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Abstract: In this paper, a new method using the backpropagation (BP) neural network combined with
the improved genetic algorithm (GA) is proposed for the inverse design of thin-walled reinforced
structures. The BP neural network model is used to establish the mapping relationship between
the input parameters (reinforcement type, rib height, rib width, skin thickness and rib number)
and the output parameters (structural buckling load). A genetic algorithm is added to obtain the
inversely designed result of a thin-wall stiffened structure according to the actual demand. In the
end, according to the geometric parameters of inverse design, the thin-walled stiffened structure is
reconstructed geometrically, and the numerical solutions of finite element calculation are compared
with the target values of actual demand. The results show that the maximal inversely designed error
is within 5.1%, which implies that the inverse design method of structural geometric parameters
based on the machine learning and genetic algorithm is efficient and feasible.

Keywords: thin-walled stiffened structure; buckling load; back propagation neural network;
inverse design

1. Introduction

Due to the growing demand for space resource development, carrier rockets have
gradually become a hot spot of competition in the world space field. Large thin-walled
structures account for a large part of the total weight of the rocket body, which is the main
skeleton of a rocket. The main failure cause of thin-walled cylindrical shells is buckling
due to the loss of stability under axial pressure. To improve the stability of thin-walled
structures, stiffening rib is often added to the design. The thin-walled stiffened structure is
widely used in the aerospace field because of its overall light structure and strong bearing
capacity [1,2]. At present, a stiffened structure is adopted in most of the key-bearing parts
of carrier rockets in service [3].

Thin-wall stiffened structures are widely used in various engineering applications due
to their high strength-to-weight ratio. These structures primarily endure axial loads, and
their main failure mode is buckling instability [4]. Evaluating and designing the mechanical
performance of thin-wall stiffened structures requires a comprehensive understanding of
their behavior under different loading conditions. Traditionally, the assessment of these
structures’ mechanical properties has relied on theoretical calculations, numerical analysis,
and experimental investigations. However, theoretical calculations often overestimate the
structural performance compared to actual values for certain configurations. Conducting

Aerospace 2023, 10, 761. https://doi.org/10.3390/aerospace10090761 https://www.mdpi.com/journal/aerospace

https://doi.org/10.3390/aerospace10090761
https://doi.org/10.3390/aerospace10090761
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com
https://orcid.org/0000-0002-8511-6111
https://doi.org/10.3390/aerospace10090761
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com/article/10.3390/aerospace10090761?type=check_update&version=1


Aerospace 2023, 10, 761 2 of 13

experimental analysis is costly and time-consuming [5], limiting the availability of extensive
results. On the other hand, finite element numerical analysis offers cost-saving advantages
but can be computationally intensive for complex models, requiring several hours for each
calculation. Furthermore, optimizing the design of thin-wall stiffened structures to meet
specific requirements can be time-consuming [6,7].

Thin-wall stiffened structures are highly complex and characterized by a large number
of design variables, such as skin thickness, rib height, width, and others. The exponential
growth of these design variables poses a significant challenge in the evaluation and design
of such structures. Fortunately, the rapid advancement of machine learning in the field of
metamaterial design has brought new hope to address these challenges. Machine learning
has demonstrated remarkable success in various fields, including metamaterial design,
where it has been used to achieve efficient and accurate designs by inverse modeling.
Researchers have proposed machine learning-based inverse design methods for truss lat-
tice structures with buckling resistance [8] and nonlinear mechanical metamaterials [9].
Currently, inverse design methods can be categorized into three main approaches: indi-
rect inverse design, semi-direct inverse design, and direct inverse design. Among these,
indirect inverse design predominantly combines multi-layer perceptron (MLP) and genetic
algorithms (GA). On the other hand, direct inverse design primarily employs Conditional
Generative Adversarial Networks (cGAN) and Variational Autoencoders (VAE). In con-
trast to traditional optimization algorithms, inverse design offers higher efficiency and the
ability to explore uncharted domains within the dataset. These methods leverage neural
networks, such as multi-layer perceptron (MLP), and genetic algorithms (GA) to establish
logical relationships between input parameters (geometric variables) and output variables
(structural properties). By optimizing the predicted relationships using genetic algorithms,
the inverse design process can derive the corresponding geometric parameters from desired
target properties. Additionally, the researcher developed an optimization framework for
lightweight metamaterials based on GAN neural networks [10]. However, there have been
no reports on using inverse design methods to design the thin-walled stiffened structures.

