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Abstract: Space robots exhibit a strong dynamic coupling between the manipulator and the base
spacecraft, with this phenomenon being particularly pronounced in mini space robots. The uncer-
tainty surrounding the inertial parameters of space robots often renders dynamics-based controllers
ineffective, and identifying these parameters in an on-orbit environment poses significant challenges.
In this paper, we propose an adaptive controller for dynamic approximation that is specifically
designed for mini space robots. This controller employs a linear separation of inertial parameters
and utilizes recursive least-squares and Lyapunov methods to update the inertial parameter vectors.
Simulation results validate the effectiveness of this adaptive controller in enabling mini space robots
to accurately track predefined trajectories. Additionally, we compare the effects of the two parameter
update methods on the controller stability under varying prior inertial parameter errors. The pro-
posed inertial parameter separation adaptive controller significantly approximates the dynamics of
mini space robots and facilitates precise on-orbit control, thereby offering considerable potential for
advancing space exploration, satellite missions, and robotic operations.

Keywords: minisatellite; inertial parameters; attitude control

1. Introduction

As the complexity and diversity of spacecraft missions in space continue to increase,
the structure of the spacecraft has become more complicated and free-flying robots are
poised to play a vital role in future space exploration. The recent rapid advancements in
miniature component technologies and their accessibility have elevated the importance of
minisatellites as tools for space development and utilization [1,2]. As a typical comprehen-
sive intelligent operating system, the development of mini space robots is changing the
traditional modes of space transportation, space missions, planetary exploration, and mak-
ing them a crucial enabling technology for future space missions [3]. The growing interest
and adoption of mini space robots has stimulated multiple mission designs that feature
robotic manipulators mounted on minispacecraft, which result in highly coupled systems.
In addition to the strong coupling problem of the space chain manipulator structure, the
center-of-mass offset and changes in inertial parameters of mini space robots significantly
impact dynamic modeling and control [4,5]. Therefore, designing a dynamics-based con-
troller for spacecraft with complex chain structures holds great significance.

Early complex-structured spacecraft did not utilize dynamics-based control methods [6–11].
The primary reason for this was that the International Space Station, as a spacecraft initially
equipped with a space manipulator, possessed relatively large mass and inertial parameters,
rendering the disturbance and coupling effects of manipulator operations on the spacecraft
negligible [6–8]. Furthermore, the initial space manipulators were manually operated in
space, and the level of automation was relatively simple. Consequently, the mathematical
models for space manipulators in these cases resembled those used for ground-based
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manipulators [12]. However, with the emergence of minisatellites, dynamic modeling has
gained a greater importance, and satellites with such complex structures are also referred
to as mini space robots [13].

The earliest studies, [14,15], employed the generalized Jacobian matrix (GJM) to
describe the kinematic model when a single-chain manipulator was attached to a satellite.
Building upon this, Ref. [16] proposed the virtual manipulator (VM) method to determine
the offset of the spacecraft body, which is a virtual concept, by considering the change
in the center of mass of the space robot system. Subsequently, Ref. [17] introduced the
dynamically equivalent manipulator (DEM) method for passive spherical hinges based
on the VM method. The DEM method was theoretically proven to be equivalent to the
suspension problem as a fixed base. In terms of dual-arm space robots, Ref. [18] proposed a
mathematical model that made significant contributions to the theoretical basis of dual-arm
spacecraft’s space grasping tasks. Furthermore, Refs. [19,20] extended the mathematical
model of the free-flying spacecraft with two arms to encompass the dynamic modeling of
multiarm space robots (MASRs).

When designing dynamics-based controllers for space robots, obtaining precise inertial
parameters poses a significant challenge, particularly due to the uncertainties arising from
complex space environments (such as fuel exhaustion and component damage or the
complex structure of the satellite itself). These uncertainties make it difficult to acquire
accurate inertial parameters, rendering the controllers ineffective [13]. To address this
issue, two main approaches are commonly employed: designing adaptive controllers
capable of updating parameters or performing on-orbit identification to obtain precise
inertial parameters. Researchers such as [21–23] developed adaptive controllers for space
robots that did not rely on assumptions about inertial parameters or initial estimates
of the system momentum. They demonstrated the effectiveness of adaptive control in
dealing with uncertain dynamical systems. In the study conducted by [24], adaptive laws
and the minimum learning parameter (MLP) algorithm were employed. While these
studies can estimate unknown dynamical systems with adaptive controllers, the slow
convergence speed and extensive computational load associated with such controllers
make them impractical for engineering implementation. To overcome these limitations,
Ref. [25] proposed a gain-parameter-adaptive control algorithm capable of achieving set-
point control tasks with a fast settling time and high accuracy, even in the presence of
unknown dynamic systems. However, a drawback of that algorithm is that the update of
the adaptive gain parameter can induce system oscillations.

