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Abstract: In the human-in-loop (HIL) guidance mode, a pilot quickly identifies and flexibly locks
on to a target through a real-time image signal transmitted by the aircraft. Then, the line-of-sight
(LOS) angle error in the viewing field is tracked and compensated for in order to improve the
guidance and control performance of the image-guided aircraft. Based on the physical structure and
device parameters of the image seeker, an appropriate correction network is designed to improve the
performance of the seeker stability loop. Aiming at a precise-extended crossover (PEC) pilot model,
the structure of the dynamic model is optimized, and the maximum likelihood estimation (MLE)
method of the output error structure is used to identify the dynamic parameters. This makes up
for the deficiency of the existing modeling. In order to solve the nonlinear optimization problems
encountered in the identification process, a hybrid strategy of a genetic algorithm (GA) and Gauss–
Newton optimization algorithm is used to improve the probability of finding the global optimal
solution. The simplex method is also used to improve the robustness of the algorithm. In addition, a
hardware-in-the-loop simulation is designed and multi-round HIL experiment flow is performed.
Moreover, based on the adaptability of the pilot to different image signal delays, the effects of different
image signal delays on the stability and disturbance rejection rate (DRR) of the seeker control system
are studied. The results demonstrate that the hybrid gradient optimization algorithm (HGOA)
can find the global optimal value, and the identification model can accurately reflect the dynamic
characteristics of the pilot. In the HIL guidance mode, the tracking compensation behavior of the
pilot can reduce the influence of image signal delay on the disturbance of the aircraft body isolated by
the seeker. The optimized PEC model and the identified dynamic parameters improve the efficiency
of pilot training and screening.

Keywords: image seeker; pilot model; maximum likelihood estimation; Gauss–Newton optimization;
image signal delay; disturbance rejection

1. Introduction

With the development of modern science and technology, image-guided aircraft have
been highly valued for their features such as clear imaging, high accuracy, etc. [1–5]. As the
core of image precision-guided aircraft, image guidance technology (IGT) performs object
detection, identification and tracking, and provides accurate guidance information. With
the rapid development of image processing, high-resolution sensors, chips and artificial
intelligence, IGT has been widely studied and developed [6,7]. IGT can obtain rich imaging
information with multi band, high sensitivity and high resolution, which helps in finding
and identifying objects in a complex background [8,9].

The future environment is becoming more complex. In the case of long distance or
similar interference, automatic target recognition (ATR) still has many technical difficul-
ties [10,11]. Based on the recognition ability of the pilot, HIL recognition technology is
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suitable for object recognition under the interference of a complex environment and camou-
flage, and it has a high flexibility. The pilot can quickly identify and flexibly lock on to the
object through the real-time image information sent back by the aircraft, and automatically
track the object through the image tracker or manually through the control handle, which
is referred to as HIL guidance [12,13]. Due to the limitations of quality and carrying space,
optical fiber cannot be used to transmit image information over a longer distance [14].
On the other hand, data link communication using radio has the advantage of a longer
transmission distance [15,16]. However, radio signals are susceptible to interference and
obstruction, and the transmission and reception of image data require compression and de-
compression. This process will inevitably lead to image signal delay [17,18]. Therefore, the
pilot cannot quickly and accurately identify and capture the object, and the phenomenon of
pilot-induced oscillation (PIO) will also be potentially dangerous and paroxysmal [19–21].

The pilot model describes the process of the pilot controlling the optical axis of the
seeker in order to track the object. When tracking manually, the pilot–seeker is a manual
control system. The control loop of the image seeker with pilot dynamics will track and
compensate for the error angle of the object in the field of view, so as to improve the control
performance and guidance accuracy of the image-guided aircraft. Therefore, it is necessary
to clarify the response of the pilot to the tracking error of the image seeker under different
image signal delays in order to design the guidance and control system and improve the
guidance accuracy. In the mid-20th century, researchers started to model the pilot. For
instance, the PEC model [22,23] is the most representative and widely used model, which
describes the dynamic characteristics of the pilot in a wider frequency range. However, in
an actual control task, in order to better adapt to the dynamics of the control object and the
image signal delay, the operation behavior of the pilot is mostly distributed in the higher
frequency band, and it shows advanced characteristics. Afterwards, several studies on
the identification of pilot model parameters used the PEC model, which contains different
types of excitation signals [24]. The used identification methods included the MLE, GA and
interval analysis method [25–27]. After the 1970s, modern control theory quickly developed.
Kleinman proposed the optimal control model [28], and Hess developed the Hess structure
model [19], which can accurately characterize the signal processing procedure of the pilot.
In recent years, neural network and fuzzy control technologies have been frequently used
in pilot modeling [29].

