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Abstract: The safety zone around the flight path of a rocket is determined by the fall of debris in
the case of an accidental explosion or commanded termination. The trajectory of a tumbling body
in a vertical plane is determined by specifying the velocity, flight path angle and angle of attack
as functions of time. This involves the lift, drag and pitching moment coefficients as functions of
the angle of attack over a full circle—0 to 360 degrees—to account for the tumbling motion. The
problem is reduced to a third-order non-linear differential equation for the angle of attack by using the
approximation of free fall coordinates. The analytical and numerical solutions show that two types of
tumbling fall are possible, one with rotation and the other with oscillation. The tumbling trajectories
are plotted and discussed for a variety of initial conditions, mass and aerodynamic properties of the
tumbling body.

Keywords: rocket trajectory; free fall; non-linear aerodynamic forces; trajectory simulation

1. Introduction

The launch of rockets into space is surrounded by strict safety precautions such as
the exclusion of flying over populated areas. More specifically, when a rocket is launched,
there is a safety zone on the ground below and around its flight path in case of a propulsion
loss, or an explosion or intentional self-destruct instruction following a failure. The safety
zone must be large enough so that any potential debris falls within it. Nowadays, in the
space industry, the concept of range safety—application of safety policies, principles and
techniques to protect the public, workforce and/or property from hazards associated with
range operations [1]—is of the utmost importance.

Range safety is assured through the inclusion of a flight termination system (FTS)
aboard the spacecraft. The FTSs are highly reliable systems with extensive emphasis
on redundancy and pre-launch testing [2], which are capable of terminating powered
flight upon command, for instance by shutting down the main propulsion system of the
rocket [3], leaving the debris to fall into an abandoned area. The FTS is activated based on
the deviations of flight attitude and range safety criteria, i.e., if the rocket strays away from
its intended path leaving its previously assigned safety zone [4].

The uncertainties about the trajectory of tumbling debris lead to a safety area that is
possibly larger than it needed to be. For launch sites having nearby population centres,
a large safety area may severely limit the range of allowable azimuths and require the
use of non-optimal flight paths. The method of calculation of the trajectory of a tumbling
body applies to the following: (i) the debris resulting from an accidental explosion or
commanded flight termination; (ii) a spent stage of a rocket after burn-out; (iii) the whole
rocket or a single stage after burn-out or propulsion failure at an earlier stage of flight.

The trajectory of a tumbling body is calculated in a vertical plane (Section 2) and
the tumbling motion requires the specification of the aerodynamic coefficients over the
full circle (zero to 360 degrees) of angles of attack (Section 3). With some simplifying
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assumptions, it is shown that the angle of attack satisfies a non-linear third-order differential
equation (Section 3) whose unique solution involves three independent initial conditions.
Both analytic solutions (Section 4) and numeric solutions (Section 5) show the existence of
two regimes of fall, one with rotation and the other with oscillation. These two regimes
are demonstrated over a wide range of initial conditions (Section 6) and rocket parameters
(Section 7) of the tumbling body. Some observations about the results obtained in the
previous sections and the conclusions are presented in the last part (Section 8).

2. Flight in a Vertical Plane

The tumbling motion of the body is considered in a vertical plane, and three sets of
orthogonal axes are shown in Figure 1: (i) Earth fixed axis, with altitude Z and opposite
gravity g, and coordinate X along flat ground; (ii) wind axis, with X′ along airspeed U
and opposite to drag, and Z′ orthogonal along the lift L; (iii) body axis with X′′ along the
aircraft datum and Z′′ orthogonal. The angle between X′′ and X′ is the angle of attack α,
and the angle between X′ and X is the flight path angle γ. Equations of motion in a vertical
plane are written in wind axis, so that the wind velocity is included in the airspeed V, and
they state the balance of forces tangent—Equation (1a)—and normal—Equation (1b)—to
the flight path and the pitching moment—Equation (1c):

m
dU
dt

= −D−mg sin(γ), (1a)

mU
dγ

dt
= L−mg cos(γ), (1b)

I
(

d2α

dt2 −
d2γ

dt2

)
= M, (1c)

where U is the modulus of the total velocity, γ is the total flight path angle, L is the lift, D is
the drag, m is the mass, I is the pitch moment of inertia, α is the angle of attack, α− γ is the
pitch angle, M is the pitching moment and g is the acceleration of gravity. Since the motion
of the tumbling body is unpowered, there is no thrust in the previous equations.

X

Z

D

X ′

U

Z ′

L

z0 + v0t− gt2

2 + z

x0 + u0t+ x

mg

X ′′

Z ′′

α
γ

Figure 1. Trajectory of the tumbling body in a vertical plane in body (X′′, Z′′), wind (X′, Z′) and
Earth (X, Z) coordinates, also relating the latter to free fall coordinates (x, z).
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The Cartesian coordinates of the trajectory, X(t) and Z(t), in a vertical plane are
decomposed into the sum of the following: (i) a parabolic free fall under uniform gravity;
(ii) a perturbation, x(t) and z(t), due to the aerodynamic forces:

X(t) = x0 + u0t + x(t), (2a)

Z(t) = z0 + v0t− 1
2

gt2 + z(t). (2b)

In Equations (2a) and (2b), the pair (x0, z0) corresponds to the initial position of
the body and the pair (u0, v0) is associated to the initial velocity components due to the
gravitational force; however, it will be assumed that the last pair is (0, 0) and consequently
the components of the total initial velocity are given by the pair [ẋ(0), ż(0)].

The horizontal and vertical velocities are obtained by differentiating, respectively,
Equations (2a) and (2b):

Ẋ(t) =
d
dt

[x0 + u0t + x(t)] = u0 + ẋ(t), (3a)

Ż(t) =
d
dt

[
z0 + v0t− 1

2
gt2 + z(t)

]
= v0 − gt + ż(t), (3b)

that imply Equation (4b) for the modulus of the total velocity (4a):

[U(t)]2 ≡
[
Ẋ(t)

]2
+
[
Ż(t)

]2 (4a)

= [u0 + ẋ(t)]2 + [v0 − gt + ż(t)]2, (4b)

and is related to the modulus of the relative velocity V in free fall coordinates by

[V(t)]2 ≡ [ẋ(t)]2 + [ż(t)]2 (4c)

= [U(t)]2 − 2u0Ẋ(t)− 2(v0 − gt)Ż(t) + (u0)
2 + (v0 − gt)2. (4d)

The components of the total velocity in Earth fixed coordinates

Ẋ = U cos γ, (5a)

Ż = U sin γ, (5b)

agree with the total flight path angle:

Ż
Ẋ

= tan γ, (5c)

and the components of the relative velocity (3a) and (3b) in free fall coordinates

ẋ = U cos γ− u0, (6a)

ż = U sin γ− v0 + gt, (6b)

lead to the relative flight path angle:

tan δ ≡ ż
ẋ
=

U sin γ− v0 + gt
U cos γ− u0

. (6c)

Substituting (5a) and (5b) in (4d) leads to the following:

0 = U2 − [2u0 cos γ + 2(v0 − gt) sin γ]U + (u0)
2 + (v0 − gt)2 −V2, (7a)
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whose roots specify the total velocity in Earth fixed reference frame U in terms of the
relative velocity V in free fall coordinates

U = u0 cos γ + (v0 − gt) sin γ±
∣∣∣V2 − [u0 sin γ− (v0 − gt) cos γ]2

∣∣∣1/2
. (7b)

Here, the flight path angle γ and initial velocities (u0, v0), along with acceleration due to
gravity g and time t, explicitly and implicitly appear in (V, γ).

