magnetic coil (see Figure 13) with an
inner radius of Rm = 0.14 m (Magnetic System (MS) 1 magnet) located in the nose of the
spacecraft and a coil with an inner radius of Rm = 0.28 m (MS 2 magnet) located near the
maximum cross-section were considered. The magnetic coil consists of a current-carrying
loop, so the magnetic field in the flow region closely resembles a dipole field. The results
obtained were typical for all studied modes at six points of the spacecraft trajectory (ranging
in altitude from H = (81–51) km and corresponding velocities V = (12385–7936) m/s).

Aerospace 2023, 10, x FOR PEER REVIEW 19 of 36 
 

 

The magnetohydrodynamic (MHD) interaction parameter (Stewart parameter) 

( )2 2

0 0 0mS j B V R
→ →

=   represents the ratio of the mean integrated ponderomotive force 

2

0j B R
→ →

  to the total momentum flux 2

0 0V . The sign “< >“ represents the mean in-

tegral over the volume f fdV dV =    of the function f . The magnetic Reynolds 

number is defined as: 0 0 0Rem R V = , where 0 —the magnetic permeability of vac-

uum;  —the mean integrated conductivity of the spatial domain estimated from flow 

parameters with zero magnetic field, 
0R —the maximum transverse size of the spacecraft, 

and 0 0 0 0, , ,P T V —the gas dynamic parameters of the inflow to the spacecraft. 

In works [84–91], the magnetic field created by a magnetic coil (see Figure 13) with 

an inner radius of Rm = 0.14 m (Magnetic System (MS) 1 magnet) located in the nose of 

the spacecraft and a coil with an inner radius of Rm = 0.28 m (MS 2 magnet) located near 

the maximum cross-section were considered. The magnetic coil consists of a current-car-

rying loop, so the magnetic field in the flow region closely resembles a dipole field. The 

results obtained were typical for all studied modes at six points of the spacecraft trajectory 

(ranging in altitude from H = (81–51) km and corresponding velocities V = (12385–7936) 

m/s). 

 

Figure 13. Geometry of the spatial region in the case of magnetoplasma control of the motion of the 

descent spacecraft. 1—magnetic field source (electromagnetic coil). 

It should be noted that there is a significant decrease in the heat flux density at the 

spacecraft surface for magnetic field amplitudes of B = 0.1–0.2 T. Additionally, the larger 

magnetic system (MS 2) contributes to a greater reduction in the heat flux at the surface 

of the heat shield compared to the MS 1 magnetic system. However, there is an increase 

in the heat flux in the aft section of the spacecraft. When using the smaller MS 1 magnetic 

system, a recirculation zone is formed downstream of the magnetic system, causing a dip 

in the heat flux distribution. This dip becomes deeper the lower the role of viscous effects, 

i.e., at lower altitudes. Nevertheless, the decrease in the heat flux in the nose (spherical) 

part of the spacecraft is less than in the case of MS 2, and there is a rise in the heat flux in 

the mid-section. 

An important distinguishing characteristic of all modes considered is the saturation 

effect of heat flux. The decrease in heat flux occurs until a certain magnetic induction value 

(specific to each mode) is reached. Upon exceeding this value, the heat flux distribution 

either changes slightly or even rises. The saturation of the heat flux weakly correlates with 

Figure 13. Geometry of the spatial region in the case of magnetoplasma control of the motion of the
descent spacecraft. 1—magnetic field source (electromagnetic coil).

It should be noted that there is a significant decrease in the heat flux density at the
spacecraft surface for magnetic field amplitudes of B = 0.1–0.2 T. Additionally, the larger
magnetic system (MS 2) contributes to a greater reduction in the heat flux at the surface of
the heat shield compared to the MS 1 magnetic system. However, there is an increase in
the heat flux in the aft section of the spacecraft. When using the smaller MS 1 magnetic
system, a recirculation zone is formed downstream of the magnetic system, causing a dip
in the heat flux distribution. This dip becomes deeper the lower the role of viscous effects,
i.e., at lower altitudes. Nevertheless, the decrease in the heat flux in the nose (spherical)
part of the spacecraft is less than in the case of MS 2, and there is a rise in the heat flux in
the mid-section.

An important distinguishing characteristic of all modes considered is the saturation
effect of heat flux. The decrease in heat flux occurs until a certain magnetic induction value
(specific to each mode) is reached. Upon exceeding this value, the heat flux distribution
either changes slightly or even rises. The saturation of the heat flux weakly correlates
with increasing shock wave distance from the surface of the body and an increase in
magnetic induction.
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Therefore, the commonly accepted viewpoint that the decrease in heat flux is due
to the decrease in the mean temperature gradient in the shock layer as a result of the
shock wave’s distance from the body’s surface is not entirely accurate in this case. The
impact of the magnetic field on heat flux is only effective in areas with high temperature
and concentration gradients, i.e., near the wall. With an increasing shock layer thickness,
the temperature in most of the layer tends to an equilibrium value, and the temperature
gradient, which determines the heat flux to the wall, stabilizes.