The parameters of the pilot model reflect the detailed characteristics of the pilot
response, which can be obtained using experimental data identification. The parameter
identification methods are divided into two types. The first one is the pilot response to time-
invariant control objects, such as the Fourier coefficient method and MLE method [24,30].
The second one is the pilot response to time-varying control objects, such as the wavelet
transform [13,31] and Kalman filtering [32] methods. The MLE method is a classical time-
domain parameter identification method, which can identify model parameters directly
using fitting time-domain data. Compared with frequency domain methods, time-domain
parameter identification methods only use one step to fit the model, thereby reducing the
bias and variance of parameter identification. In addition, the time-domain method has
fewer design constraints on the excitation signal, and the frequency information of the
excitation signal has less influence on the identifiability of the parameters. Zhao J.M. [33]
used the auxiliary variable method to identify the parameters of the pilot model. However,
he fixed the neural delay link of the pilot model and only tracked the tank target moving in
a straight line. Therefore, the response of the pilot cannot be fully stimulated. Tang D.G. [34]
studied the performance of the seeker loop and guidance loop in three modes: automatic
tracking, manual tracking without delay and manual tracking with delay. However, the
parameters of the pilot model remained unchanged in different control environments,
while ignoring the adaptability of the pilot to the control environment. Potter [35] studied
whether input shaping can improve the tracking performance of the pilot to a flexible
system, in a manual control system with a time delay. However, the control object was
limited to a low frequency and slightly damped vibration mode. In [36], the authors
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studied the modeling process of pilot adaptation to time-varying control dynamics in
multi axis control tasks. However, the pilot model parameters were not obtained from the
experimental data.

This paper focuses on the parameter identification of a pilot model and stability analy-
sis of a human-in-loop image seeker, which mainly solves the following three problems.
Firstly, based on a real image seeker model and parameters, the PEC model structure is
optimized in order to solve the problem that the PEC model cannot accurately describe the
pilot advanced compensation characteristics to image signal delay and the high-frequency
distribution of operation behavior, compared to the work in [35]. Secondly, the pilot model
dynamics parameters are identified using the HIL hardware-in-the-loop simulation system
and experimental flow. A simulation experiment platform and wide-frequency random
excitation signal are designed, and multiple rounds of HIL experiments are performed
in order to tackle the problem of a single excitation signal and parameters that are not
obtained from the parameter identification experiment, compared with the work in [33,36].
The MLE method of output error structure is used to identify the dynamic parameters, and
the hybrid strategy of a GA and Gauss–Newton optimization algorithm is used to improve
the probability of finding a global optimal solution. The simplex method is used to improve
the robustness of the algorithm. Thirdly, the impacts of different image signal delays on
the stability and DRR of the image seeker control system are studied, which solves the
problem that the pilot dynamics are not considered in DRR research, compared with the
work in [34].

The remainder of this paper is organized as follows. Section 2 introduces the image
seeker physical model. Section 3 optimizes the PEC model structure, and proposes the
method of dynamic parameter identification. Section 4 introduces the HIL hardware-in-the-
loop simulation system and experimental flow. In Section 5, the impacts of different image
signal delays on the stability and DRR of the seeker control system are studied. Finally, the
conclusions are drawn in Section 6.