The three coupled equations of motion—Equations (1a) to (1c)—form a fourth-order
system. Since free fall coordinates (2a) and (2b) already include gravity, the approximation
is made that, in the free fall reference frame, gravity can be omitted from Equations of
motion. This free fall coordinate approximation will be checked in subsequent work,
considering the same problem without this approximation. As a simpler preliminary
approach to the problem, the free fall coordinate approximation is made, leading to a
third-order system, as shown below. Thus, the free fall coordinate approximation includes
the effect of gravity in the moving non-Galilean reference frame (2a) and (2b), but omits it
in Equations of motion:

m
dV
dt

= −1
2

ρSV2CD(α), (8a)

mV
dδ

dt
=

1
2

ρSV2CL(α), (8b)

I
(

d2α

dt2 −
d2γ

dt2

)
=

1
2

ρSlV2CM(α), (8c)

where CL, CD and CM are respectively the lift, drag and pitching moment coefficients that
are assumed to depend only on the angle of attack, l is a reference length and V is the
velocity in free fall coordinates. The free fall coordinate approximation retains the angles of
attack α and flight path angle γ, with the supposition that the absolute and relative flight
path angles are of the same order γ ∼ δ, and assumes that the acceleration of the latter is
much smaller than that of the angle of attack γ̈ � α̈, so that Equations (8a) to (8c) after
simplification of (8c) become

m
dV
dt

= −1
2

ρSV2CD(α), (9a)

mV
dδ

dt
=

1
2

ρSV2CL(α), (9b)

I
d2α

dt2 =
1
2

ρSlV2CM(α), (9c)

Consequently the relative velocity is expressed in terms of the angle of attack by
solving Equation (9c) as follows:

V =

√
2Iα̈

ρSlCM(α)
. (10)

Substitution of Equation (10) into Equation (9a) leads to a differential equation for the
angle of attack alone:

d
dt

[√
2Iα̈

ρSlCM(α)

]
= − ρS

2m
CD(α)

2Iα̈

ρSlCM(α)
, (11a)
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that is of the third-order and can be rewritten with an explicit third-order derivative:

...
α − α̈

ĊM
CM

= − I
ml

CD
CM

√
2ρSl

I

√
α̈

CM
CMα̈ = −

√
I
m

√
ρSl
m

CD
l

√
2

CM
α̈3/2. (11b)

In the last equation appear the following: (i) the radius of gyration r that is related to
the moment of inertia I and mass m by the relation:

I = mr2; (12a)

(ii) the dimensionless mass factor defined by the fraction

µ ≡ ρSl
m

< 1, (12b)

as the ratio of the mass of a cylinder of air with density ρ, cross-section S and length l
to the mass m of the tumbling body . The mass factor is less than unity if the tumbling
body is heavier than its volume of air that it displaces; this should be nearly always the
case by some margin. Using Equations (12a) and (12b) in Equation (11b), the third order
differential equation becomes

...
α − α̈

ĊM
CM

= − r
l

√
2µ

CM
CD α̈3/2. (13)

This equation is nonlinear and remains valid for any form of drag coefficient CD
and pitching moment coefficient CM, both of which depend solely on the angle of attack.
The solution of Equation (13) specifies the angle of attack as a function of time α(t) and
substitution in Equation (10) specifies the modulus of the relative velocity V(t). The
substitution of Equation (10) in Equation (9b) leads to the following:

δ̇ =
ρS
2m

CL(α)

√
2Iα̈

ρSlCM
=

r
l
CL

√
µ

2CM
α̈1/2. (14)

This equation specifies by integration the relative flight path angle δ(t). The initial
conditions for the third-order differential equation are the angle of attack and its first- and
second-order time derivatives; the formula for the modulus of the relative velocity V (10),
arranged in the way:

α̈ =
ρSl
2I

V2CM(α) =
µ

2

(
V
r

)2
CM(α), (15)

is used to evaluate the second-order time derivative of the angle of attack α̈, particularly at
initial time.

So far, no assumptions have been made on the dependence of the drag, lift and pitching
moment coefficients on the angle of attack.

3. Aerodynamic Coefficients in a Full Circle

In order to consider tumbling motion, the aerodynamic coefficients must be specified
for the full range of angles of attack. Although the behaviours of lift, drag and pitching
moment coefficients have been thoroughly studied for small angles of attack for aerofoils
or streamlined shapes, this is not the case for the tumbling motion of irregular shaped
bodies, considering the full revolution of angles of attack. In order to extend the “usual”
aerodynamic theory to tumbling motion, some simple plausible assumptions are made.
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For the lift coefficient, the starting point is the expression for the lift coefficient for
aerofoils at small angles of attack [5,6], where CLα corresponds to the slope for small angles
of attack and the angle is measured relative to zero lift:

CL(α) = CLα sin(α). (16)

For a tumbling body, the lift coefficient should obey three conditions: (i) for small
angles of attack, the resulting expression should be the same (16) as the one obtained
using small angle theory; (ii) when the body is perpendicular to the flow (α = π/2)
there should be no lift; (iii) the lift coefficient variation must be periodic with period π.
Equation (16) does not meet the third requirement. Multiplying Equation (16) by cos α
leads to the following:

CL(α) = CLα sin(α) cos(α) =
1
2

CLα sin(2α). (17)

This equation meets all three requirements: (i) for small angle of attack, α2 << 1 then
cos α ∼ 1 and the expression (17) reduces to (16); (ii) if the body is perpendicular to the
flow, α = π/2 then cos α = 0 and the lift coefficient (17) is zero; (iii) the lift coefficient (17)
is a periodic function with period π, since sin[2(α + π)] = sin(2α).

The next aerodynamic coefficient to be considered is the pitching moment coefficient.
Since the pitching moment is taken relative to the centre of mass of the rocket whereas
the lift is applied in the centre of pressure, the pitching moment can be assumed to be
proportional to the lift:

M = aL, (18)

through the distance a between the centre of pressure and the centre of mass of the
rocket. The dependence of the pitching moment on the angle of attack is thus similar
to Equation (17), with a distinct pitching moment slope in the next equation:

CM(α) =
1
2

CMα sin(2α), (19)

in which the derivative of the coefficient moment is proportional to the derivative of the lift
coefficient with respect to the angle of attack through the following relation:

CMα ≡
a
l

CLα , (20)

that follows from

a =
M
L

=
lCM(α)

CL(α)
= l

CMα

CLα

. (21)

The relation (17) also implies

ĊM(α) ≡ dCM
dt

=
dα

dt
dCM
dα

= α̇CMα cos(2α). (22)

The only aerodynamic coefficient still to be considered is the drag coefficient. The
drag coefficient will be given by the sum of three terms, of which the first two are the usual
in aerodynamic theory [7]:

CD(α) = CD0 + K[CL(α)]
2 +

2π sin(α)
4 + π sin(α)

, (23)

namely: (i) the first term, specifically CD0 , is independent from the angle of attack and
represents the friction drag; (ii) the second term is proportionate to the square of the lift
coefficient, which ensures a parabolic lift–drag relationship and is commonly referred to as
induced drag. To accommodate the wide angle of attack experienced by a tumbling body, a



Aerospace 2023, 10, 760 7 of 27

third term is introduced, representing the "wake drag" of a lamina at an angle α relative
to a stream that features a "vacuous" region behind it. This region lies between the free
streamlines originating from the lamina’s tips [5,6].