Other scholars focus on how to identify inertial parameters in orbit. Xu solved the
dynamic equation by unlocking the joints of the space robot in sequence and gradually
identified the inertial parameters of each component [26]. However, that method did not
take into account the specific installation direction of the joint, which made some inertial
parameters unidentifiable, and that method had a long identification period. Nabavi-
Chashmi developed a specific regression matrix in order to speed up the process of inertial
parameter identification [27]. The author’s theory was based on the planar body assumption
and could not be used in generalized space robots, yet. Ma used a robotic arm to change
the inertial distribution of the spacecraft, and that redistribution was used to solve the
inertial parameters of the spacecraft base [28]. Some studies identify the inertial parameters
of single-rigid-body spacecraft through feedback information from sensors and actuators,
but these methods cannot be used in multi-rigid-body space robots [29–32]. Lei designed
an adaptive fault-tolerant control algorithm for the free-floating space robot system in
the case of parameter uncertainty and actuator failure, which could compensate for the
unknown inertial parameters of the system and the actuator failure [33]. The downside
was that similar to the study of Nabavi-Chashmi, the algorithm only worked on the
plane hypothesis.

Taking the mini space robot with a large inertia ratio between the manipulators and
the satellite base as the research object, this paper establishes the dynamic model by using
a VM method and the Newton–Euler equation. Then, the adaptive controller based on a
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linear separation of inertial parameters is used for the dynamic approximation control of
mini space robots. Then, based on the recursive least-squares and the Lyapunov methods,
two different parameter update methods for the controller are proposed, respectively. In
addition, the influence of the prior inertial parameter error and related control parameters
on the control results is illustrated by simulation. The two parameter update methods are
also simulated to illustrate their suitable usage scenarios and their respective defects.

This paper is organized as follows: In Section 2, the kinematics and dynamics model of
the mini space robot is established by the method of the virtual manipulator and Newton–
Euler’s recursive dynamics. Then, the linear separation of inertial parameters, the controller
design, and the associated stability proofs are given in Section 3. In order to prove the
feasibility of the controller and the applicable scenarios of the two parameter updates,
the relevant simulations are carried out in Section 4. Finally, the conclusions are stated in
Section 5.

2. Modeling of Mini Space Robotic System
2.1. Problem Description

Similar to papers [20,34,35], the dynamic model of the mini space robot can be regarded
as a number of different chain components connected to the satellite body. In this paper all
components were considered as rigid bodies. A schematic diagram of the kinetic model is
shown in Figure 1.

Figure 1. General model of a mini space robot.

2.2. Kinematics and Dynamics

The dynamic model of the mini space robot is divided into two parts: a spacecraft
base and n manipulators connected to the base.

2.2.1. Calculation of System’s Centroid Position

The VM method establishes a connection between the center of mass of the system and
the satellite base using a virtual manipulator. The virtual manipulator is characterized by
its kinematic properties rather than its dynamic properties. By determining the positions of
each rigid body component of the mini space robot, the position of the system’s centroid
is also determined. The position of the centroid can be mathematically expressed using
Equation (1):

r0 =

{
n

∑
i=1

[mi(
n−1

∑
i=0

Pi + PCi)] + m0PC0

}
/

n

∑
i=0

mi (1)

In Equation (1), Pi denotes the vector representing the position of the i-th component body
coordinate pointing to the (i+1)-th component. PCi represents the coordinates of the center
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of mass in the body coordinate system of the i-th component. By using this formulation,
the total inertia of the system can be expressed as shown in Equation (2):

ICM =
n

∑
i=0

[c Ii + mi(rirT
i E− rT

i ri)] (2)

In Equation (2), c Ii represents the inertia tensor of the centroid position in the body coordi-
nate system of each component.

2.2.2. Kinematics of Spacecraft Base

Euler angles are commonly used to express the attitude of a rigid body [26]. In
this paper, the specific sequence of rotations Z(α)−Y(β)− X(γ) is employed, where the
attitude is described by the Euler angles Φ = [α, β, γ]T . The relationship between the time
derivative of the Euler angles Φ and the angular velocity ω is given by:

ω =

0 −sinα cosαcosβ
0 cosα sinαcosβ
1 0 −sinβ

α̇
β̇
γ̇

 = NφΦ̇ (3)

However, the singularity of Euler angles causes the rotational speed Φ̇ to be unrepresented
by ω, because Nφ is irreversible when cosα is equal to zero. To avoid singularity problems,
quaternions are usually used to express the attitude of a rigid body [36], which can be
expressed as Equation (4):

Q =
[
q0 q1 q2 q3

]T
=
[
q0 qT]T (4)

=
[
cos ψ

2 sin ψ
2 eT

]T

In Equation (4), e represents the unit rotation axis, and ψ represents the rotation angle
along e. The equation satisfies the condition q2