Despite the successful application of machine learning-based inverse design methods
in various fields, including optics [11], magnetic resonance devices [12], and molecular
structures [13], their potential in thin-wall stiffened structure design remains unexplored.
Therefore, motivated by previous research, this paper proposes a novel method combining
back propagation (BP) neural networks and genetic algorithms (GA), referred to as BP-GA,
for the inverse design of thin-wall stiffened structures subjected to various buckling loads.
The BP-GA method uses the BP neural network to establish a latent logical relationship
between geometric parameters and buckling loads [14], enabling the prediction of unknown
data. Subsequently, genetic algorithms are employed to globally optimize the predicted
logical relationship, resulting in the derivation of the corresponding geometric parameters
from the desired structural properties. The reconstructed thin-wall stiffened structure
based on the optimized geometric parameters is then subjected to finite element analysis
for validation. A comparison between the initial values and the finite element calculations
demonstrates the feasibility and accuracy of the machine learning-based inverse design
method for thin-wall stiffened structures.

In this paper, we present the detailed methodology of the BP-GA approach for inverse
design, including the data preparation, neural network architecture, genetic algorithm
optimization, and reconstruction of the thin-wall stiffened structure. The effectiveness and
accuracy of the proposed method are demonstrated through numerical experiments and
comparisons with finite element analysis results. Finally, the potential applications and
future directions of machine learning-based inverse design methods for thin-wall stiffened
structures are discussed.
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2. Materials and Method
2.1. Nonlinear Explicit Post-Buckling Analysis Method

With the continuous advancement of computational power, finite element-based
numerical methods have made remarkable progress in accurately analyzing the behavior
of thin-walled structures with reinforcements. These numerical methods consider the
influences of material nonlinearity and geometric nonlinearity. For thin-walled structures,
commonly used numerical analysis methods include eigenvalue buckling analysis, arc-
length method, and explicit dynamics method.

In this study, the explicit dynamics method is employed as the chosen computational
approach. The explicit dynamics method utilizes the central difference method to explicitly
integrate the equations of motion over time. By calculating the dynamic conditions for the
subsequent time increment based on the current time increment, the equations of motion
can be expressed as follows:

M
..
u + C

.
u + Ku = P (1)

where M represents the nodal mass matrix,
..
u denotes the nodal acceleration, C is the

damping matrix, K is the stiffness matrix,
.
u is the nodal velocity, u is the nodal displacement

and P refers to the external excitation.
At the beginning of the current time increment (at time t), the acceleration is computed

using the following formula:

..
ut = (M)−1·

(
P− C

.
u−Ku)t (2)

The explicit dynamics algorithm always employs a diagonal or lumped mass matrix,
simplifying the computational process. This eliminates the need for simultaneously solving
the coupled equations and reduces computational costs.

The acceleration is integrated over time using the central difference method. When
the velocity changes, assuming a constant acceleration, the change in velocity is added to
the velocity at the midpoint of the previous time increment to determine the velocity at the
midpoint of the current time increment:

.
ut+ ∆t

2
=

.
ut− ∆t

2
+

(∆t t+∆t + ∆tt
)

2
..
ut (3)

By integrating the velocity over time and adding it to the displacement at the beginning
of the increment, the displacement at the end of the time increment is determined:

ut+∆t = ut + ∆tt+∆t
.
ut+ ∆t

2
(4)

Thus, at the beginning of the increment, the acceleration satisfying the dynamic
equilibrium condition is provided.

The nodal displacement can be Taylor expanded as:

ut+∆t = ut + ∆t
.
ut +

∆t2

2
..
ut + · · · (5)

ut−∆t = ut − ∆t
.
ut +

∆t2

2
..
ut − · · · (6)

From Equations (7) and (8), we can derive:

.
ut =

1
2∆t
× (ut+∆t − ut−∆t) (7)

..
ut =

1
∆t2 × (ut+∆t − 2ut + ut−∆t) (8)
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Substituting Equations (7) and (8) into the dynamic control Equation (1), we obtain:(
M

∆t2 +
C

2∆t

)
ut+∆t = P +

(
2M
∆t2 − K

)
ut −

(
M

∆t2 −
C

2∆t

)
ut−∆t. (9)

From Equation (9), it can be observed that ut+∆t is determined solely by ut and ut−∆t.
Hence, the equations of motion can be directly solved without the need for iteration, and
there are no convergence issues.