The expressions for the pitching moment coefficient (19) and its time derivative (22)
appear in the non-linear third-order differential Equation (11b) for the angle of attack,
whose square takes the following form:[

...
α − 2α̈α̇

cos(2α)

sin(2α)

]2
=

4
CMα

I
ml2

ρSl
m

α̈3

sin(2α)
[CD(α)]

2, (24)

whose right-hand side involves: (i) the drag and pitching moment coefficients that depend
on angle of attack; (ii) two dimensionless parameters that do not depend on any of aero-
dynamic coefficients. The first dimensionless parameter ε0 is the moment of inertia of the
rocket divided by the product of the mass by the square of the lengthscale:

ε0 ≡
I

ml2 =
( r

l

)2
< 1. (25)

The lengthscale can be taken to be the rocket length, which is usually greater than
the radius of gyration relative to the pitch axis, so that ε0 is less than unity. The second
dimensionless parameter ε equals the first parameter (25) multiplied by the mass ratio (12b),
which is also smaller than unity:

ε ≡ ε0µ =
r2

l2
ρSl
m

=
ρSr2

ml
=

ρSI
m2l

< 1, (26)

so that their product is also less than unity. Using the parameter ε obtained in Equation (26),
the non-linear third order differential equation for the angle of attack (24) becomes

4εα̈3[CD(α)]
2

CMα

sin(2α) =
...
α 2 sin2(2α) + 4α̇2α̈2 cos2(2α)− 2α̇α̈

...
α sin(4α), (27)

in which all terms have derivatives with regard to time whose orders always add to six.
After determining the dependence of the angle of attack on time α(t) as the solu-

tion of Equation (27), the relative flight path angle δ(t) is obtained by integrating the
Equation (14). In this integration, the dimensionless parameter ε defined in Equation (26)
can be substituted, resulting in the following:

δ̇ = CL(α)

√
εα̈

2CM(α)
. (28)

The relative velocity (4c) in free fall coordinates and flight path angle (28) determine
the total velocity (7b) in Earth-fixed coordinates and integration of (5a) and (5b) specifies
the trajectory. The third-order non-linear differential equation (27) for the angle of attack
has a unique solution satisfying three independent initial conditions at time zero. These are
as follows: (i) the initial angle of attack:

α0 ≡ α(0); (29a)

(ii) its first-order time derivative at time zero:

α̇0 ≡ α̇(0); (29b)

(iii) its second-order time derivative at time zero:

α̈0 ≡ α̈(0) =
ρSl
2I

V2
0 CM(α0) =

µ

2

(
V0

r

)2
CM(α0), (29c)
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which is specified by Equation (15), knowing the initial velocity V0 at time t = 0, repeated
here for convenience.

The analytical solution is obtained for small angles of attack (Section 4) followed by
numerical solutions for unrestricted angles of attack (Section 5).

4. Particular Analytic Solutions

The main innovation in the present paper is to consider the full circle of angles of
attack 0 ≤ α ≤ 2π for the flight trajectory of a tumbling body. It is useful to start by
checking compliance with the usual aerodynamic theory for small angles of attack α2 � 1,
in which case some simple analytic solutions are possible. This also applies to the initial
motion in the particular case of release at small angles of attack. The analytical results
provide initial insights into the problem, serving as a preliminary step before delving into
the general case of release and motion at large angles of attack. The subsequent numerical
treatment of this scenario constitutes the main focus of the paper.

By restricting the angle of attack domain to only small angles, all trigonometric
functions disappear from the differential equations, and both the lift coefficient and
pitching moment coefficient will vary linearly with the angle of attack relative to the
angle of zero lift. The drag coefficient, which was originally a sum of three terms, will
become a constant, due to the friction drag, and a linear term, due to the wake drag.
The induced drag is neglected because it is a non-linear term and hence too small to be
taken into account again in the particular case of small angles of attack. The lift (17),
pitching moment (19), and drag (23) coefficients simplify for small angles of attack,
α2 � 1, respectively to the following relations:

CL(α) ≈ αCLα , (30a)

CM(α) ≈ αCMα , (30b)

CD(α) ≈ CD0 +
πα

2
. (30c)

If πα << 2CD0 holds using the previous relations, the differential Equation (27) for
the angle of attack becomes

2εC2
D0

CMα

α̈3α =
...
α 2α2 + α̇2α̈2 − 2αα̇α̈

...
α . (31)

In all terms of the non-linear third-order differential Equation (31), the sum of the
orders of the time derivatives is 6 and the powers of the angle of attack is 4. Thus, a possible
solution is a power of time with amplitude A and exponent ν:

α(t) = Atν. (32)

This is considered as the simplest possible analytic solution in the particular case
of small angle of attack. It will be compared subsequently with more general numerical
solutions for unrestricted angles of attack. Substitution of the last Equation (32) in (31)
leads to the following relation:

A4t4ν−6ν2(ν− 1)2
[
−2εν(ν− 1)− (ν− 2)2 − ν2 + 2ν(ν− 2)

]
= 0, (33)

where ε is a dimensionless parameter and is related to Equation (26) by

ε = −
εC2

D0

CMα

> 0. (34)

For a stable tumbling body CMα < 0; thus, the parameter from Equation (34) is positive,
ε > 0. This would apply if the whole rocket is the tumbling body, which is the usual worst



Aerospace 2023, 10, 760 9 of 27

case assumption. However, if the rocket breaks up into smaller pieces, each of these would
have to be considered separately with the initial conditions at break-up time.

From Equation (33), it follows that the amplitude A is arbitrary whereas the exponent
ν can take four values. Since the differential Equation (31) for the angle of attack is of the
third order, the general solution involves three arbitrary constants. In Equation (32), only
one arbitrary constant appears, A; thus, it is a particular solution. In total, Equation (33)
has four solutions. The first two solutions to Equation (33) are ν = 0 and ν = 1. The first
solution, ν = 0, applies to a body falling without any kind of rotation, because the angle of
attack is constant and the time derivatives are all zero for all time. The second solution,
ν = 1, applies to a body falling at a constant rate of rotation, since the first derivative of
the angle of attack is constant and both the second and third time derivatives are zero. In
both cases, ν = 0 or ν = 1, the angular acceleration is zero, the relative velocity is zero
by Equation (10) and the flight path angle is constant by Equation (14), so the free fall
velocity components (ẋ, ż) are nearly zero, and the total velocity components

(
Ẋ, Ż

)
are

linear functions of time in (3a) and (3b), leading to a parabolic trajectory. The deviations
from a ballistic parabola occur for the remaining two values of ν, which are the roots of the
term in square brackets in Equation (33), leading to the quadratic equation

ν2 − ν +
2
ε
= 0. (35)

The roots of the last equation are

2ν± = 1±
√

1− 8
ε

(36)

and depend only on the dimensionless parameter defined in Equation (34), leading to
four cases:

