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Abstract: Solid rocket motors are prone to combustion instabilities, which may lead to various prob-
lems for the rockets, from unexpected oscillations, precision decreasing, to explosion. The unsteady
combustion dynamics of the propellants play a crucial role in most solid rocket motors experiencing
combustion instabilities. A modeling framework for the unsteady combustion of the solid propel-
lant is constructed via the Zel’dovich-Novozhilov (ZN) phenomenological perspective. The overall
unsteady combustion features of a quasi-steady homogeneous one-dimensional (QSHOD) model
are investigated. The phenomenological ZN parameters are then calculated. Compared with the
traditional ZN-QSHOD linear equivalence relation, the new calculated system yields better results for
the pressure coupling response, especially in the non-linear regime. The proposed phenomenological
modeling provides a new methodology for the model reduction of the complex flame models.

Keywords: solid propellant; unsteady response; combustion instability; non-linear dynamics

1. Introduction

With the development of modern propulsion technology, both the energy efficiency
and the energy density reach a considerably high level. Combustion instability has been an
unsolved problem since the early application of both liquid rocket engines and solid rocket
motors (SRMs) [1,2].

The sources of the combustion instabilities in SRMs are believed to be the interaction of
the flow field, the acoustic fields and the unsteady combustion inside the chamber [1]. The
coupling between the unsteady combustion and the acoustic fields, or the thermoacoustic
mechanism, plays a central role in various SRMs, especially in small and medium SRMs [3].
While for the large scale SRMs with high length-to-diameter ratio, the hydrodynamical
instability governs.

The thermoacoustic instability in SRMs has been attracting most of the researchers
in the community since the 1960s. According to Culick [4], a reliable modeling of the
thermoacoustic instability should properly include the non-linear effects in the acoustic
system of the chamber and the combustion system of the propellants. Actually, the three
combinations of linear acoustics with linear combustion response, the linear acoustics
with non-linear combustion response and the non-linear acoustics with linear combustion
response, are not able to model the important phenomenon of bi-stability and triggering.
Following Culick’s approach [5,6], the non-linear acoustics in the chamber can be well-
modeled. Nevertheless, on the other side, the modeling of the unsteady combustion
remains difficult until now. Traditional approaches are based on different overall response
functions [4]. The major limit of this approach is the historical effects of temperature
distribution inside the solid propellants. On account of this, Mariappan and Sujith [7]
improved the model by replacing the overall response function by a spatial position
specified unsteady combustion model, yielding more detailed non-normal and non-linear
features. In their model, the spatial temperature distribution in the solid propellant is
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taken into consideration, which leads to the historical effects that are included. Indeed,
under the same pressure disturbance, the solid phase will respond differently with different
temperature distribution, which is determined by the combustion history of the propellant.
The unsteady combustion model used by Mariappan and Sujith [7] is the quasi-steady
homogeneous one-dimensional (QSHOD) model equipped with a flame model, named
the Krier-T’ien-Sirignano-Summerfield (KTSS) model [8], where the flame is in the gas
phase, which is assumed to be a uniform one in a region above the burning surface. The
author of the present paper finds that the Zel’dovich-Novozhilov(ZN) model serves better,
and investigates the triggering instability and bi-stable region thoroughly in a previous
work [9,10].

Unlike the steady combustion models, the unsteady combustion model is designed
to be used in the combustion instability study of SRMs. The detailed modeling of the
various physical and chemical processes in the steady model is no longer appropriate due
to its mathematical complexity. Thus, the unsteady model should not be too simplified
so as to include the major dynamics related to the combustion instability, and also not
too complicated to be mathematically intractable [1]. The unsteady combustion models
of solid propellants were developed separately by the researchers in the USA and the
former USSR/Russia. Researchers in the USA adopt the QSHOD approach, where the
processes in the condensed phase, the gas phase and the interface between them are
detailed, modeled and then combined together [1]. Meanwhile, the Russian researchers
follow the phenomenological approach, originally proposed by Zel’dovich, where the
burning rates and surface temperature are related to the ambient pressure and temperature
directly [11]. The comparison of the two classes of models have been discussed thoroughly
since the 1990s, and this is summarized in [12], where the linear and non-linear responses
of the two models under pressure oscillations with relative high amplitude are compared.
It is well known that the QSHOD model and ZN model are equivalent in the linear
region mathematically. In [12], the non-linear responses are compared based on this linear
equivalence, which leads to the inevitable drawback that the equivalence is derived under
linear assumption while the non-linear responses are investigated.