0 + qTq = 1. It is important to note that any
rigid body attitude can be represented by both Q and −Q. However, when −π < ψ ≤ π
(in radians) and q0 > 0 are satisfied, the expressed attitude is unique. The time derivative
of Q can be expressed as shown in Equation (5):[

q̇0
q̇

]
=

1
2

[
−qT

q0En + q×

]
ω (5)

where En represents an identity matrix of size n× n, and q× is defined as:

q× =

 0 −q3 q2
q3 0 −q1
−q2 q1 0


ω can also be represented by Q as shown in Equation (6):

ω = 2

(
q2

0E3 − q0q× + qqT

q0

)
q̇ (6)

Then, a 3× 3 attitude matrix denoted as i
BR can be used to represent the conversion between

the coordinates of the inertial system and the base coordinate system. The linear velocity
of the spacecraft base, deviating from the center of mass of the inertial system, can be
expressed as shown in Equation (7):

BvB = ṙ0 (7)
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2.2.3. Manipulator Chain Dynamics

By applying the kinematics of the spacecraft base, the dynamics of each manipulator
can be modeled using the Newton–Euler method [13,18,24,37–40]. The angular and linear
velocities of the (i + 1)-th manipulator can be expressed in terms of the i-th manipulator, as
shown in Equations (8) and (9):

i+1ωi+1 = i+1
i Riωi + θ̇i+1

i+1Ẑi+1 (8)

i+1vi+1 = i+1
i R
(

ivi +
i ωi ×i Pi+1

)
(9)

where the superscript i denotes that the vector is represented in the i-th coordinate, iẐi
represents the unit vector of the rotation direction of the i-th axis, and i+1

i R represents
the rotation matrix from the (i + 1)-th coordinate system to the i-th coordinate system. In
Equation (9), iPi+1 represents the position vector of the origin of the (i + 1)-th coordinate
system in the i-th coordinate system. The equations can also be expressed as follows:[

ve
ωe

]
= Jb

[
v0
ω0

]
+ JmΘ (10)

where Jb and Jm are Jacobian matrices that map the velocities of the base and manipulator,
respectively, to those of the end effector. They are defined as follows:

Jb =

[
E −(Pe − P0)

×

O E

]
∈ R6×6 (11)

Jm =

[
Ẑ1 × (Pe − P1) · · · Ẑn × (Pe − Pn)

Ẑ1 · · · Ẑn

]
∈ R6×n (12)

The angular and linear acceleration of each component can be obtained according to
Equations (8) and (9)

i+1ω̇i+1 = i+1
i Riω̇i +

i+1
i Riωi × θ̇i+1

i+1Ẑi+1 + θ̈i+1
i+1Ẑi+1 (13)

i+1v̇i+1 = i+1
i Ri(ω̇i ×i Pi+1 +

i ωi ×
(

iωi ×i Pi+1

)
+i v̇i) (14)

Similarly, the linear acceleration at the center of mass of each component can be
expressed as Equation (15)

i+1v̇Ci+1 =i+1 ω̇i+1 ×i+1 PCi+1 +
i+1 ωi+1 ×

(
i+1ωi+1 ×i+1 PCi+1

)
+i+1 v̇i+1 (15)

Finally, the total external force and torque on the i-th component can be expressed according
to Newton’s equation and Euler’s equation:

i+1F i+1 = mi+1
i+1v̇Ci+1 (16)

i+1N i+1 =Ci+1 Ii+1
i+1ω̇i+1 +

i+1 ωi+1 ×Ci+1 Ii+1
i+1ωi+1 (17)

where mi and Ci Ii represent the mass and the inertia matrix at the center of mass of the
i-th connecting rod in its own coordinate system. iF i and i N i represent the resultant force
and moment of the i-th component, respectively. Finally, the force relationship between
adjacent components can be expressed as:

i f i =
i

i+1R i+1 f i+1 +
iF i (18)
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ini =
i N i +

i
i+1R

i+1
ni+1 +

i PCi ×
i F i +

i Pi+1 × i
i+1Ri+1 f i+1 (19)

where i f i and ini represent the force and moment exerted by connecting rod i − 1 on
connecting rod i. The torque τi at each joint can be expressed as Equation (20):

τi =
inT

i
iẐi (20)

The conservation equations for the linear and angular momentum of the system can be
written as follows:

P = m0v0 +
n

∑
i=1

mi ṙi = P0 (21)

L =
(

CM I0
CMω0 + r0 ×m0ṙ0

)
+

n

∑
i=1

(
CM Ii

CMωi + ri ×mi ṙi

)
= L0 (22)

where the linear and angular momenta are represented by P and L, respectively, with
initial values P0 and L0. The terms CM Ii and CMωi represent the inertial tensor and
angular velocity of the i-th component in the inertial system. To summarize, the dynamic
equation of the space robot can be expressed in the following state-space form (disregarding
gravity effects):

τ = M(Θ)Θ̈ + B(Θ)
(
Θ̇Θ̇

)
+ C(Θ)