ε� −8 −→ 2ν± = 1± 1, (37a)

−8 < ε < 0 −→ 1 < ν+ > 0 > ν−, (37b)

0 < ε < 8 −→ 2ν± = 1± i

√
8
ε
− 1, (37c)

ε� 8 −→ 1 ≥ ν+ > ν− ≥ 0. (37d)

Figure 2 shows the analytic solutions for the four previous cases of the roots ν+ and
ν− of the term in square brackets in Equation (33). The four cases in Figure 2 correspond
to the next four values of ε: −100, −2, 0.05 and 100. In the first case, when ε � −8, the
two roots ν+ and ν− tend to be equal to the first two roots calculated from (33), specifically
ν = 0 and ν = 1. In the third case, when 0 < ε < 8, the two roots ν+ and ν− are complex
numbers; therefore, each one leads to two distinct solutions of α, evaluated from (32), one
associated with the real part and the other with the imaginary part of α. Moreover, in
the third case, when choosing the complex root ν+ or ν−, the real part of α is the same,
whereas the imaginary part of α is symmetric. Both solutions are plotted in Figure 2. The
existence of four possible cases is due to the competition of two different effects. The first
effect is the angle of attack oscillation caused by the pitching moment (9c); in aeronautics,
this effect is known as the short period mode. The second competing effect is due to
the balance of forces, given by Equations (9a) and (9b), and corresponds to the phugoid
mode in aeronautics. The relative importance of the two effects is specified only by the
dimensionless parameter defined in Equation (34). An example for the four sub-cases is
provided in Figure 2. In most cases, the positive root solution ν+ from Equation (36) leads
to a faster mode (the angle of attack increases faster) than with the negative root ν−.

The power type solutions for the angle of attack (32) with exponents (36) are given by

α±(t) = Atν± , (38)
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lead for the relative velocity (10) to:

V±(t) =

√
2Iα̈±

ρSlα±CMα

=
1
t

√
2Iν±(ν± − 1)

ρSlCMα

=
1
t

√
− 4I

ρSlCMα ε

=
2

tCD0

√
I

ρSlε
=

2
tCD0

m
ρS

=
2

tCD0

l
µ

, (39)

where Equations (30b), (38), (35), (34), (26) and (12b) were used successively in the last
relations. The rate of change with time of the relative flight path angle (28) is given by:

δ̇±(t) = CLα

√
εα±α̈±
2CMα

= CLα A

√
εν±(ν± − 1)

2CMα

tν±−1

= CLα A
√
− ε

CMα ε
tν±−1 =

CLα

CD0

Atν±−1, (40)

where Equations (30a), (30b), (38), (35) and (34) are successively applied in the last relations.
The integration of the last equation leads to the flight path angle as a function of time:

δ±(t)− δ±(0) =
A
ν±

CLα

CD0

tν± , (41)

where δ±(0) is the initial value.
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Figure 2. Analytic solutions—four cases (37a) to (37d), each with two signs in (36). The amplitude A
is equal to 0.05. The four cases correspond to the next four values of ε: −100 (solid lines), −2 (dashed
lines), 0.05 (dash-dotted lines) and 100 (dotted lines). In the third case (37c), which corresponds to
complex roots ν±, the plots without circles are the real parts of α and the plots with circles are the
imaginary parts of α. Note that the real parts of α associated to the two complex roots ν+ and ν−
are identical.

The four cases (Equations (37a) to (37c)) are considered next in turn. The case from
Equation (37a) leads to ν+ = 1 and ν− = 0, which are the parabolic ballistic trajectories
considered previously.In all remaining cases, the velocity (39) diverges for zero time:

V±(0) = lim
t→0

V±(t) = ∞, (42a)
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and decays to zero for a long time:

V±(∞) = lim
t→∞

V±(t) = 0. (42b)

The angle of attack (38) and variation of the flight path angle (41) scale similarly with
time: (i) in the case (37b) leading to

α+(0) = α−(∞) = 0, (43a)

α+(∞) = α−(0) = ∞; (43b)

(ii) in the case (37d) leading to

α±(0) = 0, (44a)

α±(∞) = ∞. (44b)

In both cases, the angle of attack (and also the flight path angle) vary monotonically
with time; that is, the body rotates as it falls along a modified parabolic trajectory.

In the case from Equation (37c), the roots

ν± =
1
2
± iω, (45a)

ω =

∣∣∣∣2ε − 1
4

∣∣∣∣1/2
, (45b)

lead to oscillations of the angle of attack:

α±(t) = At1/2e±iω ln t, (46)

whose amplitude is zero initially:
α±(0) = 0, (47a)

and diverges for a long time:
|α±(∞)| = ∞. (47b)

The oscillation frequency (45b) vanishes in the transition ε = 8 to the monotonic
case (37d). The real solutions corresponding to (46) are the real and imaginary parts:

α1(t) = Re{α±(t)} = A
√

t cos(ω ln t), (48a)

α2(t) = Im{α±(t)} = ±A
√

t sin(ω ln t). (48b)

In this case, the motion involves an oscillation in the angle of attack as the body falls.
Thus, the analytic solutions, although valid only for small angles of attack, show the

existence of two regimes of fall depending on the parameter (34) and (26):

ε = −
C2

D0

CMα

ρSl
m

( r
l

)2
> 0. (49)

If the parameter (49) is large (37d), the tumbling body rotates as it falls (Figure 3a); this
corresponds to a predominance of the phugoid mode. If the parameter (49) is small (37c),
the tumbling body oscillates as it falls (Figure 3b); this corresponds to the predominance of
the short-period mode. A simple analogy [8] is the motion of a circular pendulum of mass
m, length s in the gravity field g, for which the difference in potential energy between the
lowest θ = 0 and highest θ = π points is:

E0 = 2mgs. (50a)
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The total energy of the pendulum, comprising both kinetic and potential components,
is given by

E =
1
2

ms2θ̇2 −mgs cos θ = const, (50b)

and remains conserved. This leads to three cases: (i) if the total energy (50b) is less than
the difference in potential energy between top and bottom (50a), E < E0, the pendulum
cannot reach the top, the pendulum motion is oscillatory (Figure 4b), similar to the short-
period mode of aircraft, and the oscillating fall of tumbling body (Figure 3b); (ii) if the
total energy (50b) is larger than the difference in potential energy between top and bottom
(50a), E > E0, the pendulum goes through the top with non-zero velocity, the pendulum
motion is circulatory (Figure 4a), corresponds to the phugoid mode of aircraft and to the
rotating fall of a tumbling body (Figure 3a); (iii) in the intermediate border line case of total
energy (50b) equal to the difference (50a) of potential energy at the top and bottom, E = E0,
the pendulum would stop at the top, corresponding to ε = 8 in (36), leading to ν± = 1/2,
while the angle of attack (32) and flight path angle (41) both increase with time as local
velocity (39) decreases.

V

1

1

(a)

V

2

1

2

1

(b)
Figure 3. Rotating (a) and oscillatory (b) falls of a tumbling body.

E > 2mgs

s
θ

(a)

E < 2mgs

s
θ

(b)
Figure 4. Analogy with circulatory (a) and oscillatory (b) motion of a simple circular pendulum.