On account of this, the present paper returns to the original phenomenological con-
struction of the models. The steady combustion features of solid propellants based on
the QSHOD model are thoroughly calculated in a wide range of ambient pressure and
temperature. The results are then used to determine the phenomenological parameters of
the ZN model, yielding a set of ZN parameters for the wide range of ambient conditions.
The responses of the ZN model with the parameters calculated from traditionally linear
equivalence and the new phenomenological approach are compared, from the linear to
non-linear regimes.

After the present introductory part, the mathematical formulations of the QSHOD model
and the ZN model, as well as the relations between them, are discussed in Section 2. Based
on the mathematical characteristics of the two models, Section 3 discusses the numerical
algorithm used to investigate the equations. Using this algorithm, a phenomenological
modeling of a QSHOD model is constructed, and the responses of both models are illus-
trated and discussed in Section 4. Finally, the concluding remarks are given in Section 5.

2. Mathematical Formulations

The mathematical formulations of the QSHOD model and ZN model share most parts
in common, which has been discussed thoroughly in the literature [12]. In the present
section, the governing equations and the boundary conditions are discussed, as well
as their physical significance. However, not all of the derivations and assumptions are
included here.
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2.1. QSHOD Model with KTSS Flame

To start with, the non-dimensionalized governing equation of the model is [8]
∂θ

∂τ
− R

∂θ

∂X
− ∂2θ

∂X2 = 0, X ∈ [0, ∞), τ ∈ [0, ∞)

R = θm
s

(1)

where τ, X are the non-dimensional temporal and spatial variables, θ, P are the non-
dimensional temperature and pressure, and R is the non-dimensional burning rate. It
should be noted that the exponential dependence of the burning rate on the surface temper-
ature is an approximation of the exponential Arrhenius’ Law. Theses variables are defined
as follows.

τ = t

/(
α

r2
0

)
, X = x

/(
α

r0

)
, R =

r
r0

,

P =
p
p0

, θ =
T − Ta

Ts,0 − Ta
, H =

Qs

c(Ts,0 − Ta)
,

where H represents a non-dimensional energy comparing the total heat release of the
combustion Qs and the heat capacity of the propellant. The condition under investigation
is determined by the ambient pressure p0 and temperature Ta. Under this condition, the
steady burning rate and the burning surface temperature are r0, Ts,0, respectively. The
spatial and temporal variables are non-dimensionalized by r0 and the heat diffusivity of
the propellant α.

The QSHOD model is in a class of similar models with the same governing equa-
tions [12]. The QSHOD-KTSS model is a typical one of the class, where the above governing
equation for the condensed phase is equipped with a flame in the gas phase, assumed to be
uniform in a region. Under this assumption, the corresponding boundary condition can be
derived as [8]

∂θs

∂X
= −P2n(Pn/m − H)

R
− HR, (2)

where the dependence on pressure is introduced. The boundary condition is derived
from the mass and energy balance at the phase interface [8]. It should be noticed that
the governing Equation (1) is a partial differential equation (PDE) with strong coupling
with its boundary condition (2). The equation is derived from a heat conduction problem
with the regressing boundary, leading to a term with a coefficient R determined by the
boundary value of temperature. Thus, the equation governs the temperature field on a
moving domain, and the velocity of the moving boundary, which is also the burning rate
R, which is determined by the temperature field. This complicated interaction situation
precludes the possibility of an analytical solution. The previous study of the model focus
on the analytical solution of its linearization system or on the numerical solution of the
full system.