(
Θ̇

2
)

(23)

where M(Θ), B(Θ), and C(Θ) are all complex functions about joint space Θ. Among

them, M(Θ) ∈ Rn×n is the mass matrix of manipulators, B(Θ) ∈ Rn× n(n−1)
2 is the Coriolis

coefficient matrix, and C(Θ) ∈ Rn×n is the centrifugal force’s coefficient matrix. In addition,(
Θ̇Θ̇

)
and

(
Θ̇

2
)

can be expressed by Equations (24) and (25):

(
Θ̇Θ̇

)
=
[
θ̇1θ̇2 θ̇1θ̇3 · · · θ̇n−1θ̇n

]T (24)(
Θ̇

2
)
=
[
θ̇2

1 θ̇2
2 · · · θ̇2

n
]T (25)

The dynamic equation of the mini space robot can be expressed using an alternative
formulation, as shown in Equation (26):[

Mb Mbm
Mmb Mm

][
Θ̈b
Θ̈m

]
+

[
Cb Cbm

Cmb Cm

][
Θ̇b
Θ̇m

]
=

[
Bb 0
0 Bm

][
τb
τm

]
(26)

Here, Mb is the matrix corresponding to the overall spacecraft–manipulator system at a
system configuration Θ. Mm is the generalized mass matrix corresponding to the manipu-
lator, and Mbm = MT

mb is the matrix representing the coupled inertia between the base and
the manipulator.

If
τ′ = B(Θ)

(
Θ̇Θ̇

)
+ C(Θ)

(
Θ̇

2
)

, (27)

then there is
Θ̈ = M−1(Θ)

(
τ − τ′

)
(28)

Thus, the forward dynamic system of the mini space robot is obtained. The dynamic
simulation model of the mini space robot is illustrated in Figure 2.
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Figure 2. Schematic diagram of the dynamic model of the mini space robot.

3. Design of Parameter Adaptive Controller

In this section, the adaptive controller is designed based on the dynamics of the mini
space robot. The reference model in the controller is assumed to be the same as the real
physical model but the specific mass characteristic parameters cannot be determined. In
order to enable the controller to update the dynamic parameters online, the linear separation
of the parameters of the dynamic model is necessary.

3.1. Adaptive Controller Design

If the dynamic parameters are accurately known, the linearized equation represented
by Y(Θ, Θ̇, Θ̈)π = u can be used to replace the inverse dynamics of the space robot, which
facilitates the design of the controller. The feasibility of its inertial parameter separation is
demonstrated in Appendix A. On the other hand, the linear separation expression is also
convenient for a computer to iterate and update the parameters. Therefore, the nonlinear
equation of motion can be expressed in a linear separation form with a suitable set of
constant dynamic parameters such as Equation (29):

M(Θ)Θ̈ + D(Θ)Θ̇ = Y(Θ, Θ̇, Θ̈)π = u (29)

where

D(Θ)Θ̇ = B(Θ)
(
Θ̇Θ̇

)
+ C(Θ)

(
Θ̇

2
)

(30)

Assuming that the computational model and the kinetic model are consistent, the control
law can be considered:

u = M(Θ)Θ̈r + D(Θ)Θ̇r + KDσ (31)

where KD is a positive definite matrix; then, choose

Θ̇r = Θ̇d + ΛΘ̃ Θ̈r = Θ̈d + Λ ˙̃Θ (32)

where Λ is a positive definite matrix, and Θ̇d and Θ̈d represent the desired angular velocity
and angular acceleration generated by the target trajectory. Θ̇r represents an intermediate
reference variable generated by tracking the target angular velocity and angular accelera-
tion, and the value of that variable is based on both the expected velocity and the position
tracking error, and the representation of Θ̈r is the same. Equation (32) expresses the nonlin-
ear compensation and coupling terms as functions of the desired velocity and acceleration,
modified by the current state of the space robot. If

σ = Θ̇r − Θ̇ = ˙̃Θ + ΛΘ̃, (33)

then substitute Equations (31) into (29) to obtain:

M(Θ)σ̈ + D(Θ)σ̇ + KDσ = 0 (34)
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The Lyapunov function can be written as:

V(σ, Θ̃) =
1
2

σT M(Θ)σ +
1
2

Θ̃
TWΘ̃ > 0 ∀σ, Θ̃ 6= 0 (35)

where W ∈ Rn×n is a symmetric positive definite matrix. The time derivative of V along
the trajectory of Equation (34) is:

V̇ = σT M(Θ)σ̇ +
1
2

σT Ṁ(Θ)σ + Θ̃
TW ˙̃Θ

= −σTKDσ + Θ̃
TW ˙̃Θ (36)

If W = 2ΛKD is chosen, then:

V̇ = − ˙̃ΘTKD
˙̃Θ− Θ̃

T
ΛKDΘ̃ (37)

The formula is 0 if and only if Θ̃ = 0 and ˙̃Θ = 0, thus indicating that the time derivative is

negative definite. It can be seen that the origin of the state space
[
Θ̃

T
σT
]T

is globally
asymptotically stable, so the control law can be adaptively established according to the
parameter vector π. The control law expressed by Equation (31) can be expressed as:

u = M̂(Θ)Θ̈r + D̂(Θ)Θ̇r + KDσ

= Y(Θ, Θ̇r, Θ̈r)π̂ + KDσ (38)

where π̂ represents the available estimate of the inertial parameter, and the corresponding
M̂ and D̂ represent the estimated terms in the dynamic model.