Since the differential Equation (31) for small angles of attack is non-linear, the principle
of superposition does not hold and a linear combination of the solutions from Equations (38)
or (46) is generally not a solution. Since the analytic solutions are restricted to small angles
of attack, the limits of Equations (43a), (44b) and (47b) hold only for small values. However,
the existence of monotonic rotation and oscillatory solutions is confirmed by the numerical
solutions (Section 5) that hold for unrestricted angles of attack.
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5. Generic Numerical Simulations
5.1. Numerical Model

In order to have a solution for the trajectory of the rocket for the full spectrum of angles
of attack, it is necessary to use a numerical method. The model requires initial conditions
that must be consistent with the initial positions and velocities in free fall coordinates. The
initial position is specified in Earth-fixed coordinates:

X(0) = x0, (51a)

Z(0) = z0, (51b)

and thus, according to (2a) and (2b), the origin in free fall coordinates is given by

x(0) = 0, (51c)

z(0) = 0. (51d)

The initial velocity (5a) and (5b) in Earth-fixed coordinates is given as follows:

Ẋ(0) = U0 cos γ0, (52a)

Ż(0) = U0 sin γ0, (52b)

This equation is consistent with the total velocity in Earth-fixed coordinates (4a):

U0 =
∣∣∣[Ẋ(0)

]2
+
[
Ż(0)

]2∣∣∣1/2
. (52c)

In free fall coordinates the initial horizontal and vertical velocities

ẋ(0) = Ẋ(0) = U0 cos γ0, (53a)

ż(0) = Ż(0) = U0 sin γ0, (53b)

are assumed to equal those, (52a) and (52b), in Earth-fixed coordinates, which is consistent
with (3a) and (3b) for

u0 = 0, (53c)

v0 = 0. (53d)

It follows that the initial total velocity is the same in Earth-fixed (4a) and free fall
(4c) coordinates:

V0 =
∣∣∣[ẋ(0)]2 + [ż(0)]2

∣∣∣1/2
=
∣∣∣[Ẋ(0)

]2
+
[
Ż(0)

]2∣∣∣1/2
= U0. (54)

The initial conditions include the angle of attack (29a), and its first (29b) and sec-
ond (29c) time derivatives, the latter involving the total initial velocity V0 in free fall
coordinates, which are required to solve the angle of attack differential Equation (27); the
angle of attack specifies the relative velocity by (10). The initial relative flight path angle
δ0 (value of δ at initial time), with u0 = 0 = v0, is equal to γ0 (value of γ at initial time)
and is needed to solve the flight path angle differential Equation (28). The third-order time
derivative of the angle of attack at time zero is obtained from (13) using (19), (22) and (25):

...
α − 2α̇α̈

cos(2α)

sin(2α)
= −CD(α)α̈

3/2

√
4µε0

CMα sin(2α)
(55a)
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and also (26) for t = 0:

1
2

sin(2α0)
...
α 0 = α̇0α̈0 cos(2α0)− CD(α0)

√
ε

CMα

α̈3
0 sin(2α0). (55b)

where
...
α 0 is the value of

...
α for t = 0. Each root in the above equation corresponds to a

distinct solution. These two solutions will be compared in Section 6. The first-order time
derivative of the flight path angle at time zero is a particular case of Equation (28):

δ̇0 ≡ δ̇(0) = CL(α0)

√
εα̈0

2CM(α0)
. (56)

Thus, six independent initial conditions are required: (i–ii) two initial positions (51a)
and (51b); (iii–iv) initial flight path angle and velocity components in Earth reference (52a)
and (52b); (v–vi) initial angle of attack and its first-order time derivative (29a) and (29b).
All other initial conditions follow from the preceding six: (vii–viii) the initial horizontal
and vertical velocities in free fall coordinates from (53a) and (53b); (ix) the initial first-order
time derivative of the relative flight path angle from (56); (x) the initial third-order time
derivative of the angle of attack from (55b). The solution of the Equations of motion for
the flight path is made following the next steps: (xi) integrating (27) for the angle of attack
with initial conditions (29a) and (29b); (xii) (10) follows the velocity in free fall coordinates;
(xiii) integration of (28) with the initial condition specifies the flight path angle; (xiv) the
total velocity follows from (7b), (53c) and (53d) as follows:

U(t) = −gt sin γ±
∣∣∣[V(t)]2 − (gt cos γ)2

∣∣∣1/2
; (57)

(xv) integration of (5a) and (5b) with initial conditions (51a) and (51b) specifies the flight
path in Earth-fixed coordinates; (xvi) substitution in (2a) and (2b) with (53c) and (53d)
specifies the trajectory in the free fall coordinates:

x(t) = X(t)− x0, (58)

z(t) = Z(t)− z0 +
1
2

gt2. (59)

The coefficients involve the following: (xvii–xix) the lift (17), the drag (23) and pitching
moment (19) coefficients that depend only on the angle of attack and make the third-
order differential equation for the angle of attack (27) more strongly non-linear; (xx) the
atmospheric density ρ and hence the rocket parameter (26) that depend on altitude Z in
the Earth-fixed reference frame (xv) and render the whole problem implicit, because it
appears in (xi). To implement the numeric model, a computational tool was built using the
MATLAB software [9]. The program is split into three phases: read user inputs, integration
process and data treatment.

5.2. Read Input Data

The choice of tumbling body for numerical simulation could be (i) debris from an
explosion, or (ii) a spent rocket stage or (iii) the complete rocket after a propulsion failure.
While, historically, multiple (i) rocket explosions have occurred, either by accident or
command, there is a shortage of precise data on debris mass, shape, initial velocity, angle
of attack and other properties as well as some derivatives to apply the model. In any case,
(i) small debris would not travel as far as (ii) a spent rocket stage or (iii) the complete
rocket with most propellant unused after a propulsion failure shortly after lift-off. The last,
(iii) worst case scenario is chosen as a numerical example for the Ariane 5 rocket.

During the “read user inputs” phase, the program reads the values chosen by the
user for the six initial conditions required for the numeric integration as well as the values
of the seven rocket parameters [10]. The rocket parameters are as follows: rocket mass,
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radius, height or lengthscale l, distance between center of mass and center of pressure a,
slope of the lift coefficient CLα , friction drag CD0 and lift to drag proportionality constant K.
The default rocket configuration contains values from the Ariane 5 rocket [11], which are
presented in Table 1.

Table 1. Ariane 5 rocket data [10,11].

Parameter Value

Mass m (kg) 780,000
Radius R (m) 2.7
Height l (m) 50.5

Distance a (m) −1.5
CLα

0.0955
CD0 0.05
K 1.24

The radius of gyration in pitch for a homogeneous cylinder of radius R and length l is
given by [12]

r1 =

√
R2

4
+

l2

12
, (60)

corresponding to the extreme case of a rocket full of propellant. The opposite extreme case
of propellant exhausted corresponds to a hollow cylindrical shell of radius R and length l,
for which the transverse or pitch radius of gyration is given by [12]

r2 =

√
R2

2
+

l2

12
. (61)

The calculations use the geometric mean

r =
√

r1r2 =
4

√
R2

8
+

l4

144
+

R2l2

24
, (62)

for the radius of gyration in pitch of a cylindrical rocket with a partial propellant load.