From the equations above, the three major parameters of the QSHOD-KTSS model
are n, m, and H. The former two determine the dependence of the burning rate on the
ambient pressure and burning surface temperature. H describes the energy released by the
combustion of the propellant to the heat capacity.

2.2. ZN Model

The ZN model is a phenomenological approach without detailed modeling of the
flame following the notion of Zel’dovich [11,13,14]. The governing equation for the solid
phase is the same as the QSHOD model,

∂θ

∂τ
− R

∂θ

∂X
− ∂2θ

∂X2 = 0, X ∈ [0, ∞), τ ∈ [0, ∞), (3)
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where the non-dimensional variables are defined as the same as the QSHOD model.
According to Zel’dovich’s notion, there is no need to model the processes in the gas

phase in detail. Alternatively, a phenomenological approach in the macroscopic perspective
is adopted. To start with, there are two major features of steady combustion, the steady
burning rate r0 and the steady burning surface temperature Ts,0, and two major ambient
conditions, ambient pressure p0 and temperature Ta. In steady combustion conditions,
there exists dependence relations between them.

r0 = Fr(Ta, p0), Ts,0 = Fs(Ta, p0) (4)

The specific forms of the functions Fr, Fs are not known, and they are not necessary
to be known. Usually, a derived form of the above relations is used, based on the steady
distribution of temperature fields in the solid propellant [14]. It should be noticed that the
major feature of the above relation can be described by the following partial derivatives.

k = (Ts,0 − Ta)

(
∂ ln r
∂Ta

)
p0

, rZN =

(
∂Ts

∂Ta

)
p0

,

n =

(
∂ ln r

∂ ln p0

)
Ta

, µ =
1

Ts,0 − Ta

(
∂Ts

∂ ln p0

)
Ta

.

(5)

The central assumption of the ZN model is Zel’dovich’s notion that the chemical
and gas dynamical processes in the gas phase are much faster than the heat conduction
processes inside the condensed phase. Under this condition, the relaxation times of the
gas phase are much smaller than those in the condensed phase, and the gas phase reaches
equilibrium immediately, as the temperature in the condensed phase varies. Mathematically,
the Equation (4) can be extended to the unsteady case [11]. For example, the burning rate r′

under a pressure disturbance p′ can be expressed as r′ = Fr(Ta, p0 + p′). In this manner,
the burning rate and the burning surface temperature of the unsteady combustion can be
expressed by the parameters k, rZN , n, µ, defined in Equation (5). The burning rate and
boundary condition of the ZN model can be derived as

R = Pn exp
[
k
(

θs −
ϕ

R

)]
, R = exp

k(θs − 1)
rZN

∂θ(τ, 0)
∂X

= −R
k
(n ln P + kθs − ln R) = −ϕ,

(6)

where the heat flux at the burning surface is ϕ. The readers can refer to the literature [11,14]
for detailed derivation processes.

Thus, the ZN model, consisting of Equations (3) and (6) and the QSHOD model, con-
sisting of Equations (1) and (2) have the same governing equation as the two models share
the same solid phase modeling. The burning rate expressions and boundary conditions
in the two models are completely different, as the modeling methods for the gas phase
and phase interface are different. Despite the obvious difference, it is well known that the
linearization of the two models yields the equivalent results [1,14].

In the previous work [12], the two models are also compared based on a linear equiva-
lence. The model variables of the QSHOD model are n, m, H, while the model variables of
the ZN model are n, k, rZN . Except for the pressure exponent n, the equivalent relation of
the other two variables is

H =
2k− 1 + rZN

2k
, m =

k
rZN

, (7)

which can be derived in the sense that the derivative of the burning rate on the surface
temperature is the same [12]. Obviously, this linear equivalence holds near the reference
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state, where the derivatives are taken, which may not valid for a wide parameter range.
Thus, a new approach is proposed in the present paper.

2.3. The Phenomenological Reconstruction of the QSHOD Model

From the discussion in the previous subsection, the linear equivalence holds accurately
only on one state point. In the present paper, the calculations are taken in a wide state range,
and the ZN parameters n, k, rZN , µ are evaluated based on the information throughout the
range comprehensively.