2.2. Datasets of the Thin-Wall Stiffened Structures

In this paper, using the finite element simulation calculation, a data set was established
for the thin-walled stiffened shell structure of the four reinforcement types (orthogonally
grid, anisotropic grid, angle grid, ISO grid) (Figure 1). Then, 200 samples were established
for each reinforcement type, and thus a total of 800 samples were established. Among them,
600 samples were used for the training, 100 samples for the verification, and the remaining
100 samples for the testing.

Aerospace 2023, 10, x FOR PEER REVIEW 4 of 13 
 

 

൬ 𝑀∆𝑡ଶ + 𝐶2∆𝑡൰ 𝑢௧ା∆௧ = 𝑃 + ൬2𝑀∆𝑡ଶ − 𝐾൰ 𝑢௧ − ൬ 𝑀∆𝑡ଶ − 𝐶2∆𝑡൰ 𝑢௧ି∆௧. (9)

From Equation (9), it can be observed that 𝑢௧ା∆௧  is determined solely by 𝑢௧  and 𝑢௧ି∆௧. Hence, the equations of motion can be directly solved without the need for iteration, 
and there are no convergence issues. 

2.2. Datasets of the Thin-Wall Stiffened Structures 
In this paper, using the finite element simulation calculation, a data set was estab-

lished for the thin-walled stiffened shell structure of the four reinforcement types (orthog-
onally grid, anisotropic grid, angle grid, ISO grid) (Figure 1). Then, 200 samples were es-
tablished for each reinforcement type, and thus a total of 800 samples were established. 
Among them, 600 samples were used for the training, 100 samples for the verification, and 
the remaining 100 samples for the testing. 

 
Figure 1. Four reinforcement types: (a) Orthogonally Grid, (b) Anisotropic Grid, (c) Angle Grid, (d) 
ISO Grid. 

The structural parameters of the thin-wall stiffened structures are described in Figure 
2. Figure 2b shows the cross-sectional area of the ribs. In this context, ℎ signifies the rib 
height, 𝑤 represents the rib width, 𝑡௦ represents the skin thickness, 𝑛ଵ represents the 
longitudinal reinforcement number, 𝑛ଶ represents the ring reinforcement number, and 𝑛ଷ represents the diagonal reinforcement number. The selection range of these parame-
ters is shown in Table 1. 

Table 1. The parameters range for thin-wall stiffened structure. 

Reinforcement 
Types 

𝒉𝒓 (𝐦𝐦) 
𝒘𝒓 (𝐦𝐦) 

𝒕𝒔 (𝐦𝐦) 𝒏𝟏 𝒏𝟐 𝒏𝟑 

a ሾ2.0, 8.0ሿ  ሾ2.0, 4.0ሿ ሾ3.0, 6.0ሿ ሾ60, 80ሿ ሾ10, 15ሿ 0 
b ሾ2.0, 8.0ሿ ሾ2.0, 4.0ሿ ሾ3.0, 6.0ሿ ሾ60, 80ሿ ሾ10, 15ሿ ሾ30, 40ሿ 
c ሾ2.0, 8.0ሿ ሾ2.0, 4.0ሿ ሾ3.0, 6.0ሿ 0 ሾ10, 15ሿ ሾ30, 40ሿ 
d ሾ2.0, 8.0ሿ ሾ2.0, 4.0ሿ ሾ3.0, 6.0ሿ ሾ60, 80ሿ 0 ሾ30, 40ሿ 

Figure 1. Four reinforcement types: (a) Orthogonally Grid, (b) Anisotropic Grid, (c) Angle Grid,
(d) ISO Grid.

The structural parameters of the thin-wall stiffened structures are described in Figure 2.
Figure 2b shows the cross-sectional area of the ribs. In this context, hr signifies the rib height,
wr represents the rib width, ts represents the skin thickness, n1 represents the longitudinal
reinforcement number, n2 represents the ring reinforcement number, and n3 represents
the diagonal reinforcement number. The selection range of these parameters is shown in
Table 1.
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Table 1. The parameters range for thin-wall stiffened structure.