The concept of accelerated deceleration of the spacecraft in the upper layers of the
atmosphere, the MHD parachute, proposed in works [83,84], is based on the generation of
current interaction in the plasma of the shock layer with the magnetic field created by the
onboard magnetic system. The estimates conducted for the conditions of the experimental
installation show the possibility of increasing the hydrodynamic drag tenfold. Estimates
of the effect for real atmospheric conditions indicate that significant interaction can only
occur near the critical point of the body, where the high temperature in the shock layer
may provide a degree of ionization of the air sufficient to create intensive MHD interaction.
Downstream from the surface of an elongated object, the degree of ionization at a level of
10−4 and below is clearly insufficient to provide an acceptable level of electrical conductivity
of about 103 Siemen/m. At the same time, attention was drawn to the fact that the value of

the induced electric field
[→

V ×
→
B
]

can reach hundreds of Townsend in the area of interest

for the MHD parachute and/or onboard generator.
Now consider the possibility of ionization in a strong, induced electric field. Initial

estimates of the effect of non-equilibrium “field” ionization for the “MHD parachute”
configuration [85,86] demonstrated a significant effect: the degree of ionization of the air
plasma reached several percent at very moderate values of magnetic induction. As for the
MHD effect of field ionization, calculations have shown a three-fold increase in resistance.

Next, the effects of non-equilibrium ionization in hypersonic nitrogen flow generated
by a magnetic field (MHD parachute/generator configuration) are considered. It is assumed
that the traditional (thermal) chemical kinetics are valid for the N2, N, N2+, N+, and electron
mixtures. In addition to this, the kinetic scheme contains ionization reactions of N2 and
N by electron impact, dissociation reactions of N2 by electron impact, and corresponding
reverse reactions of recombination and association. It is assumed that the rates of forward
reactions are determined by the value of the reduced electric field, E/N0 (E—the magnitude
of the field intensity, N0—gas number density). The rate constants of the reverse reactions
are considered to be functions of the electron temperature. When calculating the transport
properties of the mixture, it is assumed that the collision frequencies of processes involving
electrons are determined by the electron temperature. The electron temperature is found
through the solution of the electron energy transport equation, taking into account the
tensor nature of electron thermal conductivity, the inflow of energy from the electromagnetic
field, and elastic and inelastic losses. The latter includes losses due to ionization and
dissociation in electron impact reactions, as well as losses from the excitation of vibrational
and electronic states of neutral components. The field kinetics model and inelastic loss
model were developed based on works [86–89].

2.8. The Possibility of Controlling the High-Speed Flow of Gas and Plasma Using Pulsed Optical
Discharge or Microwave Discharge

Optical breakdown by coherent laser (or broadband) radiation in a gas medium
can be described based on the following sequence of stages: the appearance of initial
electrons as a result of multi-photon ionization, avalanche ionization of the gas in the
focal region of laser radiation, absorption of laser energy by the gas-plasma medium, and
intense expansion of plasma into the surrounding space with the formation of a shock
wave [90–92]. It should be noted that optical breakdown is usually defined as a fast,
irreversible process of transforming (a condensed or gaseous) medium from a transparent
to a strongly absorbing medium (with the destruction of its internal structure) under the
influence of intense radiation.
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There are two main physical mechanisms for electron multiplication in gas under the
influence of radiation.

The first mechanism is multi-photon ionization (in this case, the electron density
increases linearly with time), in which a neutral particle simultaneously absorbs a sufficient
number of photons for ionization. In the process of ionization, the energy of photons
absorbed by the elementary particles of the medium must exceed the ionization potential
I (in air I ≈ 12 eV): hν > I. As the energy of radiation quanta in the visible and near-IR
ranges of the spectrum is usually about 1 eV, the ionization of air molecules by a laser must
be multi-photon.

The second ionization mechanism is based on the absorption of laser radiation by free
electrons in processes of inverse bremsstrahlung. This physical process causes avalanche
ionization, in which the electron density increases exponentially with time. As avalanche
ionization develops further, the resulting plasma begins to efficiently absorb the energy
supplied by laser radiation. In addition to thermal radiation from the plasma, there are other
physical mechanisms that lead to gas ionization, including molecular, atomic, electronic
heat conduction, and gas heating behind the shock wave front.

The spatial region of high-frequency discharges (a type of gas discharge that occurs in
the presence of high-frequency electromagnetic fields) is determined by the processes of
shock ionization of gas molecules and atoms by electrons accelerated in a high-frequency
electromagnetic field. The development of these physical processes is limited by the
process of electron diffusion from the localized region in space where the amplitude
of the high-frequency (HF) electromagnetic field is maximal, as well as by processes of
their recombination with ions, or “adhesion,” to neutral molecules and atoms [55]. The
amplitude of the HF field required for the breakdown and development of high-frequency
discharge increases with increasing gas pressure P and frequency of the field f [55].