The method adopted in the present paper is based on the phenomenological notion of
the ZN model. The steady state combustion states are evaluated by the QSHOD model with
varying ambient pressures and temperatures, and the ZN parameters are then calculated
according to the definition (5). In the QSHOD-KTSS model, the two major coefficients
determining the main feature of the model are H and m. Thus, with the fixed H, m, the
steady combustion can be solved by evolving the following equation to the steady state,

∂T
∂τ
− R

∂T
∂X
− ∂2T

∂X2 = 0, x ∈ [0, ∞), t ∈ [0, ∞)

R =

(
Ts − Ta

Ts,0 − Ta

)m

∂Ts

∂X
= −(Ts,0 − Ta)

[
P2n(Pn/m − H)

R
+ HR

]
,

(8)

where only the temperature is reverted to the dimensional form to take the ambient
temperature variation into consideration.

For each ambient state, (Pi, Ta,j), one can solve a steady state from the above equations,
characterized by the burning rate and surface temperature R(i,j) and Ts,(i,j). Based on the
two matrices of {R} and {Ts}, the parameters can be evaluated by the rows and columns.
For example, k can be evaluated by each row of the matrix {R}, where the information in
row {R(i,·)} will yield a k at fixed ambient pressure Pi with varying ambient temperature
Ta,j, . . . , Ta,Np by a regression algorithm. In the present paper, an Np × Np mesh of ambient
states are adopted, which can be adjusted for specific ranges as needed. Solving the above
system for Np different P and Np different Ta yields an Np × Np matrix of {R}Np×Np and
an Np ×Np matrix of {Ts}Np×Np , the four coefficients in Equation (5) can then be calculated
by regression in each row and column (the total number for each parameter is Np). In
this manner, a ZN model based on the results of the QSHOD-KTSS model is derived.
The detailed modeling of the flame model is replaced by the phenomenological relation
Equation (4) or Equation (5).

3. Numerical Methods

As mentioned earlier in Section 2, the governing PDE of the two models is difficult to
solve due to the existence of the coupling term. The numerical algorithm to deal with the
PDE is the spectral method proposed by Novozhilov in [13,14], which will be introduced
briefly in this section.

3.1. The Expansion by the Lagurre Polynomials

The temperature in Equation (1) or (3) is expanded by the Laguerre polynomials as

θ(τ, X) ∼ e−X
N

∑
i=0

ui(τ)Li(X), Li(X) =
eX

i!
di

dXi e−XXi, (9)
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where Li(X) is the i-th order Laguerre polynomial, and the total number of Laguerre
polynomials is set to be N. The derivatives of the polynomial has the relation

dLi(X)

dX
= −

N−1

∑
s=0

Ls(X),
d2Li(X)

dX2 =
N−2

∑
s=0

(N − s− 1)Ls(X).

By substituting the expansion Equation (9) into the governing Equation (1) or (3),
and using the above derivatives, the PDE can be reduced to a system of ordinary differen-
tial equations 

u̇0 = ϕ− Rθs,

u̇1 = ϕ− θs + R(u0 − θs),

u̇i = ϕ− iθs +
i−2

∑
j=0

(i− j− 1)uj

+R

(
i−1

∑
j=0

uj − θs

)
, i = 2, 3, . . . , N,

(10)

which is an (N + 1)-th order system of ODEs of ui. Additionally, the surface temperature
θs and the surface heat flux ϕ have a simple expression following the definition of the
Laguerre polynomial,

θs =
N

∑
i=0

ui, ϕ =
N

∑
i=0

(i + 1)ui.

With the above equations, the system (1) or (3) is spatially discretized, leading to a
explicit form, which can be easily integrated by a standard time-forwarding algorithm.
The validation of the algorithm is included in [12], where an appropriate order of the
polynomials used in the algorithm is shown to be N = 15.

3.2. The Phenomenological Parameters

As discussed in Section 2, the phenomenological reconstruction of the QSHOD-KTSS
model is based on the steady combustion results under different ambient pressures and
temperatures. This can be complete by a temporal forwarding of the unsteady Equation (8)
by a similar expansion,

T(τ, X) ∼ e−X
N

∑
i=0

ui(τ)Li(X).