3.2. Correction and Update of Inertial Parameters

The available inertial parameter vector π̂ cannot always accurately describe the mass
characteristics of the system, and it is necessary to correct the parameters after obtaining
the on-orbit control feedback information to improve the accuracy of the controller.

3.2.1. Recursive Least-Squares Method

On the premise that the state of the space robot system can be accurately feedback,
the recursive least-squares method can identify the system parameters conveniently. After
obtaining the torque and system state variables of each joint, the available inertial parameter
vector π̂ of the k-th control cycle can be calculated according to the iterative least-squares
method, as shown in Equation (39), which can be derived by the basic least-squares method:

π̂k = π̂k−1 + Kk[τk − Yk(Θk, Θ̇k, Θ̈k)π̂k−1] (39)

where the gain matrix Kk is shown in Equation (40):

Kk = Gk−1YT
k [YkGk−1YT

k + E]−1 (40)

and the Gk is the intermediate variable matrix:

Gk = [E− KkYk]Gk−1 (41)

Equation (39) shows that the parameter estimate π̂ at time k is equal to the parameter esti-
mate pi at time k− 1 plus a correction term, which is proportional to the difference between
the torque vector measured at time k and Yk(Θk, Θ̇k, Θ̈k)π̂k−1. The schematic diagram
of the control loop based on the recursive least-squares parameter-adaptive controller is
shown in Figure 3:
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Figure 3. Recursive least-squares parameter-adaptive controller.

3.2.2. Parameter Update Based on Lyapunov’s Method

The key for the controller to identify inertial parameters is to provide an accurate
parameter adaptation law, for which the Lyapunov method can provide an effective calcula-
tion method. According to Equation (38), the matrix Y does not depend on the actual value
of the joint acceleration but on the expected value of the joint acceleration, so the problem of
directly measuring the acceleration is avoided. Therefore, the Lyapunov function expressed
by Equation (35) can be expressed as:

V(σ, Θ̃, π̃) =
1
2

σT M(Θ)σ +
1
2

Θ̃
T

ΛKDΘ̃ +
1
2

π̃TKππ̃ > 0

∀σ, Θ̃, π̃ 6= 0 (42)

In Equation (42), the inertial parameter’s error vector term of the space robot is added to
the Lyapunov function and Kπ is a symmetric positive definite matrix. The time derivative
of V along the trajectory of the system is:

V̇ = − ˙̃ΘTKD
˙̃Θ− Θ̃

T
ΛKDΘ̃ + π̃T [Kπ ˙̃π − YT

k (Θk, Θ̇k, Θ̈k)σ] (43)

To make the last term of Equation (43) zero, we can make:

˙̂π = K−1
π YT

k (Θk, Θ̇k, Θ̈k)σ (44)

Finally, the parameter adaptation law with Equation (38) as the control law in the mini
space robot model represented by Equation (26) is obtained as:

˙̂π = K−1
π YT

k (Θk, Θ̇k, Θ̈k)(
˙̃Θ + ΛΘ̃) (45)

The schematic diagram of the control loop of the parameter-adaptive controller based on
the Lyapunov method is shown in Figure 4.

Figure 4. Lyapunov method based parameter-adaptive controller.
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4. Numerical Simulation

In this section, an existing mini space robot with a four-DOF manipulator was modeled,
as depicted in Figure 5. The satellite base and the antenna served as the primary objects
of interest in the simulation presented in this paper. The satellite base requires precise
positioning in a specific attitude, while the antenna’s center needs to be accurately oriented
in a specified direction to fulfill mission-specific requirements.

Figure 5. Mini space robot model.

Disregarding component interference, joints θ1, θ3, and θ4 had a rotational range from
−180° to 180° within their respective motion spaces, while joint 2 had a range from 0° to
180°. The installation positions and rotation ranges of the joints are illustrated in Figure 6.
Table 1 presents the mass properties, centroid positions iPCi , and Denavit–Hartenberg
parameters of the bodies. Furthermore, for the sake of convenience, a simplified model
and component labeling were utilized. The spacecraft base was denoted as B0, while the
accessory parts were labeled as Bi (with subscripts). The coordinate positions of the mini
space robot are depicted in Figure 7.

Figure 6. Schematic diagram of the joint’s installation position and rotation.
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Figure 7. Simplified model of the space robot.