One advantage of optical or microwave discharges (compared to other types of dis-
charges) is the ability to heat the gas-plasma medium at a significant distance from the
source of electromagnetic radiation. It should also be noted that the experimental results in
works [93,94] indicate the possibility of reducing the breakdown threshold (by using laser
initiation) in a supersonic flow for microwave discharge. These works [93,94] revealed that
by choosing parameters (geometry of laser and microwave focusing systems, temporal and
energy parameters of microwave and laser radiation pulses), it is possible to position the
microwave discharge in the thermal trace of the laser breakdown area and also to control
its shape (length).

Several works [60,61,95,96] (microwave radiation, lasers) related to the creation of
plasma formation in the atmospheric conditions in front of a body moving in a high-speed
gas flow will be considered. The work [97] presents the results of controlling the structure
of the head shock wave with a microwave discharge. A spatial region with a temperature
of 2800 K (at a heating rate of ~2000–3000 K/µs) was formed within 1–2 ns and had a
transverse dimension of no more than 3 × 10−3 cm at a specific energy contribution of
about 7 eV per particle with a peak electron density Ne ∼= 5 × 1016 cm−3. The work [97]
showed that the energy efficiency of the microwave method of reducing stagnation pressure
at the leading critical point is directly proportional to the ratio D/d, where D and d are the
diameters of the blunt body and the heated region, respectively. The universality of this
relationship was confirmed in works [98,99] (for model diameters from 8 to 30 mm). These
same results confirm the important conclusion about the increase in efficiency (reduction of
aerodynamic drag with a decrease in the thickness of the heated layer) when the microwave
discharge interacts with the boundary layer.

The work [100] presents an experimental and theoretical analysis of controlling the
trajectory of fast-rotating supersonic objects using a laser spark. Based on the obtained
experimental and theoretical data [100,101], it was concluded that controlling the trajectory
of rotating objects with laser discharges is highly effective.

The first series of experiments in works [100,101] demonstrated the destabilization of
the rotating object with a single laser spark. In the second and third series of experiments,
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the dynamics of the angle of attack change of the object were analyzed using three consecu-
tive laser sparks, following each other with intervals of 50 to 100 µs. In all three cases, the
possibility of destabilizing the trajectory of a rotating object was demonstrated. The dura-
tion (~50 ms) of the disturbance of the object’s axis corresponds to the time of propagation
of the hot spot along its surface. The gas region of low density in front of a fast-spinning
supersonic object causes a redistribution of pressure and maintains the development of the
trajectory disturbance. However, a non-central impact on the fast-flying object can lead to
a disruption of symmetry in the distribution of forces and significantly alter its trajectory.
After the hot spot formed by the laser spark leaves the interaction region, the disturbance
of the object’s rotation axis decreases. An increase in the number of consecutive pulses
increases the duration of the unstable motion of the object. Thus, the ability to control the
trajectory of a spinning object depends heavily on the duration of the interaction, which is
limited by the length of the laser spark in the direction of the object’s motion.

Note that the main mechanism of interaction of laser plasma with a stream (regardless
of the duration of the laser pulse) is the heating of gas due to plasma breakdown. On
the other hand, the reduction in resistance obtained in such experiments and calculations
usually becomes significant only for blunt bodies. If the object has high aerodynamic
qualities, obtaining a significant reduction in the drag coefficient is usually difficult [101].

3. Methods for Controlling Plasma-Stimulated Combustion in High-Speed Gas and
Plasma Flows
3.1. The Fuel and Air Components

It is known that in the engine of a promising aircraft (in the combustion chamber),
the main part of the fuel and air components has a supersonic speed. In this situation,
special requirements must be met by the fuel and combustion chamber geometry. With a
relatively short residence time (tK ≈ 3× 10−3 s) of the combustible mixture in the engine
of a promising aircraft, the problem of organizing effective (t � tK) mixing of fuel and
oxidizer, ignition and combustion stabilization is particularly acute.

Thus, the most important problems facing developers of plasma thrusters are the
stimulation of fuel and air mixing, acceleration (up to supersonic speeds) of the combustion
wave, and preferably, volumetric ignition of the fuel mixture. Usually, in fuel–air mixtures,
the combustion wave is mainly determined by heat transfer processes. However, if the
energy released in the area of the combustion wave is somehow directed by non-chemical
means, the propagation speed of the “heat conductivity wave” will sharply increase. Even
with significant turbulence in the combustion area, heat transfer processes alone may not
provide sufficient combustion wave propagation speed. Electrical discharge technologies,
based on creating plasma formations using electric discharges, laser or microwave plasma,
can be effective ways to reduce ignition time [102] and control supersonic gas flows in
the power plants of advanced aircraft. The idea of using plasma fuel ignition methods
is based on the non-equilibrium generation of chemically active particles or clusters that
accelerate the combustion process. It is assumed that the possible gain in energy expended
for accelerating combustion in plasma methods is achieved by creating a non-equilibrium
state of the plasma during the discharge. This plasma state allows for the creation of a
“quasi-equilibrium” (preferably volumetric) concentration of radicals directly in the flow or
to introduce them (from the point of generation) into the flow from the outside. Obviously,
the magnitude of the combustion acceleration effect depends heavily on initial temperature,
pressure, fuel mixture composition, and methods of plasma generation.