A convergence criterion is used to check if the steady combustion is reached.
By conducting the steady combustion calculation in a range of ambient pressure

P1, P2, . . . , PNp and temperature Ta,1, Ta,2, . . . , Ta,Np , the steady combustion in Np × Np con-
ditions are evaluated.

To calculate the phenomenological parameters in Equation (5), a straightforward
method is to approximate the partial derivatives by finite differences. However, to collect
the information in each state points together, the linear regression is used. Take the
pressure exponent as example. The pressure exponent is the derivative of ln R to the ln P
at fixed ambient temperature. Thus, for a selected temperature Ta,j, there is a vector of
pressure P1, P2, . . . , PNp and a row of corresponding burning rates R1,j, R2,j, . . . , RNp ,j. After
conducting the linear regression for the logarithm of both series, the slope is nj, which is
the pressure exponent in this ambient temperature Ta,j. In this manner, the Np pressure
exponent will be calculated. Repeating the processes for the other parameters, Np values
for each parameter can be calculated.
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4. Results and Discussion

In this section, the unsteady combustion under varying pressure oscillations of the
models will be discussed. The models in the comparison are the QSHOD model and
the two equivalent models, in the sense of linear equivalence and the phenomenological
approach, respectively.

4.1. Model Parameters

The basic parameters for the solid propellant under investigation are collected in
Table 1. The calculations are conducted in the non-dimensional form, according to (8), and
the results are reverted back and summarized in the dimensional form.

Table 1. The physical and chemical parameters of the solid propellant.

Parameter Value Unit

Reference pressure, p0 6 MPa
Reference ambient temperature, Ta,0 300 K

Reference burning surface temperature, Ts,0
1 1100 K

Reference burning rate, r0 6.871 mm/s
Pressure range [3, 9] MPa

Temperature range [250, 350] K
Pressure exponent, n 0.3
Energy constant, H 0.81

Temperature exponent, m 6
1 The burning surface temperature of the propellant at the reference state.

4.2. The Equivalent ZN Models

Traditionally, the equivalent counterpart of a QSHOD model in the ZN framework
should be based on the linear equivalence [12,15]. In the present model, the corresponding
ZN parameters can be calculated by Equation (7)

kL = 1.8293, rL
ZN = 0.3049,

where the superscript denotes the linear equivalence.
In the present paper, a new phenomenological approach is shown in Figure 1, where the

logarithmic coordinates are used when the logarithm of the quantity is used in Equation (5).
In each subfigure, five typical conditions are selected to draw the variation. It can be seen
from the figure that the lines are of good linearity, and the slope of each line is almost the
same. This indicates that, in the selected parameter range, the ZN parameters are close to
constant. However, this does not imply that the above linear equivalence method is valid.

In the present paper, the ZN parameters are calculated according to the algorithm in
Section 3.2. Under the Np × Np mesh, there are Np results for each parameter, and their
mean value is used for the final results,

k = 2.034, rZN = 0.6873, n = 0.3775, µ = 0.0577.

It is noticeable that the parameters generated from the new approach are quite different
from the traditional linear equivalence results kL, rL

ZN , and the pressure exponent is a
bit larger.

Comparing the two methods, the linear equivalence is derived from the derivatives
calculated at the reference state, while in the phenomenological method, the parameters are
calculated from the comprehensive effects throughout the parameter range. The difference
originates from two aspects. The first one is the effects of different parameters, which are
coupled together, and not separated. The pressure exponent n is an example. Although the
pressure exponent is introduced into the QSHOD-KTSS model explicitly in the boundary
condition (8), its influence is not straightforward, and the pressure exponent of the full
system differs from the original set value. Another important aspect is the wide state range.
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The four parameters are not constant throughout the state range and the dependences of
r, Ts on Ta, p are not strictly linear. The results illustrate the discrepancies between the
linear equivalence at a single state point and the overall variations in the state range.