Table 1. The mass properties of the space robotic system.

Parameters B0 B1 B2 B3 B4

Mass (kg) 131.734 2.082 24.569 25.280 134.078
iPCi (m) ix −0.045 0 0.496 0.500 0.149

iy 0.101 0 0 0 0
iz −0.061 0.035 0 0 0

i Ii (kg ·m2) Ixx 7.610 0.003 0.017 0.017 36.254
Iyy 11.721 0.003 1.949 2.090 18.637
Izz 11.404 0.002 1.959 2.101 18.637
Ixy −1.773 0 0 0 0
Ixz 1.799 0 0 0 0
Iyz 0.652 0 0 0 0

Twist angle αi (rad) 0 0 π/2 0 0
Length of links ai (m) 0.320 0.056 1.000 1.000 0
Offset of links links di (m) 0 0 0 0 0
Joint angle θi (rad) [α, β, γ]T θ1(t) θ2(t) θ3(t) θ4(t)

4.1. Influence of Prior Inertia Parameters on Controller Performance

The general orientation control task of a space robot is to perform attitude control while
the manipulators are moving. In the first simulation, the mini space robot concurrently
performed satellite attitude adjustment and end-effector antenna pointing tasks. This task
exhibited generality in the on-orbit orientation of mini space robots, where other satellite-
manipulator on-orbit maneuver modes can be regarded as submodes of this task. During
this process, the controller utilized both the real inertial parameters and the prior inertial
parameters with a certain level of error to control the same process. However, the controller
did not update the parameters during the control process. Suppose the initial attitude of
the mini space robot is Θ0 =

[
0◦ 0◦ 0◦ 90◦ 45◦ 45◦ 0◦

]
and the target attitude is

Θ f =
[
10◦ 0◦ 0◦ 90◦ 55◦ 55◦ 10◦

]
. Assume a certain ratio error exists between

the prior inertial parameters and the actual parameters, following a normal distribution. In
this paper, a three-time standard deviation was chosen as the error range, as shown below:

πpriori ∼ N(πreal ,
1
3

ηπreal) (46)

where πpriori and πreal represent the prior inertial parameters and real inertial parameters,
respectively, and η represents the ratio of error in the prior inertial parameters. Initially,
the controller carried out the orientation task using the real inertial parameters. The time-
varying curves of the spacecraft base’s attitude and the angles of each joint are depicted
in Figure 8.
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Figure 8. Orientation process under real inertial parameters.

The stability of the system under the control of the controller with real inertial pa-
rameters is demonstrated in Figure 8. Next, by setting η to 20%, four different sets of a
priori inertial parameters were randomly generated. Using the satellite’s attitude error as
an example, Figure 9 illustrates the performance of the controller under these different sets
of inertial parameters.

Figure 9. Attitude control error under different inertial parameters.

The red curve in Figure 9 represents the attitude error of the controller under the real
inertial parameters, and the iπpriori’s, respectively, represent the corresponding control
curves under the i-th group of prior inertia parameters. It can be seen from Figure 9 that
without updating the prior parameters, inaccurate parameters lead to unstable control
results. In addition, the inaccurate inertial parameters cause the controller to produce
different degrees of overshoot, oscillation, slow convergence, and even divergence. It can
be proved that the controller depends on the accuracy of the inertial parameters, and it
is particularly important to obtain accurate inertial parameters or parameters that can be
accurately equivalent to the system.
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4.2. Influence of Weight Coefficient Λ on Controller Performance

The presence of Λ in Equation (32) allows the nonlinear compensation and coupling
terms to be expressed as functions of desired velocity and acceleration, corrected by the
current state of the spacecraft (Θ̇ and Θ). Λ represents a velocity-dependent weight
based on the desired velocity and position tracking error. Therefore, the value of Λ has
a significant influence on the controller performance. In the second simulation, the real
inertial parameters were also used as the preset parameters of the controller to carry out
the same orientation process as the first simulation. Then, taking the satellite’s attitude
error as an example, the control effect caused by different Λ’s is studied in Figure 10.

Figure 10. Influence of weight coefficient Λ on controller performance.

This paper examined the convergence curve of the system when Λ varied from 0.4
to 2.0. Figure 10 shows that the influence of parameter Λ on the control effect is mainly
manifested in two aspects: overshoot and convergence speed. Within a certain range, the
smaller the value of Λ, the lower the dependence on the tracking error. At that time, the
system has a faster response speed and greater overshoot.

4.3. Inertial Parameter Update Using Recursive Least Square Method and Lyapunov Methods

Without loss of generality, the harmonic trajectories were tracked for each joint of the
spacecraft in this part. The controller used recursive least-squares (RLS) and Lyapunov
methods (LM) to adapt the inertial parameters during trajectory tracking, respectively. In
addition, the stability of the two parameter adaptive methods was investigated by using
the prior inertial parameters with different prior errors. Similar to the first part, we kept
the y-axis and z-axis attitudes of the spacecraft base, and joint θ1 was unchanged. At the
same time, the attitude of the x-axis of the spacecraft base and the angles of θ2, θ3, and θ4
tracked the sine-wave motion trajectory. The tracking process of both different parameter
update methods is shown in Figure 11.