Reinforcement
Types

hr
(mm)

wr
(mm)

ts
(mm) n1 n2 n3

a [2.0, 8.0] [2.0, 4.0] [3.0, 6.0] [60, 80] [10, 15] 0

b [2.0, 8.0] [2.0, 4.0] [3.0, 6.0] [60, 80] [10, 15] [30, 40]

c [2.0, 8.0] [2.0, 4.0] [3.0, 6.0] 0 [10, 15] [30, 40]

d [2.0, 8.0] [2.0, 4.0] [3.0, 6.0] [60, 80] 0 [30, 40]

The material of the structure is high-strength aluminum alloy. Therefore, the elastic
modulus is 7.1 × 104 MPa, the material density is 2.7 × 10−6 kg/mm3, the Poisson’s ratio is
0.33, the yield stress is 503.0 MPa and the ultimate load is 540.0 MPa. The loading method
was that the upper end was subjected to an axial displacement of 0.01H, and the bottom
was fully fixed. Abaqus explicit dynamics (v2020, Abaqus Inc., Providence, RI, USA) was
used for the finite element calculation of the buckling load of the thin-walled stiffened
structures. The element S4R was used for the thin-walled structure and the ribs, so no
node binding constraint was required. The computer system used for the calculations is
Windows 10, Core i5-10500, 16.0 GB memory.

2.3. BP Neural Network for Forward Prediction

Since Rumelhart et al.’s [15] pioneering work, the BP neural network model has
been widely used. Its main characteristics are the forward transmission of signals and
the backpropagation of errors. The BP neural network was established using in-house
developed MATLAB (R2018a, Math Works Inc., Natick, MA, USA) in this paper. The
complex mapping relationship between geometrical parameters (height of the rib hr,
the width of the rib wr, the thickness of the skin ts, etc.) and the ultimate buckling
load (Fq) of aerospace thin-walled structures is discussed using the powerful nonlinear
mapping capability.

The BP neural network topology with a total of n layers, including an input layer,
an output layer, and n-2 hidden layers is shown in Figure 3. Its features are each layer of
neurons is only fully connected with the adjacent layer of neurons, there is no connection
between neurons in the same layer, and there is no feedback connection between neurons
in each layer. Input variables (height of the rib hr, width of the rib wr, thickness of the skin
ts, etc.) and the output variable (the buckling load Fq) can be approximated by imitating
the activation and transfer process from human neurons. After the prediction results are
obtained using forward propagation, the errors are back-propagated layer by layer from
the hidden layer to the input layer. The errors are allocated to all the elements of each layer,
and the weight and threshold are adjusted by gradient, so as to obtain the optimal solution.

an
j = σ

(
zn

j

)
= σ

(
∑
k

wn
jkan−1

j + bn
j

)
= σ

(
wnan−1 + bn

)
(10)

where σ(·) is the nonlinear activation function, wn
jk is the weight of the kth neuron from the

n−1 layer to the jth neuron of the n layer, bn
j is the bias of the jth neuron of the n layer, an

j is

the value of the activation of the jth neuron of the n layer, and zn
j is the weighted sum of the

output before the activation function is applied.
The activation function is very important for the BP neural network to process

highly nonlinear data rather than simple linear mapping [16]. Commonly used activation
functions include Sigmoid, Tanh, ReLU, etc. The activation function used in this paper is
the Sigmoid function.

Sigmoid(x) =
1

1 + e−x (11)
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When the activation value of the last layer is obtained, a criterion for evaluating the
prediction ability of the network is needed. Through backpropagation, the error between
the network output and the expected output is minimized. The error function used in this
paper is mean-square error (MSE)

MSE =
1
n∑

n

(∼
Fn − Fn)

2 (12)

where Fn is the buckling load of the sample of the nth generation,
∼
Fn is the predicted

buckling load. When the error is less than the initial threshold, the training of the network
is completed.

The coefficient of determination R2 used in this paper is

R2 = 1− ∑n
i=1
(

Fi − F̂i)
2

∑n
i=1
(

Fi − Fi)2
(13)

where Fi is the actual buckling load, F̂i is the predicted buckling load, and Fi is the average
buckling load.

The BP neural network structure will have a great influence on the prediction accuracy.
Therefore, the parameter sensitivity of the BP neural network structure is analyzed to
obtain the optimal network parameters in this paper. The influence of the prediction error
is obtained by constantly changing the structure and parameters of the BP neural network.
The number of hidden layers is changed in the range from 1 to 4, and the number of hidden
layer neurons is selected as 6, 12, and 18.