250 260 270 280 290 300 310 320 330 340 350

4.5

5

5.5

6

6.5

7

7.5

8

(a)

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

4.5

5

5.5

6

6.5

7

7.5

8

(b)

250 260 270 280 290 300 310 320 330 340 350
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980

1000

1020
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1080

1100

(c)

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

960

980

1000

1020

1040

1060

1080

1100

(d)

Figure 1. The phenomenological calculation of ZN parameters: (a) k, (b) n, (c) rZN , (d) µ.

4.3. The Unsteady Combustion of the QSHOD-KTSS Model

The comparison of the unsteady combustion of the QSHOD model and the ZN model
has been discussed in [12] under various conditions. In the present paper, the harmonic
excitation with increasing amplitude is discussed.

In the harmonic excitation problem, the unsteady combustion is driven by a peri-
odically varying ambient pressure, which is the case in the chamber of an SRM under
combustion instability. The driving signal is

P = 1 + ∆P sin(2πτ), (11)

where the non-dimensional form is used. According to Equation (11), the pressure is
oscillating around the reference pressure at an amplitude ∆P.

It has been shown in the literature that the non-linear dynamics of the unsteady com-
bustion under the increasing driving amplitude is a series of period-doubling bifurcations
to chaos [11,14]. In the present paper, the comparison is also made in this problem. In each
calculation, time is evolved to τ = 500 and the range τ ∈ [400, 500] is plotted to cut off
the transient processes. The reason for cutting off the transient processes is the non-linear
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dynamics of the system, which varies mainly on the final states, which is the attractor of
the system. Indeed, it will be shown that the combustion system will be attracted to a series
of geometrically different attractors with increasing amplitude.

To start with, at ∆P = 0, which corresponds to a steady constant pressure condition, the
burning rate response is also steady at unity. With an increasing ∆P, there will be a burning
rate oscillation, correspondingly. When the amplitude is small, the linear simplification
applies, and a harmonic pressure perturbation will lead to a harmonic burning rate response
with the same frequency. The burning rate responds to the pressure oscillation in a “linear”
manner when ∆P < 0.28, as shown in Figure 2a. In the three subfigures, the top one is the
time series of the burning rate, the middle one is the phase portrait by phase reconstruction
and the bottom one is the FFT of the time series. Actually, the response in this region has
begun to deviate from the linear response, but the period of the burning rate is the same as
the driving pressure. Mathematically, the attractor of the system is qualitatively the same
for 0 < ∆P < 0.28.

At the point ∆P = 0.28, a period-doubling bifurcation occurs, where the limit cycle
becomes self-intersected and the period of the cycle doubles, as shown in Figure 2b. As
the attractor becomes geometrically different, the final state of the system is qualitatively
different from the ∆P < 0.28 case, and a bifurcation occurs. With the further increasing
of the ∆P, there will be a series of period-doubling to period-4 (∆P = 0.72), period-8,
period-2n and finally to chaos (∆P = 0.86), as shown in Figure 2c,d.

(a)

400 420 440 460 480 500

1

2

3

0.5 1 1.5 2 2.5 3

1

2

3

0 1 2 3 4 5

0

0.5

(b)

400 420 440 460 480 500

0

5

0 1 2 3 4 5

0

5

0 1 2 3 4 5

0

0.5

1

(c)

400 420 440 460 480 500

0

5

0 1 2 3 4 5

0

5

0 1 2 3 4 5

0

0.5

1

(d)

Figure 2. The burning rate responses of the QSHOD model under harmonic excitation pressure with
different amplitudes: (a) ∆P = 0.1, (b) ∆P = 0.281, (c) ∆P = 0.72, (d) ∆P = 0.86.
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It is noticeable that the burning rate response becomes extremely high as ∆P > 0.2,
which is unphysical. This is due to the over-simplification of the flame structure, which
may lead to wrong results when applied in the combustion instability study of the SRMs.