Figure 11. Tracking curves of the two methods.
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Figure 11 shows the tracking curves of the two methods when the error of the prior
inertial parameter vector is 20%. The black solid line in the figure represents the given
tracking trajectory and the traces of the RLS and LM methods are distinguished using
red and blue or solid and dashed lines, respectively. Both parameter update methods can
track the given trajectory accurately, and the curves of the two methods have a high degree
of coincidence. Since the most important difference between the RLS and the Lyapunov
methods for updating parameters is whether there is torque feedback information, it was
necessary to further investigate the influence of the accuracy of the prior parameters on
the control results of the two different parameter updating methods. In this process, the
change curves of the inertial parameters of the satellite base in the two control algorithms
are shown in Figure 12 . It can be seen from Figure 12 that the estimation accuracy of the
inertial parameters of the LM method was worse than that of the RLS method because
there was no torque feedback information. Of course, the rotation of the y-axis and z-axis
of the satellite base was not involved in that process (only the attitude of the y-axis and
z-axis was kept stable), so the correction of Iyy and Izz by both methods was inaccurate.
It can be further shown that that approximation can only correct the reference dynamic
model in the direction of motion.

Figure 12. Inertia parameter’s change curve.

Hence, building upon the first part, the error in the prior inertial parameters was
incrementally increased, and the performance of both parameter update methods in track-
ing a harmonic trajectory was compared once again. Six sets of different a priori inertial
parameters were randomly generated within the range of η from 10% to 40%. The recursive
least-squares (RLS) and Levenberg–Marquardt (LM) algorithms were employed to simulate
the harmonic trajectory tracking for each parameter group. Subsequently, the tracking
errors are presented in Figure 13 for comparison.

In Figure 13, the solid and dashed lines represent the tracking error curves of the
recursive least-squares (RLS) and Levenberg–Marquardt (LM) methods, respectively. The
results in Figure 13 demonstrate that when the error in the prior inertial parameters is
small, the two parameter update methods exhibit similar control outcomes. However, as
η gradually increases, the Lyapunov parameter update method introduces fluctuations,
and the tracking error gradually increases during the convergence process. Conversely, the
RLS method is less affected by the error in the prior parameters and only exhibits slight
oscillations when η approaches 30%.
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Figure 13. Comparison of the adaptability of the prior inertia parameters of the two methods to
different initial errors.

Equations (39) and (44) show that neither the RLS nor the Lyapunov method can obtain
the most accurate system inertial parameter vector in principle, which is different from the
on-orbit inertial parameter identification. These methods only update the parameters to
approximate the system dynamics captured by the Y(Θ, Θ̇, Θ̈)π term. From the simulation
results, both the recursive least squares method and the Lyapunov method effectively
adapted the inertial parameters, enabling the system to stably track the desired trajectory.
The RLS-based parameter-adaptive controller maintained stable control performance even
when the prior inertial parameters were highly inaccurate (η = 40%), but this relied on
accurate torque feedback for each joint. Additionally, in terms of computational resources,
the Lyapunov method did not require matrix inversion operations during parameter
updates. In practical applications, engineers typically strive to maintain the measurement
error of inertial parameters for each component within the range of 5% to 10%. Within this
range, controllers based on Lyapunov methods may offer certain advantages.

In addition, 10,000 repeated experiments were performed in Matlab to evaluate the
computation time spent by the two algorithms in each control cycle, which is shown in
Table 2. It can be seen that the average calculation time of the two algorithms was on
the order of 10−4 s, which is far less than the control calculation period of the satellite on-
orbit operation (the calculation period of the satellite on-orbit control algorithm is usually
0.25–1 s).

Table 2. Algorithm calculation time comparison

Calculation Method
Calculation Time(s)

Mean Var Max Min

RLS 3.202 × 10−4 7.736 × 10−8 22.63 × 10−3 2.187 × 10−4

LM 2.440 × 10−4 1.325 ×10−8 6.405 × 10−3 1.832 × 10−4

5. Conclusions

In this paper, a dynamic-approximation-based inertial-parameter-adaptive controller
was studied for mini space robots. The dynamic model established by the combination of
the VM method and Newton–Euler equations was proved to be able to play an important
role in the numerical simulation and dynamics-based controller design. Two methods
based on recursive least squares and Lyapunov were designed for updating the parameters
of the adaptive controllers. It was verified by simulation that the accuracy of the inertial
parameters had a significant impact on the performance of the controller. Moreover, the
parameter Λ in the controller that expresses the degree of dependence on the current
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state of the system also had an important influence on the convergence characteristics of
the system. Finally, the parameter update methods based on iterative least-squares and
Lyapunov methods both showed a strong tracking ability in harmonic-tracking simulations.
The difference was that the Lyapunov method had a poor adaptive ability to inaccurate
prior inertial parameters, while the recursive least-squares method required more hardware
resources such as accurate joint torque feedback and more computing power. The inertial-
parameter-adaptive controller proposed in this paper can accurately approximate the
dynamics of mini space robots and has certain application prospects in this field.
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Appendix A