5.3. Integration Method

This entire phase works in a loop cycle, i.e., the program uses the rocket data and the
six variables with initial conditions at any point in time tn to obtain new conditions at the
next point in time tn+1 with n being any value between 0 and the total number of cycles.

Before performing the numeric integration itself, the third derivative of the angle of
attack, flight path angle derivative, and the X and Z derivatives must be calculated. The
steps taken in the loop by the program to obtain all the derivatives are as follows:

1. Calculate all the aerodynamic coefficients from Equations (17), (19) and (23);
2. Calculate the air density (using a model explained later) and the modulus of the

relative velocity using Equation (10);
3. Obtain the value of all the required derivatives using one of the solutions of the

quadratic Equation (27) with respect to
...
α and using Equations (28), ẋ = V cos δ and

ż = V sin δ; the trajectory in Earth reference is then evaluated from (2a) and (2b);
alternatively, to obtain the derivatives ẋ and ż, one can find a solution

{
Ẋ, Ż

}
from

Equations (4d) and (6c), considering that U cos γ = Ẋ and U sin γ = Ż, and then use
the relations (3a) and (3b).

In the third step, the air density is calculated from the altitude of the rocket in an
Earth-fixed reference frame. There are several models of the variation of the air density with
the altitude; for this work, the USSA76 density model is employed. This model assumes
that the atmosphere is a spherically symmetric 1000 km thick gaseous shell surrounding
the Earth. The methodology used to model the atmospheric density can be found in [13].
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Concerning the numeric integration itself, the first step is to choose an integrating
function. This is particularly important in this work, not only because different integrating
functions have different inherent numeric errors, but also because the Equations used
to calculate the rocket velocity (10) and to calculate the third derivative of the angle of
attack (13) have indeterminations whenever the angle of attack tends to 0◦, 90◦, 180◦

or 270◦.
In order for the integration to be made without incurring in a large error induced by

the aforementioned indetermination, the integrating function must be chosen carefully.
This is seen in Figure 5, which shows the rocket velocity distribution over time (since it is
directly affected by the indetermination, it is a good error indicator) using the same initial
conditions and rocket data for four different integrating functions present in MATLAB
software: ODE45, ODE113, ODE15s and ODE23s.
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Figure 5. Velocity evolution as a function of time of the same problem using different ODE solvers.

Figure 5 shows that all the four integrators lead to similar results in the velocity
and, therefore, in the fall trajectory of the tumbling body. Moreover, the velocity has a
smooth variation and does not have any sudden peaks/spikes (that can occur due to an
indetermination), independently of the chosen integrator. However, the ODE23s integrator
provides the worst results, since during the integration process, the intermediate matrices to
solve the problem numerically can be close to singular or badly scaled. The ODE23s function
is a single step solver (only needs the solution at the immediately preceding time point)
based on a modified Rosenbrock formula of order 2 [9]. Moreover, the ODE113 integrator
shows a sudden variation in the value of velocity during the simulation. Therefore, the
ODE45 integrator is the selected function because it performs well with this differential
equations problem; in other words, it is able to solve the problem and is not slow (that is
an indicator that this problem might not exhibit stiffness since ODE45 is a non-stiff solver
and does not have difficulties solving it; if the ODE45 method was inefficient, the ODE15s
integrator would be chosen to solve the differential equations, being a better alternative to
stiff problems). The ODE45 integrator is also a single-step solver, in this case, based on an
explicit Runge–Kutta (4, 5) formula, the Dormand–Prince pair [9].

5.4. Data Analysis

In the final phase of the program, the values of time, angle of attack, flight path angle
and other variables can be stored in arrays so that all data can be presented in the form of
plots. In the Section 6 only the trajectories are shown as functions of several parameters.
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6. Effect of Initial Conditions
6.1. Analysis of Two Baseline Configurations

To test the MATLAB tool, it is necessary to first choose a baseline configuration
containing all the initial conditions and rocket data. After the start of testing, it was found
that the rocket can have two different full modes, namely, an oscillatory mode (OM) and
a rotation mode (RM). For this reason, two base configurations are required. Both base
configurations use the Ariane 5 rocket data, indicated in Table 1, and the set of initial
conditions as summarized in Table 2.

Table 2. Base configuration.

Initial Conditions Rocket Data

α0 85◦ or 5◦ Mass m (kg) 780,000
α̇0 0.5 ◦/s Radius R (m) 2.7
U0 150 m/s Height l (m) 50.5
γ0 80◦ Distance a (m) −1.5

X(0) 0 m CLα
0.0955

Z(0) 2000 m CD0 0.05
Time 200 s K 1.24
tstep 1 s I

(
kg m2) 1.67× 108

S
(
m2) 22.9

The configuration with the angle of attack of 85◦ will be named the first configuration
and the one with the angle of attack of 5◦ the second configuration.

In Figures 6 and 7, the differences in trajectory and angle variations are shown over
the time for both configurations. To differentiate results obtained with the positive root
and negative root when using Equation (55b) (obtained with plus and minus sign before
the square root respectively, although in Equation (55b) only the negative sign is shown
before the term that is multiplied by the square root), an asterisk mark (∗) will be presented
whenever a result was obtained using the negative root. Both solutions can be obtained
from the quadratic Equation (27) with respect to

...
α to compare the results obtained in

Section 6 with the analytic solutions obtained in Section 4.
In terms of trajectory, as can be seen in Figure 6, contrasting results are obtained for

each configuration/root combination. Using the first configuration combined with the
negative root solution leads to the longest range while using the first configuration with the
positive root solution leads to the shortest range. Using the second configuration leads to
the two intermediate ranges; however, in this instance, the use of the negative root leads to
the largest range of the two. Therefore, it is possible to conclude, at least for this particular
example, that the negative root solution will help a rocket falling not only in RM but also in
OM motions to obtain larger ranges of the rocket.

In terms of angle variations, the two fall modes are shown in Figure 7: in the OM,
plotted in configuration 2, the rocket oscillates around 0◦ (nevertheless, Figure 7 does not
show the variation around 0◦ because the rocket reaches the ground—Z = 0 m—before it
performs a complete oscillation) and in the RM; regarding the configuration 1, the rocket
increases the value of the angle of attack monotonically. The relative flight path angle is
nearly constant during the entire simulation. This can be explained by recalling the flight
path angle derivative expression (28). The derivative is proportional to the square root of
the dimensionless parameter, which will always be much smaller than 1 (the rocket mass is
much larger than any of the remaining terms).

By observing Figure 7, the thick solid line is superimposed on the thin solid line while
the thick dash-dotted line is superimposed on the thin dash-dotted line. This means that
using the first or the second solution for

...
α does not change the fall mode, but it changes

the speed of the mode. As already concluded in Figure 6, using the negative root solution
leads to a slightly faster RM and to a slightly faster OM, at least for this particular example.
This conclusion may not hold for other initial conditions and rocket data.
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Figure 6. Trajectory for each configuration and
...
α solution. The configuration 1 corresponds to a

trajectory with the initial angle of attack equal to 85◦ and the configuration 2 with the initial angle of
attack of 5◦. The asterisk mark (∗) in the legend indicates that the third-order time derivative of the
angle of attack (55b) is obtained with a minus sign before the term CD while the trajectories obtained
with a plus sign before the term CD do not have an asterisk mark.
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Figure 7. α and δ for each configuration and
...
α solution. The trajectory obtained with the initial angle

of attack equal to 85◦ is called configuration 1 and the trajectory obtained with the initial angle of
attack of 5◦ is called configuration 2. The asterisk mark (∗) in the legend corresponds to a trajectory
obtained with the minus sign before the term CD in the third-order time derivative of the angle of
attack (55b) while a trajectory obtained with a plus sign does not have an asterisk mark.