4.4. The Unsteady Combustion of the Two ZN Models

Based on the linear equivalency, the ZN parameter should be kL = 1.8293, rL
ZN = 0.3049,

n = 0.3. The corresponding unsteady combustion responses are collected in Figure 3. The
overall bifurcation scenario is the same as the QSHOD model, qualitatively. Nevertheless,
from the quantitative perspective, there are considerable differences. The bifurcation points
are smaller, or each period-doubling becomes earlier. Additionally, the burning rate re-
sponses are confined in a realistic range. Thus, the ZN model should be more appropriate
for the combustion instability study than the QSHOD model, as discussed in [12]. However,
although the ZN model by linear equivalence is equivalent to the QSHOD model according
to non-linear dynamics, in the sense of the bifurcation scenario, the quantitative features
are quite different; especially the exact position of the bifurcation points.
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Figure 3. The burning rate responses of the ZN model (linear equivalence) under harmonic excitation
pressure with different amplitudes: (a) ∆P = 0.1, (b) ∆P = 0.28, (c) ∆P = 0.41, (d) ∆P = 0.6.

In the new phenomenological approach proposed in the present paper, the ZN pa-
rameter should be k = 2.034, rZN = 0.6873, n = 0.3775. The corresponding unsteady
combustion responses are shown in Figure 4. Again, the overall bifurcation scenario is the
same as the previous two cases. But, the bifurcation points of the new model become more
close to the original QSHOD model than the ZN model based on the linear equivalency.
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Figure 4. The burning rate responses of the ZN model (phenomenological approach) under har-
monic excitation pressure with different amplitudes: (a) ∆P = 0.1, (b) ∆P = 0.28, (c) ∆P = 0.62,
(d) ∆P = 0.86.

Indeed, the typical bifurcation points of the three systems are collected in Table 2, and
the ZN model from linear equivalence has much smaller bifurcation points. It should be
noted that the unphysical large values of both bifurcation points and response amplitudes
in the QSHOD-KTSS model are due to the simplifications in the modeling processes.
For example, the burning rate R = θm

s is a simplification of the exponential function in
Arrhenius’ Law, which is valid near the reference state or R = 1. Admittedly, the accuracy
of the QSHOD model is not the focus of the present paper. However, the results show
that the unphysical late bifurcation effects are better captured by the phenomenological
approach than the linear equivalence approach.

Table 2. The bifurcation points of different models.

Model Period-2 Doubling Period-4 Doubling Chaos

QSHOD-KTSS 0.281 0.72 0.86
ZN (linear equivalence) 0.28 0.41 0.6

ZN (phenomenological approach) 0.28 0.62 0.86

By the comparison of the two ZN models, there also exists the non-linear equivalency
in the sense of the same bifurcation scenario. The ZN model from the phenomenological
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approach reconstructs the system better, as each bifurcation point is closer to the original
QSHOD model than the linear equivalency. Indeed, the phenomenological approach makes
full use of the information in a wide range of parameters, while the linear equivalency only
use the information near the reference state.

5. Conclusions

A new unsteady combustion modeling framework is investigated based on the
Zel’dovich phenomenological approach. The original unsteady combustion model based on
flame modeling is reconstructed in the phenomenological form, with both good qualitative
and quantitative agreements.

The spectral method is modified to investigate the combustion features of the QSHOD-
KTSS model in a wide state range, yielding combustion characteristics under different
ambient conditions. The results are then analyzed by linear regressions to calculate the four
ZN parameters, in a phenomenological manner.

The unsteady burning rate responses of the the new constructed model are then
compared with the traditional ZN model based on linear equivalence. The results show
that the new phenomenological approach is able to reconstruct the original model better
than the traditional linear equivalence model, in the sense that the bifurcation scenario
is closer. This indicated that the phenomenological approach, in which information in
a widely varying state range is taken into consideration, is able to capture dynamical
properties of the original model better than the linear equivalence approach, in which
information in only a single state is considered.

The proposed methodology can be used for more complicated combustion modeling
for solid propellants, or even liquid propellants. Indeed, the modeling of unsteady combus-
tion responses of different solid or liquid propellants focuses on the burning rate responses
of various perturbations of ambient conditions. The phenomenological approach can be
applied in these modeling problems.
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