3.2. Initiation of Combustion of the Fuel-Air Mixture by an Electron Beam

In [103], experimental and theoretical studies on the initiation of combustion in an
oxygen–hydrogen mixture (the initial pressure of the mixture is 500 Pa) using an electron
beam with an energy of ≈ 10 keV and an average transverse size of the beam of ≈ 10 cm.
The progress of the reaction was observed by registering the temporal dependence of the
intensity of the glow in the lines of molecular (λ = 310 nm) and atomic hydrogen and the
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sodium doublet (λ = 589 nm). Experiments and calculations carried out in [103] showed
that the generation of radicals in the oxygen–hydrogen mixture accelerates ignition by
significantly reducing the time taken by the so-called induction stage. Thus, with the
use of high-current, low-energy electron beams, the combustion reaction of hydrogen in
oxygen can be initiated at different concentrations of the mixture. It is also worth noting
that electron beams can be used in conjunction with ignition devices, such as pulsed
high-temperature laser jet devices.

3.3. Initiation of a Detonation Wave by Laser Radiation

Let us consider the possibility of initiating a detonation wave with laser radiation in
a supersonic flow of hydrogen–oxygen mixture [104]. The implementation of detonation
combustion of the mixture in a supersonic flow makes it possible to significantly reduce
the length of the energy release zone compared to conventional homogeneous or diffusion
combustion modes, as well as to obtain higher values of gas temperature (and therefore effi-
ciency) and pressure [105]. A significant number of studies [106–110] have been devoted to
analyzing the possibility of implementing detonation combustion in combustible mixtures
moving at supersonic speeds. The main tasks when implementing detonation combustion
are the stabilization of the detonation wave in the supersonic flow and the initiation of
mixture ignition at low gas temperature values.

The simplest flow scheme in which stabilization of the detonation wave is achieved is
the flow around a wedge or cone by a supersonic flow of the combustible mixture. Ignition
occurs ahead of the inclined shock wave front, centered in the sharp part of the wedge.
In this case, the detonation wave is formed at a certain distance from the surface of the
wedge as a result of the interaction of the compression wave, arising in the combustion
zone (heat release), with the inclined shock wave front [106]. At small wedge opening
angles (β = 8–10◦), the distance at which the detonation wave is formed in the practically
interesting range of flow parameters (pressure P0 = 103–104 Pa. temperature 400–700 K,
and Mach number 4–6) is too large (10 m) even for the hydrogen–oxygen mixture [111].
Therefore, the search for methods to intensify the processes of detonation wave formation
in such geometry is an extremely important task.

Research conducted in works [112,113] has shown that a significant reduction in the
length of ignition zones and heat release (and the distance at which a detonation wave is
formed in supersonic flows of H2/O2 (air) and CH4/O2 (air) mixtures behind an inclined
shock-wave front can be achieved by exciting O2 molecules to an electronic state b1 ∑+

g . For
example, this can be performed by laser radiation with a wavelength λ = 762 nm generated
by a diode laser, even at low values of energy irradiated to the gas (Ea ≈ 10−3 J/cm3).

In [114] (based on numerical experiments), an initial assessment was given of the
possibility of intensifying ignition of an oxygen–hydrogen mixture in an LPP channel by
laser plasma generated near a condensed barrier. The numerical analysis of the formation,
expansion, and ignition of the fuel mixture, taking into account the effect of the external
gas flow on the laser beam, shows that the pressure increases four-fold and the molar
concentration of H2O increases by approximately 20 times (compared to the stagnant gas
medium) in the interaction region. Overall, the following parameters of laser radiation are
required to create laser plasma in LPP channels: laser beam intensity <1.5 × 109 W/cm2,
pulse energy of several mJ, duration of laser radiation of hundreds of ns, and a pulse
spacing of >5 Hz.

In [104], the flow around a wedge-shaped body with a semi-open angle β in a super-
sonic flow of H2/O2 was considered. Laser radiation with a wavelength λ = 762 nm and
uniform intensity throughout the affected area, is applied to the flow in a certain region be-
fore the wedge nose, with a length along the flow of lp and a height of Ye. The frequency of
this radiation, v, is resonant with the frequency of the bound-electron electronic transition,
m
(
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cient for the considered electronic–vibrational transition is maximal at a gas temperature
of T = 300 K. Parameters of the supersonic flow ahead of the affected area: P0 = 104 Pa,
T0 = 500–600 K, M0 = 6.