The dynamic equations derived by the Newton–Euler method are not linear equations
with respect to the inertial parameters. The existence of the mi

iP2
Ci

term in Equation (19)
makes the inertial parameters and dynamics nonlinear, so in order to eliminate this term,
Equation (19) can be transformed:

i N i +
i PCi ×

i F i

= Ci Ii
iω̇i +

iωi × (Ci Ii
iωi) +

i PCi × (mi
iv̇Ci ) (A1)

= Ci Ii
iω̇i +

iωi × (Ci Ii
iωi) + mi

iPCi × [iv̇i +
iω̇i × iPCi +

iωi × (iωi × iPCi )]

The third term in Equation (A1) can be expanded to obtain:

mi
iPCi × [iv̇i +

iω̇i × iPCi +
iωi × (iωi × iPCi )]

= mi
iPCi ×

i v̇i + mi
iPCi × (iω̇i × iPCi ) + mi

iPCi × [iωi × (iωi × iPCi )] (A2)

The terms mi
iPCi × (iω̇i × iPCi ) and mi

iPCi × [iωi × (iωi × iPCi )] in Equation (A2) can be
written as:

mi
iPCi × (iω̇i × iPCi )

= iPCi × (iω̇i ×mi
iPCi )) (A3)

= mi(
iP

T
Ci

iPCi E−
iPCi

iP
T
Ci
)iω̇i

and:

mi
iPCi × [iωi × (iωi × iPCi )]

= iωi × [iPCi × (iωi ×mi
iPCi )] + (iωi ×mi

iPCi )× (iωi
iPCi ) (A4)

= iωi × [mi(
iP

T
Ci

iPCi E−
iPCi

iP
T
Ci
)iω̇i]
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Applying the parallel axis theorem, Equation (29) can be expressed as:

i N i +
i PCi ×

i F i

= Ci Ii
iω̇i +

iωi × (Ci Ii
iωi) + mi

iPCi ×
i v̇i + mi(

iP
T
Ci

iPCi E−
iPCi

iP
T
Ci
)iω̇i (A5)

+ iωi × [mi(
iP

T
Ci

iPCi E−
iPCi

iP
T
Ci
)iω̇i]

= Oi Ii
iω̇i +

iωi × (Oi Ii
iωi) + mi

iPCi ×
i v̇i

Thus, Equation (19) can be expressed in the form of Equation (A6):

ini =
Oi Ii

iω̇i +
iωi × (Oi Ii

iωi) + mi
iPCi ×

i v̇i +
i

i+1R
i+1

ni+1 +
i Pi+1 × i

i+1Ri+1 f i+1 (A6)

Then, the inertia parameter of the i-th component can be represented by a vector:

πi =
[Oi Ixx

Oi Ixy
Oi Ixz

Oi Iyy
Oi Iyz

Oi Izz mi
iPCix mi

iPCiy mi
iPCiz mi

]T (A7)

Now, the equation does not contain the mi
iP2

Ci
term. The dynamic equation of the end

part can be linearly separated as:

nnn =
[
K(nω̇n) + S(nωn)K(nωn) −S(nv̇n) 0

]
πn (A8)

where the functions K(a) and S(a) are expressed as:

K(a) =

ax ay az 0 0 0
0 ax 0 ay az 0
0 0 ax 0 ay az

 S(a) =

 0 −az ay
az 0 −ax
−ay ax 0


The torque of each joint of the space robot can be expressed as Equation (A9), and Y ij in the
coefficient matrix is summarized as Equation (A10):

bnb
1n1
2n2

...
nnn

 =


Ybb Yb1 Yb2 · · · Ybn
0 Y11 Y12 · · · Y1n
0 0 Y22 · · · Y2n
...

...
...

. . .
...

0 0 · · · 0 Ynn




πb
π1
π2
...

πn

 (A9)

Y ij =

{ [
K(iω̇i) + S(iωi)K(iωi) −S(iv̇i) 0

]
i = j[

K(iω̇j) + S(iωj)K(iωj) S(iω̇j) + S(iωj)S(iωj)− S(iv̇j)
iv̇j
]

i 6= j
(A10)

Equation (A9) is abbreviated as:

τ = Y(Θ, Θ̇, Θ̈)π (A11)

where Y is a function of the mini space robots Θ, Θ̇, and Θ̈, and only the kinetic parameters
are included in π.
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