2.4. The Structure of Improved GA

The genetic algorithm is a well-established method for solving optimization problems
by simulating the process of natural selection [17]. Despite its effectiveness, traditional
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GA techniques have shown vulnerabilities in terms of being trapped in local optima and
exhibiting slow convergence rates. Additionally, when applied to inverse design, traditional
GA can be computationally expensive and demanding. In light of these issues, this paper
presents an improved genetic algorithm that introduces adaptive crossover and mutation
probabilities to overcome these limitations and enhance the algorithm’s performance,
aiming to improve the algorithm’s efficiency and global optimization capability.

The fitness function value is crucial for genetic algorithms. The fitness function in this
paper is shown in Equation (14)

ai = |Fi − Fi| (14)

where ai represents the fitness function value of the ith generation, Fi represents the actual
buckling load of the ith generation, and Fi represents the predicted buckling load of the
ith generation.

Crossover, a fundamental genetic operation, involves combining genetic informa-
tion from two parent individuals to generate new offspring. The crossover probability is
a critical parameter governing this operation. However, traditional crossover methods
may disrupt favorable parental genes. To address this challenge, an adaptive crossover
probability algorithm is proposed in this study. When the fitness value of the offspring
is lower than that of the parents, the crossover probability is increased (by adding an
incremental probability to the initial value) to facilitate gene modification. Conversely,
when the fitness value of the offspring is greater than or equal to that of the parents,
the initial crossover probability is used to ensure the preservation of superior genes.
Equation (15) presents the calculation formula for the incremental probability Pc1:

Pc1 =
ai−1 − ai

ai
Pc0 (15)

where ai is the value of the fitness function of the ith generation and Pc0 is the initial
crossover probability.

Mutation probability is a crucial parameter in optimizing the search capability of a
genetic algorithm. When a genetic algorithm approaches the vicinity of the optimal solution
through the crossover operator, the local random search capability of the mutation operator
can expedite convergence towards the optimum. However, traditional mutation operators
may destroy parental genes when the algorithm approaches the optimal solution. Hence,
during this stage, the mutation probability should be set to a smaller value. To address this
issue, an adaptive mutation probability algorithm is introduced in this paper. If the fitness
value of the offspring is lower than that of the parents, the mutation probability is increased
(by adding an incremental probability to the initial value). Conversely, if the fitness value of
the offspring is greater than or equal to that of the parents, the initial mutation probability
is used. Equation (16) represents the calculation formula for the mutation probability Pb1:

Pb1 =
ai−1 − ai

ai
Pb0 (16)

where ai is the value of the fitness function of the ith generation and Pb0 is the initial
mutation probability.

In this paper, the selection method used in the improved genetic algorithm was the
tournament selection method. The initial values of the crossover probability and the
mutation probability were both 0.1.

2.5. Inverse Design Process

The process of inverse design for thin-walled reinforced structures is shown in Figure 4.
This method combines BP neural networks and genetic algorithms and encompasses several
steps. Initially, a model database is established, where the input data consists of design
parameters, and the output data represents the design objectives (the buckling load).
Subsequently, a BP neural network is employed to construct a mapping model, facilitating
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the transformation of input parameters into output data. Through the training of the
BP neural network, the interconnections between neurons, including the weights and
thresholds, are adjusted with utmost precision to minimize the discrepancy between the
actual output data and the intended target output data.
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Upon completion of the BP neural network training, a genetic algorithm is applied to
conduct the optimization process in the inverse design. The genetic algorithm emulates nat-
ural selection and genetic mechanisms by utilizing genetic operations, including crossover
and mutation, to explore the population and search for the optimal solution. Initially, an
initial population is randomly generated by creating individuals with diverse combinations
of design parameters. Subsequently, a selection operation is performed, evaluating the
fitness function of each individual and favoring individuals with higher fitness as parents
for subsequent generations. Afterward, a crossover is executed, combining the genetic
information of selected parent individuals to generate offspring individuals. During the
crossover operation, the probability of recombination is adjusted judiciously, aiming to
preserve beneficial genetic traits while also exploring novel design spaces. Simultaneously,
adaptive mutation probability is employed to introduce randomness, assisting in escaping
local optima and facilitating exploration of the global optimum.

Following the creation of offspring individuals, a mutation operation is applied,
involving the random modification of their genetic information. The degree of mutation is
controlled by adaptive mutation probability, enabling a fine balance between diversification
when offspring individuals exhibit lower fitness and preservation of superior genetic
traits when fitness is higher. This methodology allows the genetic algorithm to retain
advantageous genes while efficiently exploring the design space for the global optimum.