As a result of the calculations presented in work [104], it has been shown that exciting
molecular oxygen to the electronic state O2

(
b1 ∑+

g

)
with resonant laser radiation at a

wavelength of 762 nm (transition X2 ∑−g , V
′
= 0→ b1 ∑+

g , V
′′
= 0) enables the realization

of detonation combustion during the supersonic flow of hydrogen–oxygen mixture around
a wedge at distances no greater than 1.5 m from its nose, even at low irradiation energy
to the gas of Es ≤ 0.05 eV/(molecule O2) and a gas temperature of T = 500–600 K. In the
absence of irradiation at such flow parameters, it is not possible to stabilize the detonation
wave at distances less than 5.5 m from the wedge nose.

The effects of reducing the length of the ignition zone and the zone of detonation
wave formation (Figure 14) are due to the intensification of chain reactions resulting from
the presence of electronically excited molecules O2

(
a1∆g

)
, O2

(
b1 ∑+

g

)
and in the reacting

mixture and the formation of new channels for the formation of active atoms O, H, and
OH radicals in the reactions involving these molecules. It has been found that to stabilize a
detonation wave in a supersonic flow over a wedge at small distances from the affected area
(LD < 1.5 m), it is sufficient to irradiate a narrow axial region of the flow with a transverse
size of Ye = 0.5–1 cm directly in front of the wedge nose. Laser-induced excitation of O2
molecules is much (several times) more effective than simple heating of the medium by
laser radiation for initiating detonation combustion in a supersonic flow of the fuel mixture.
This method of energy transfer from laser radiation to the flow allows even a small volume
of gas to be irradiated with a sufficiently weak source to stabilize a detonation wave in a
supersonic flow at distances acceptable for realizing a detonation combustion mode.
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3.4. Ignition of a Combustible Mixture by a Laser Torch Formed near a Condensed Barrier

It should be noted that there are two types of breakdowns: breakdown of the vapor of
the condensed material and breakdown of the surrounding gas medium target [115,116].
In the case of laser irradiation of a condensed obstacle, the laser beam, propagating into
the combustible mixture at supersonic speed, is both the source of radicals and the region
of thermal exposure. It is known [115,116] that in an unbounded gas medium (in this
case, air), the required laser irradiation flux density for a CO2—laser is 109 W/cm2, and
for Nd—laser is 1011 W/cm2. However, the presence of a metallic barrier significantly
reduces (by several orders of magnitude compared to an unbounded gas medium) the
required density of the radiation flux for gas breakdown q. This phenomenon is explained
by the high-temperature ionized layer (usually consisting of easily ionizable vapor of
the obstacle) that forms on the surface of the target under certain critical conditions and
which intensely absorbs the incident laser irradiation. The breakdown occurs in the focus
region of the laser beam, where there are strong spatial-temporal inhomogeneities of the
electric field. The breakdown is possible if so-called seed electrons (for example, by the
thermoelectron emission mechanism) enter the breakdown region and if the probability
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of electrons escaping from the focal spot volume is low (the probability of this process is
determined by the electron diffusion coefficient).

To obtain the breakdown criterion, the following relationship is used to estimate the
rate of generation of “seed” electrons (at a distance of the radius of focus rLaz) due to
ionization Ke: Ke = nneβ, where n—the concentration of vapor atoms; ne—is the con-
centration of electrons; β

[3/
]
= A exp(−I/Te)—the ionization coefficient of the obstacle

vapor, A = 1.64× 10−5 2 ∑i
g1T3

e
, ∑i, g1—the statistical sum of the residual ion and the statistical

weight of the ground state of the atom, and I, Te—the ionization potential and is the electron
temperature in eV. Comparison of the electron diffusion rate neDA

R2 (DA—the diffusion coef-
ficient) and the convection rate une

R = ne
τp

(u—the velocity of vapor motion) indicates that
electron losses will be determined by convective transport. Thus, the breakdown criterion
(due to its exponential dependence β(Te)) takes the form [117]: Ke ≥ ne

τp
or Te ≈ I

ln(nτp A)
(for example, for titanium obstacle breakdown, the laser irradiation flux density is about
q ≈ 4.8 MW/cm2).

3.5. Photoplasmodynamic Method of Combustion Initiation

Solving a complex problem like combustion in high-speed gas flows (M > 2) requires
new methods to intensify the physical and chemical processes of mixing and combustion
of mixtures. To address this type of problem, the photoplasmodynamic method has
been proposed and experimentally studied, in which powerful electric discharges (MPC,
capillary discharge, LSSD, etc.) are carried out directly in the combustible medium. As
a result, the fuel mixture undergoes a combined (and volumetric) effect of UV radiation,
plasma, and UV that initiates complex photochemical, plasmachemical, and thermobaric
reactions in the medium. As a technical device that implements this approach, the end-type
MPC electrode assembly can be provided. This electrode assembly (see Figure 15) is a
system of separated interelectrode dielectric inserts between coaxial electrodes.
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Figure 15. Plasma-dynamic discharge (magnetoplasma compressor-MPC) of an erosive type in a
gaseous medium: 1—discharge electrodes; 2—plasma of gas and (or) erosion products of the struc-
tural elements of the electrode system; 3—interelectrode dielectric insert (MID); 4—shock-compressed
gas region; 5—undisturbed gas medium; 6—external radiative magnetogasdynamic discontinuity.