The existence of two modes and their different speeds are in agreement with the
predictions from the analytical analysis detailed in Section 4.

6.2. Sensitivity Analysis

Using the base configurations, a sensitivity analysis is performed to every initial
condition (Section 6) and rocket parameter (Section 7) with the purpose of understanding
their influence in the trajectory of the tumbling body and in specifying the fall mode.
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The initial angle of attack influences mostly the fall mode as is shown in Table 3. An
initial angle of attack near 90◦ favours the RM while an angle closer to 0◦ favours the OM.
The period of the oscillations increases as the initial angle of attack decreases; however,
when the initial angle deviates greatly from 0◦, the mode of fall becomes RM instead of OM.
The results are different for symmetric angles of attack, and are also different, but quite
similar, if the difference between two angles is ±180◦.

Table 3. Sensitivity analysis to the angle of attack.

α0 (◦) Mode α (◦) α̈
(
rad/s2)

85 RM – −5.8× 10−5 to 7.6× 10−5

75 RM – −5.1× 10−5 to 6.8× 10−5

65 RM – −7.8× 10−5 to 6.5× 10−5

50 RM – −1.0× 10−4 to −6.6× 10−7

45 RM – −1.0× 10−4 to −3.2× 10−5

30 RM – −9.5× 10−5 to −5.3× 10−5

15 OM (T = 1492 s) 15.00 to 43.54 −8.6× 10−5 to −4.9× 10−5

5 OM (T = 1686 s) 5.00 to 40.27 −8.2× 10−5 to −1.8× 10−5

−5 OM (T = 1793 s) −5.00 to 40.56 −8.1× 10−5 to 1.8× 10−5

−65 RM – −4.8× 10−5 to 7.8× 10−5

−115 RM – −7.8× 10−5 to 1.1× 10−5

Similar to the angle of attack, the initial angular velocity also affects the fall mode.
The results for this initial condition are presented in Table 4. A sufficiently high/low
initial angular velocity is enough to change the initial fall mode of either configuration,
but the change is more likely to occur for a smaller initial angle of attack. Larger initial
angular velocities in modulus lead to faster revolution cycles or larger periods of oscillation
depending on the fall mode.

Table 4. Sensitivity analysis to the angular velocity.

α0 (◦) α̇0 (◦/s) Mode α̇ (rad/s)

85 −1 RM −0.022 to −0.018
85 −0.5 RM −0.016 to −0.009
85 0 RM −0.005 to 0.000
85 0.5 RM 0.009 to 0.015
85 1 RM 0.017 to 0.022
85 2 RM 0.035 to 0.040
5 −1 RM −0.018 to −0.012
5 −0.5 OM (T = 554 s) −0.009 to −0.001
5 0 OM (T = 488 s) −0.001 to 0.000
5 0.5 OM (T = 1685 s) −0.005 to 0.009
5 1 RM 0.011 to 0.018
5 2 RM 0.032 to 0.035

The initial rocket velocity has an effect on both fall mode and trajectory. Regarding
the effect on the fall mode, from Table 5, for larger velocities, the amplitude and period of
oscillation are lower.

In terms of trajectory, as expected, larger initial velocities lead to the rocket travelling
farther, as seen in Figure 8.

Both the flight path angle and initial position have no impact on the fall mode. The
flight path angle is nearly constant throughout the entire simulation and only changes the
direction of the trajectory, as shown in Figure 9. As for the initial coordinates X(0) and
Z(0), they simply change the trajectory point of origin since the change in density value is
not enough to significantly influence the other flight parameters.
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Table 5. Sensitivity analysis to the initial velocity.

α0 (◦) U0 (m/s) Mode α (◦)

85 110 RM –
85 130 RM –
85 150 RM –
85 170 RM –
85 190 RM –

5 110 RM –
5 130 RM –
5 150 OM (T = 1685 s) −5.00 to 40.27
5 170 OM (T = 880 s) −5.00 to 34.59
5 190 OM (T = 653 s) −0.441 to 30.42
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Figure 8. Trajectory for different initial velocities.
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Figure 9. Trajectory for different initial values γ0 of the flight path angle γ.
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7. Effect of the Rocket Parameters

Proceeding to the sensitivity analysis of the effects of the rocket parameters, the rocket
mass was found to have a direct influence in both trajectory and fall mode. In terms of fall
mode, smaller masses lead to smaller periods and amplitudes of oscillation, as is shown
in Table 6, which was obtained using the second configuration. For an extremely heavy
body, the period of oscillations is so large that the fall mode becomes RM. Using the first
configuration leads to the RM conclusions, independently of the mass of the tumbling body.

Table 6. Sensitivity analysis to the rocket mass using the second configuration.

Mass (kg) Mode α (◦) δ (◦)

5000 OM (T = 101 s) −7.31 to 10.55 78.65 to 82.83
10,000 OM (T = 113 s) −7.84 to 10.26 79.08 to 81.92
50,000 OM (T = 199 s) −12.28 to 11.51 79.56 to 81.07

100,000 OM (T = 292 s) −16.23 to 14.23 79.75 to 81.09
780,000 OM (T = 1685 s) −5.00 to 40.27 80.00 to 80.94

1,500,000 RM – 80.00 to 80.51

In terms of trajectory (Figure 10), larger masses have the longest range and the smaller
masses the shortest. Larger masses are less affected by aerodynamic forces and come closer
to the ballistic trajectory while lighter masses are more affected by drag and travel less
far. The usual assumption that the heaviest tumbling body is usually the worst case (that
travels farther) is supported by the results obtained in this analysis. The effect of mass
is less significant for heavier bodies, by observing that changing the value of mass from
500,000 kg to 1,500,000 kg does not change the range as much as changing the mass from
5000 kg to 500,000 kg.
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Figure 10. Trajectory for different mass values.

Smaller masses also have a second effect other than reducing the trajectory range,
namely introducing some wobbles to the usually ballistic shaped trajectory. These wobbles
are a consequence of the following: (i) the flight path angle amplitude of oscillation
increasing as the mass of the rocket is reduced, which supports the explanation that the
flight path angle was seemingly constant because of the large mass value; (ii) large velocity
oscillations as the mass is reduced.

The radius of gyration of the rocket also has an effect on both the trajectory and fall
mode. Smaller values of the radius of gyration usually lead to larger ranges not only when
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the RM is dominant (Figure 11), but also when the OM configuration is used (Figure 12).
An increasing radius of gyration or moment of inertia implies greater kinetic energy of
oscillation in both modes and reduces translational energy and range.

0 100 200 300 400 500 600 700 800 900 1000

0

500

1000

1500

2000

2500

3000

3500

Figure 11. Trajectory for different values of the radius of gyration in pitch (first configuration).

0 100 200 300 400 500 600 700 800 900 1000

0

500

1000

1500

2000

2500

3000

3500

Figure 12. Trajectory for different values of the radius of gyration in pitch (second configuration).