The crossover and mutation operations are iteratively performed to generate new off-
spring individuals and update the population. Through multiple generations of evolution
and selection, individuals within the population are progressively optimized, steadily ap-
proaching the global optimum. Upon reaching the termination condition, such as reaching
the maximum number of iterations or achieving the desired fitness level, the optimized
combination of design parameters is obtained, serving as the outcome of the inverse design.
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3. Results and Discussion
3.1. Predictive Power of the BP Neural Network

The number of hidden layers is changed in [1,4], and the number of hidden layer
neurons is selected as 6, 12, and 18. The test set error after network training is shown in
Figure 5. It can be found that the prediction error of using six neurons per layer in this study
is small. As the number of neurons in the hidden layer increases, the prediction accuracy
decreases as the number of hidden layers increases. The optimal network structure consists
of two hidden layers and six neurons per layer, and the prediction error of the test set is
1.15%. Therefore, this structure is used in the subsequent prediction and inverse design.
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The convergence of the neural network is shown in Figure 6, and the optimal solution
is obtained after the 37th epoch. The regression function is shown in Figure 7. The
determination coefficient values in the training set verification set test set and all samples
are 0.98, 0.99, 0.99 and 0.98, respectively, which indicates that the network has a good
performance in these sets.
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3.2. Inverse Design of the Thin-Wall Stiffened Structure

Based on the designed BP neural network model, the improved genetic algorithm
is used to inversely design the geometric parameters of thin-walled stiffened structures
according to the requirements. The initial values of the crossover probability and mutation
probability of the improved genetic algorithm are both set to 0.1, the number of popula-
tions is set to 700, and the maximum number of iterations is 80. The optimal structural
parameters of the inverse design of the thin-walled stiffened structure with the target
buckling loads in the range from 4× 106 N to 6× 106 N is shown in Table 2. The structural
parameters obtained by the inverse design are the input for the trained BP neural network.
Finally, the predicted buckling loads are compared with the target buckling loads to obtain
the accuracy of the inverse design. The results in Table 2 show that the inverse design
method using BP neural network and genetic algorithm can well design different reinforce-
ment types and the obtained predictions have a good agreement with the corresponding
FE results.



Aerospace 2023, 10, 761 11 of 13

Table 2. Inversely designed results of the thin-walled stiffened structures.

Structure
Number

Target Buckling Loads
(×106 N)

Reinforcement
Types

hr
(mm)

wr
(mm)

ts
(mm) n1 n2 n3

1 4 3 3.1 2.1 3.9 0 38 76

2 4.5 3 2.9 3.4 3.8 0 40 80

3 5 1 6.0 2.1 4.3 68 12 0

4 5.5 2 2.2 3.0 4.8 36 36 72

5 6 4 4 3.5 4.7 36 0 72

In order to further ensure the accuracy of the inverse design, the structure obtained by
the inverse design is geometrically reconstructed and verified by the finite element analysis.
The distributions of the obtained displacements are shown in Figure 8. The load curve of
each structure is shown in Figure 9.
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The peak values in the curves shown in Figure 9 are extracted and shown in Table 3.
By comparing the target buckling loads with the structural buckling loads after geometric
reconstruction, it is found that the maximum error between the target buckling loads and
the calculated buckling loads is only 5.1%, which proves that the inverse design method
of thin-walled stiffened structures according to the required buckling load is feasible.
After completing the inverse design training, it takes about one minute to perform each
inverse design, which greatly saves time compared to traditional optimization design. The
significant reduction in time overhead can be attributed to the streamlined nature of the
proposed method. This rapid inverse design not only accelerates the entire design process,
but also has the potential to accelerate the research and development cycle.

Table 3. Comparison of the inversely designed buckling loads with the target buckling loads.