The physical processes occurring in a magnetoplasma compressor can be described as
follows. After this, the capacitive accumulator begins to discharge into the interelectrode
gap, and the main high-current stage of the discharge occurs. From this moment on, the
composition of the electrodischarge plasma is determined by the erosion products of the
MHD accelerator electrodes, which are mainly formed under the influence of radiation
fluxes from the plasma. The accelerated magnetohydrodynamic force of light-erosion
plasma is decelerated by the surrounding gas. In the radially non-uniform plasma flow
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impinging on the gas barrier, a complex flow structure with a system of shock waves and
contact boundaries arises (see Figure 16).
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Figure 16. Gas-dynamic structure of the region of shock deceleration of the plasma flow of the
MPC-discharge on a dense gaseous medium.

Thus, in the case under consideration, the interest lies in the MHD discharge cre-
ated in the deformed (due to deceleration on the “dense” gas medium of the erosion
plasma flow of the MHD compressor) gas medium. In the one-dimensional approximation,
the gas-dynamic structure of the deceleration zone (the configuration of the shock wave
decay) consists of two shock waves (in the plasma flow SWII and in the undisturbed
gas SWI) and a Contact Boundary (CB) separating the regions of shock-compressed gas
and plasma. Let us present the relationships that connect the parameters of the shock-
compressed gas-plasma medium in the deceleration zone. The velocity of the contact
boundary ukg = uI Iα

−1, α = 1 +
√

ρI/ρI I is determined by the velocity of the plasma flow
uI I and the ratio of the initial densities of the plasma ρI I and the undisturbed gas medium
ρI . We will consider the contact boundary as a piston moving at a velocity u = uI I − ukg
in a “stationary” (relative to the piston) plasma with a density ρI I . Then, the density ρ2,
pressure P2 and temperature T2 of the shock-compressed plasma behind the SWII front will
be equal to: ρ2 ' (γ2 + 1)/(γ2 + 1)ρI I , P2 ≈ (γ2 + 1)/2ρI Iu2 = (γ2 + 1)/2ρI Iu2

I I

(
α−1

α

)
,

T2 ' (γ2−1)
2

µI I
R

u2

1+Z2
, where γ2, µ2, Z2—the adiabatic index, average molecular weight, and

average ion charge of the shock-compressed plasma (SWII).
The expressions for the expansion velocity of the shock-compressed plasma region

D∗1 and the velocity D1 (shock wave SWII in the laboratory coordinate system) are:

D∗1 = (γ2−1)
2 u, D1 = ukg − D∗1 . From these relationships, it follows that depending on

the initial parameters, two characteristic modes can be distinguished in the region of
shock deceleration of the MHD discharge plasma flow: shock wave acceleration mode and
deceleration mode [118].

The shock wave acceleration mode is implemented when the density of the driving
plasma flow ρI I is of the order of or exceeds the initial density of the gas medium ρI and is
most effective when ρI I ≈ ρ1. In this case, the efficiency of transferring the kinetic energy
of the high-speed flow to shock-compressed gas energy is at its maximum, reaching 50%.

The braking mode is realized when the density of the plasma flow ρI I is signifi-
cantly higher than the density of undisturbed gas ρI . In this case, about 70–90% of the
kinetic energy of the plasma flow is converted into the internal energy of the shock-
compressed plasma.

However, it should be remembered that the MPC discharge in practice has a spatial
3D gas-dynamic structure. This structure approximately (there is a difference: there is
a cumulation zone near the central electrode) corresponds to the flow structure in an
underexpanded gas jet [119,120] flowing into a flooded space. For example, in a radially
inhomogeneous plasma flow incident on a gas barrier, not a straight line arises, as was
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considered above (in the 1D approximation), but a conical magnetogasdynamic shock
wave, in front of which the velocity component normal to the boundary with the gas is
triggered and the pressure and plasma temperature increase.

To clarify this flow structure, a 2D physical and mathematical model was formulated
in [119,120], and a numerical study of MPC discharges in gases was carried out for a wide
range of changes in the main electrical parameters and characteristics of the surrounding
gaseous medium. The features of radiation-plasmadynamic structures were revealed, and
the behavior of the main parameters of the MPC-discharge plasma was described [119,120].