In terms of fall mode, as can be seen in Table 7, larger radius of gyration values work
in favour of the OM fall by reducing the amplitude of the oscillations.

Table 7. Sensitivity analysis to the rocket radius.

α0 (◦) Radius (m) Mode α (◦)

5 1 RM –
5 2 RM –
5 2.7 OM (T = 1685 s) −5.00 to 40.27
5 5 OM (T = 502 s) −21.32 to 21.24
5 10 OM (T = 254 s) −13.52 to 12.00
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The height of the rocket was found to have effects on the fall mode and trajectory,
as can be seen in Table 8 and in Figures 13 and 14. In terms of the fall mode, having a
larger height will favour the RM. Increasing the height of the rocket maintaining the mass
constant is the same as increasing only the moment of inertia of the rocket; therefore, a
larger moment of inertia leads to a stronger tendency to rotate.

Table 8. Sensitivity analysis to the rocket height.

α0 (◦) Length (m) Mode α (◦)

5 4.5 OM (T = 63 s) ±7.11
5 25.5 OM (T = 271 s) −20.18 to 19.22
5 50.5 OM (T = 1685 s) −5.00 to 40.27
5 70 RM –
5 90.5 RM –
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Figure 13. Trajectory for different values of the height of the rocket (first configuration).
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Figure 14. Trajectory for different values of the height of the rocket (second configuration).
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In terms of trajectory, the variation to the height of the rocket will lead to the same
range changes as the increase of the gyration radius since both parameters contribute to
calculating the inertia of the rocket.

The distance between the centre of pressure and centre of mass is very important
toward determining the fall mode. The results of Table 9 are inconclusive since it is difficult
to predict what the fall mode is for a certain distance a. Table 9 also shows that the fall mode
is dependent on the initial angle of attack, thus predicting that there are more parameters,
not depicted on Table 9, that significantly influence the fall mode.

Table 9. Sensitivity analysis on the distance between the center of pressure and center of mass.

α0 (◦) a (m) Mode α (◦)

85 −5 RM –
85 −3 RM –
85 −1.5 RM –
85 −0.5 RM –
85 0.5 OM (T = 280 s) 85.00 to 150.83
85 1.5 OM (T = 218 s) 85.00 to 123.02
85 3 OM (T = 445 s) 59.50 to 113.71
85 5 OM (T = 168 s) 73.51 to 108.90

5 −5 OM (T = 292 s) −21.00 to 20.57
5 −3 OM (T = 444 s) −14.55 to 26.74
5 −1.5 OM (T = 1685 s) 5.00 to 40.27
5 −0.5 RM –
5 0.5 OM (T = 406 s) 5.00 to 130.12
5 1.5 OM (T = 225 s) 5.00 to 152.00
5 3 RM –
5 5 OM (T = 182 s) 5.00 to 155.97

Assuming that the initial angle of attack is close to 90◦, when the distance a is negative,
the fall mode is RM, but when the sign of that distance changes, the movement becomes
OM, generally with the period of the oscillation decreasing when the distance a increases.
When the initial angle of attack is close to 0◦, the sign of the distance a does not predict the
fall mode; nevertheless, Table 9 shows that in almost all cases the fall mode is OM.

Lastly, regarding the aerodynamic coefficients, while CLα has its most noticeable
effect in the fall mode, CD0 and K can exert their influence on the trajectory and fall
mode. Larger values of CLα decrease both the period and amplitude of oscillation as can
be seen in Table 10.

Table 10. Sensitivity analysis on CLα
.

α0 (◦) CLα
Mode α (◦)

5 0.0955 OM (T = 1685 s) 5.00 to 40.27
5 0.75 OM (T = 169 s) −13.85 to 14.07
5 1 OM (T = 145 s) −12.18 to 13.32
5 1.5 OM (T = 115 s) −10.41 to 10.33
5 2 OM (T = 98 s) −9.17 to 9.18

85 0.0955 RM –
85 0.75 RM –
85 1 RM –
85 1.5 RM –
85 2 RM –

The results for CD0 and K are the same since an increase in either parameter increases
the value of the drag coefficient. Larger drag values lead to trajectories with shorter ranges
because if the drag coefficient is higher, then the resistance to the motion is also higher.
This is illustrated in Figure 15.
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Figure 15. Effect of CD0 on trajectory.

The increase in drag can also change the fall mode by itself. Larger values of friction
drag contribute to an increase of the period of oscillations as it is shown in Table 11.
Using the first configuration leads to the RM conclusions, independently of the mass of
drag coefficient.

Table 11. Sensitivity analysis on the friction drag results using the second base configuration.

CD0 Mode α (◦)

0.05 OM (T = 1685 s) 5.00 to 40.27
0.2 OM (T = 1833 s) 5.00 to 41.11
0.5 RM –
1 RM –
2 RM –
5 RM –
10 RM –

Again, since a larger drag coefficient means more resistance to the movement of the
rocket, it is only natural that, as the drag increases, it takes more time for the rocket to make
one complete oscillation.

8. Conclusions

From this study, it was possible to conclude that a tumbling object subjected to aero-
dynamic forces has two modes of fall, one oscillating around an equilibrium position and
the other rotating about itself. This was demonstrated for (i) the largest possible tum-
bling object, namely a rocket nearly full of propellant after a propulsion failure shortly
after lift-off, that should be the worst case scenario for distance flown. The same method
should apply for (ii) a spent rocket stage and (iii) smaller debris from an intentional or
commanded explosion.

The work shows that all initial conditions and rocket data can influence the trajectory
and the fall mode. Some of the influences are analysed in Sections 6 and 7 and the results
depend on the variable. One may conclude that some parameters influence the trajectory
more, for instance, the rocket mass and the rocket friction drag, while other parameters
exert more influence on the fall mode such as the distance between the centre of pressure
and the centre of mass. There are also parameters that can significantly influence both the
trajectory and the fall mode, for example, the rocket radius. Furthermore, the conclusions
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written in Sections 6 and 7 may not be the same for other baseline configurations; that is,
setting different values for the parameters specified in the Table 2 may result in different
behaviours of fall mode and trajectory. All the results presented in Sections 6 and 7
are obtained choosing the positive root in the evaluation of the third order derivative
of the angle of attack, with the plus sign instead of minus sign before the term CD in
Equation (55b). If one chooses the negative root with the minus sign, as it is written in
the (55b), then the results can be very different, with a significant change in the range of the
rocket. The difference of choosing the sign before the root becomes irrelevant for smaller
values of the dimensionless parameter ε, for instance by observing the definition (26) for
larger values of mass m and length l.

Future Work

Future work may include the following: (i) the reduction of the problem from the
fourth to the third order using an approximation distinct from free fall coordinates; (ii) the
exact solution of the fourth-order problem and its comparison with third order approxima-
tions; (iii) improved expressions for the lift, drag and pitching moment coefficients over
the full circle of angles of attack to be used in the exact and approximate models of the
trajectory of the tumbling body. Of the various approximations, the one that is probably
the most severe is the use of free fall coordinates to reduce the order of the non-linear
differential equation for the angle of attack from four to three. The simpler solution of the
third-order problem with the free fall coordinate approximation may be compared in future
work with the solution of the fourth-order system without this approximation.
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