Target Buckling Loads
(×106 N)

Finite Element Calculated
Buckling Loads (×106 N) Relative Errors (%)

4 3.93 1.75

4.5 4.27 5.1

5 5.00 0

5.5 5.43 1.27

6 5.95 0.83

4. Conclusions

In this study, a method employing a backpropagation neural network (BP) in con-
junction with genetic algorithms (GA) to accomplish the inverse design of thin-walled
stiffened structures under various buckling loads is proposed. The BP neural network maps
the input parameters (geometric parameters) to the output variable (buckling load) and
establishes the underlying logic relationship, enabling the prediction of unknown data. The
genetic algorithm performs global optimization on the predicted logic relationship, thereby
deriving the corresponding geometric parameters for the desired structural properties.
The reconstructed thin-walled stiffened structure is then subjected to the finite element
analysis, and the results are compared against the initial values to validate the feasibil-
ity and accuracy of the machine learning-based inverse design method for thin-walled
stiffened structures.

The results demonstrate that the proposed method offers a promising solution for the
rapid and accurate design of thin-walled reinforced structures. By effectively addressing
the complexity and challenges associated with design, this method presents numerous
advantages over traditional theoretical calculations and experimental analyses, including
high design efficiency, broad design domain, and enhanced accuracy.

The successful application of the machine learning and genetic algorithm-based
method highlights its potential in the field of thin-walled reinforced structure design.
Further research can explore and optimize this method by considering additional de-
sign variables and constraints, thereby improving design precision and reliability. Ad-
ditionally, integrating machine learning with other optimization algorithms can expand
its applicability to diverse fields and drive innovation and development in thin-walled
structure design.

However, when preparing datasets, inverse design often takes more time than single
traditional optimization methods, and the advantages of inverse design are reflected in
multiple optimization designs. In terms of accuracy, we did not compare it with the
experimental results. We will use experimental data to verify our results in future research.
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11. Molesky, S.; Lin, Z.; Piggott, A.Y.; Jin, W.; Vucković, J.; Rodriguez, A.W. Inverse design in nanophotonics. Nat. Photonics 2018, 12,
659–670. [CrossRef]

12. Yang, K.Y.; Skarda, J.; Cotrufo, M.; Dutt, A.; Ahn, G.H.; Sawaby, M.; Vercruysse, D.; Arbabian, A.; Fan, S.; Alù, A.; et al.
Inverse-designed non-reciprocal pulse router for chip-based LiDAR. Nat. Photonics 2020, 14, 369–374. [CrossRef]

13. Gebauer, N.W.A.; Gastegger, M.; Hessmann, S.S.P.; Müller, K.; Schütt, K.T. Inverse design of 3d molecular structures with
conditional generative neural networks. Nat. Commun. 2022, 13, 173. [CrossRef]

14. Caudill, M. Neural Networks Primer, Part I; AI Expert: Modena, Italy; Miller Freeman, Inc.: Topeka, KS, USA, 1987; Volume 2, pp. 46–52.
15. Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536.

[CrossRef]
16. Dubey, S.R.; Singh, S.K.; Chaudhuri, B.B. Activation functions in deep learning: A comprehensive survey and benchmark.

Neurocomputing 2022, 503, 92–108. [CrossRef]
17. Li, H.; Yuan, D.; Ma, X.; Cui, D.; Cao, L. Genetic algorithm for the optimization of features and neural networks in ECG signals

classification. Sci. Rep. 2017, 7, 41011. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1142/S0219455407002253
https://doi.org/10.1115/1.4006939
https://doi.org/10.1016/j.ijmecsci.2007.04.006
https://doi.org/10.1007/BF03249492
https://doi.org/10.1016/j.ijimpeng.2015.09.003
https://doi.org/10.1016/j.compositesb.2013.12.062
https://doi.org/10.1038/s41524-022-00938-w
https://doi.org/10.1002/adma.202206238
https://www.ncbi.nlm.nih.gov/pubmed/36103610
https://doi.org/10.1016/j.matdes.2021.109937
https://doi.org/10.1038/s41566-018-0246-9
https://doi.org/10.1038/s41566-020-0606-0
https://doi.org/10.1038/s41467-022-28526-y
https://doi.org/10.1038/323533a0
https://doi.org/10.1016/j.neucom.2022.06.111
https://doi.org/10.1038/srep41011
https://www.ncbi.nlm.nih.gov/pubmed/28139677

	Introduction 
	Materials and Method 
	Nonlinear Explicit Post-Buckling Analysis Method 
	Datasets of the Thin-Wall Stiffened Structures 
	BP Neural Network for Forward Prediction 
	The Structure of Improved GA 
	Inverse Design Process 

	Results and Discussion 
	Predictive Power of the BP Neural Network 
	Inverse Design of the Thin-Wall Stiffened Structure 

	Conclusions 
	References