In [121–123], the results of experimental studies on the possibility of using a small-
sized MPC operating in the frequency mode for the combustion of an air–propane mixture
in a high-speed flow are presented. In these works [121–123], a series of control experiments
were carried out to determine the performance of this design of a small-sized MPC and the
possibility of using it to initiate the volumetric ignition mode and combustion of the fuel
mixture in a supersonic flow. The results of the experiments performed almost completely
coincided with the data given in [124,125] for a classical high-power MPC, namely: a sharp
pressure jump was observed when a discharge was triggered in an air–propane mixture,
and a pressure wave propagating towards the flow was recorded. The average propagation
velocity of this wave was ~200 m/s, which also agrees with the data in [124,125]. Similar
to [124,125], a decrease in the duration and an increase in the leading edge of the signal
were recorded when the combustion wave entered the ballast chamber.

The totality of the established facts [121–125] allows us to state that in the control ex-
periments carried out, the regime of volumetric ignition and combustion of an air–propane
mixture initiated by plasma created by a small-sized MPC is realized. From the experi-
mental results in [121–123], the following initial conclusion can be drawn: it is possible to
implement volumetric ignition in the frequency mode of operation for this MPC design.
The maximum operating frequency of the installation is approximately f = 25 Hz. A further
increase in frequency is possible either with an increase in the initial voltage on the storage
capacitor or with a decrease in the resistance in the electrical circuit of its charge, i.e., in any
case, with an increase in the charging current of the capacitor bank used to store energy in
the MPC discharge. It was also shown in [121–123] that by changing the magnitude and
orientation of the induction vector of the external magnetic field relative to the direction of
the discharge current, it is possible to influence the processes of plasma-assisted ignition of
an air–propane mixture in a supersonic flow.

3.6. Capillary Discharge and Ignition of the Combustible Mixture

The erosive plasma characteristic of a pulsed plasmodynamic capillary discharge can
also be used to initiate the ignition and combustion of supersonic fuel mixtures [126–129].

Figure 17 shows a schematic representation of a capillary plasma torch. It consists
of two electrodes placed in a cone-shaped housing made of dielectric (4) at a distance of
5 mm from each other. Between the electrodes, there is a washer made of plexiglass with
a channel 1–2 mm in diameter (2). The inner electrode (3) is made of graphite and is a
washer 10 mm in diameter and 5 mm thick. A hole with a diameter of 3 mm was made in
the copper outer electrode (1), which is cone-shaped.

In works [126–129], the process of interaction of a capillary discharge with a supersonic
air flow was studied experimentally as well as by the theoretical method [130–140]. It is
shown that, depending on the initial conditions (the power released in the discharge,
the speed of the incoming air flow, the initial pressure in the channel, etc.), the plasma
jet created by the capillary discharge can either penetrate into the flow at insignificant
distances (cm) or propagate along its outer borders. At low values of current (100 A) and
stored electrical energy (200–400 J), a subsonic plasma jet is formed, which penetrates
into a dense gas at distances significantly exceeding the characteristic dimensions of the
electrode system.
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The maximum velocity of the plasma jet propagation along its axis is 300 m/s (at a
pressure of 80 Torr in the chamber) and 450 m/s (at a pressure of 20 Torr). Thus, the jet
velocity depends on the pressure of the gas mixture. At low pressures, when the plasma
velocity is comparable to the flow velocity, the jet deflection angle in the flow is close
to zero, while at high pressures (at low plasma velocities), the jet practically propagates
along the flow and the deflection angle approaches zero. The results of [126–131] show
that the main parameter that determines the nature of the interaction of plasma jets with
supersonic air flows is the power released in the discharge. When the power decreases to
values ≤ 0.8 mW (capillary discharge), the plasma propagation velocity decreases, and it
practically does not penetrate into the flow.

4. Discussion and Conclusions

The purpose of this review, «Computational and experimental modeling in magneto-
plasma aerodynamics and high-speed gas and plasma flows» is an analysis of the current
state of the methods of non-contact management of aerodynamic quality and/or other
characteristics of aerodynamic bodies, methods for establishing the AA command and
control forces, and magnetoplasma methods of control of combustion and combustion
processes in flow combustion chambers.

The first factor determining the efficiency of high-speed gas and plasma flow control
using plasma actuators is their location in key (down points of the shock wave, as well
as braking, separation and mixing of the flow) areas of the surface of the AA facility and
flow. The second important factor in magnetoplastic gas plasma flow control near AA is the
energy actuated in a single pulse as well as the frequency of the plasma actuator. Various
experiments have been shown to have an effective impact on the configuration of shock
waves and ripple currents. The Struchal number range should be close to one. Thus, the
effective application of plasma actuators is determined by their ability to control the speed,
position, frequency and intensity of energy output in the gas-plasma flow.

The most famous plasma actuators are based on plasma dynamic discharges. In this
case, the flowing pulse current is very large (from 10 kA to 1 MA), and the energy in the
pulse is about kilojoules and above. The review provides a brief description of experimental
and computational theoretical studies of such plasma actuators. These include magneto-
plastic compressors, capillary plasmotrons, longitudinal transverse electrode discharges,
linear-stabilized discharges. The results described above show that gas discharges and
plasma jets from these plasma actuators can significantly change the flow pattern (for ex-
ample, a linear-stabilized discharge) and, in particular, reduce their resistance and thermal
loads on them (especially at supersonic and hypersonic flow speeds).

Despite the noticeable progress in the research of plasma actuators, a number of
problems should be noted that have yet to be solved in the future. Here, we mention only
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the most important of them. The first problem includes an insufficient understanding of the
physics of processes in plasma actuators as well as their interaction with an aerodynamic
flow or a combustible mixture. For example, we would like to have a number of clearly
defined criteria that indicate the degree of efficiency of using various types of actuators
in a particular practical situation. The second technical problem is the need to develop a
powerful, reliable, compact energy source with a high response frequency (in particular, this
is necessary to avoid the development of various types of plasma instabilities in the flow).

The review considers the physics of processes in high-current pulse discharges (mag-
netoplasma compressor, capillary discharge, etc.) and the main mechanisms for generating
highly uneven plasma in high-speed gas flows.

In the case of a magnetoplastic compressor, the main parameter determining the
interaction of plasma jets with supersonic air flows is the power emitted in the discharge. At
a power of ~20 MW, the speed of propagation of the jet from the magnetoplast compressor
is several times faster than supersonic flow at M = 2, so the flow practically does not
affect the plasma jet. When the power is reduced to ~0.8 mW, the plasma practically does
not penetrate into the flow because its speed becomes less than the flow rate. When the
discharge power is further reduced to ~3 kW, the plasma jet follows the flow and spreads
along it.

These types of discharges can create areas of heated plasma away from their main gas
flow area. Such discharges can provide a volumetric ignition mode by heating with thermal
conductivity and UV radiation. Thus, MPC pulse plasma can be used for volumetric
ignition of supersonic fuel mixtures, while capillary, longitudinal transverse and linearly
stationary discharge can be used for emergency ignition along the flow.

This paper considers the use (at high and ultra-high surges) of non-equilibrium plasma
from pulsed nanosecond «barrier» and «sliding» surface discharges as plasma actuators.
Note that for any of these discharges, the main factor determining their applicability for
gas plasma flow control is that due to the impulse-localized energy output, it is possible
to create a relatively dense plasma in the flow n ≈ 1015 ÷ 1018 cm−3 (at a typical specific
energy input of 0.05–0.5 eV per molecule in electronic degrees of gas freedom) with less
cooling time (for example, due to gas-dynamic expansion) in the plasma region.

In these nanosecond discharges, the significant excess of the amplitude of the electric
field over the threshold («penetration») value allows the electron ensemble to be rapidly
heated. At a fixed direction of the electric field vector (for example, in high-voltage dis-
charges with pulse durations in the nanosecond range), this results in the rapid achievement
of the ionization threshold by electrons and the effective formation of highly uneven plasma.
In this way, the highest efficiency and speed of energy relaxation are achieved precisely at
high and ultra-high values of electric fields, when the preferred type of gas excitation is the
creation of highly excited states of molecules and ionization. In this case, rapid quenching
of highly excited particles and recombination of plasma lead to the formation of atoms and
molecules with high energy in progressive degrees of freedom, which can exchange their
energy with the rest of the gas in several collisions. This situation is quite different from
the excitation of oscillating degrees of molecular freedom under moderate electric fields,
when the relaxation of the excitation and an increase in the temperature of the gas can take
a long time in terms of gas dynamics.

For the microwave and laser discharge conditions considered in the overview, the
gas-plasma flow has comparable (depending on the conditions) free time paths for the
electron and time of field direction change. Thus, to achieve the electron energy (ionization)
necessary for the development of electronic avalanches, it may require a large number of
cycles of electromagnetic field change. In this case, the stresses of electric fields in these
discharges should be significantly higher than in the case of a pulsed high-voltage discharge
with a pulse duration in the nanosecond range. The need for an allocated spatial direction
of energy input (which goes mainly to the excitement of highly energetic states) is dictated
by the need to quickly convert the excitation of the internal and chemical degrees of gas
freedom into thermal energy, which can be used for flow control.
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As a result of experimental and theoretical studies of microwave discharge, it is shown
that both rich and poor combustible mixtures ignite, and the combustion intensity is
maximum for stoichiometric mixtures under low-temperature plasma surface microwave
discharge. It has been shown that the induction period decreases from 1 ms to 5 µs with
an increase in E/p from 40 to 200 Tds. The propagation rate of the front edge of the
combustion region, dependent on the equivalent ratio of mixture and microwave feed,
reaches its maximum in the stoichiometric mixture and reaches 160 m/s at E/p = 150 Td.
The combustion temperature in these conditions is about 3000 K.

The above examples point to aerodynamic quality management (at both subsonic and
supersonic speeds), by non-stationary currents with the help of small influences, by flow in
short-term inseparable modes, ignition and combustion and other characteristics of AA.
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