2. Image Seeker Physical Model
2.1. Seeker Physical Structure and Parameters

An image seeker usually uses an angular rate gyro platform seeker, whose control
systems of pitch frame and yaw frame are independent and have a similar structure. The
model representing the single channel control loop of the actual image seeker system,
including the stabilization loop and tracking loop, is shown in Figure 1. As the inner loop
of the tracking loop, the stabilization loop is used to isolate the angular disturbance of the
aircraft, stabilize the optical axis of the seeker and improve the velocity and acceleration
characteristics of the tracking system. The tracking loop controls the seeker’s optical axis
movement according to the target position error information given by the pilot or image
tracker under manual or automatic tracking mode, so as to perform the real-time tracking
of the target [11,18,34].

When the seeker tracks the target, the image sensor is sensitive to the real-time LOS
angle error. The control circuit synthesizes the LOS angle error and the feedback signal
from the angular rate gyro in order to generate a control current to drive the torque motor.
The latter drives the platform to rotate in order to eliminate the LOS angle error so that the
seeker optical axis can track the LOS in real-time. The parameters of a certain platform
seeker are given in Table 1 [37].
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Figure 1. Control loop of image seeker.

Table 1. Platform seeker parameters.

Parameter K1 K2 L R KT J ωn ξ KE

Value 13 22 0.007 8 0.24 0.002 85 0.4 0.17

2.2. Stabilization Loop Correction Network

Because of friction torque, damping torque and other disturbances between the bear-
ings, the aircraft attitude change will affect the direction and output of the seeker in inertial
space. In order to eliminate projectile motion coupling, the stabilization loop is usually
designed with a higher open-loop gain and wider bandwidth. The stabilization loop, based
on the established image seeker control loop, is shown in Figure 2.

Figure 2. The stabilization loop of the image seeker.

Based on these seeker parameters, the hysteresis correction can be designed as fol-
lows [38]:

Gc(s) =
1 + βTs
1 + Ts

=
1 + 0.91s
1 + 1.44s

, β < 1 (1)

The open-loop frequency responses of the stabilization loop before and after correction
are presented in Figure 3, and the response parameters are shown in Table 2. It can be seen
that the stability of the uncorrected system is low, while the addition of hysteresis correction
attenuates the amplitude of the system in the high-frequency band, which reduces the
amplitude crossing frequency ωc of the system. In addition, the appropriate selection of the
hysteresis correction parameters highly improves the stability of the corrected system, and
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therefore ensures that the corrected system can meet the requirements of both the stability
margin and the decoupling capacity index.

Figure 3. Open-loop frequency characteristics of the stabilization loop.

Table 2. Open-loop frequency response parameters of the stabilization loop.

Parameter K Kg γ ωc

Before correction 134 1 15 70
After correction 134 5 58 37

3. Pilot Model Dynamic Parameter Identification

In image-guided weapon systems, the pilot can manipulate the handle to track the
target based on the LOS angle error displayed in the image screen, until it hits the target.
Therefore, understanding and modelling the pilot’s response to the image display provides
insights into the pilot perception process, and plays an important role in the evaluation of
aircraft control systems and training simulation equipment.

3.1. Pilot Model Structure Optimization

McRuer describes pilot behavior using the PEC pilot model [22]. The frequency
coverage range of the PEC model is extended to higher and lower frequencies, compared
with the pilot crossover model whose frequency application range is limited to the vicinity
of the amplitude crossing frequency [22]. The pilot response to the LOS angle error consists
of two components: the response of the linear transfer function and the residual signal.
The residual signal is usually considered a Gaussian signal which represents the non-linear
part of the pilot model, because it is difficult to quantitatively measure its magnitude. This
results in the inability of quantitatively studying control system metrics. Therefore, in
this paper, the effect of the residual signal on the control system is not considered when
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analyzing the structure of the pilot model [37,39]. In the PEC model, the linear transfer
function of the pilot response to the LOS angle error is given by:

Gp(s) = Kp
τLs + 1
τls + 1

ω2
nm

s2 + 2ξnmωnms + ω2
nm

e−τds (2)

As shown in Figure 4, the PEC model consists of a balance term and a physical
constraint. The neuromuscular system is represented by the second-order oscillation link,
whose dynamics limit the pilot’s response to tracking LOS angle error. The crossover
theorem [22] proposed by McRuer shows that, in order to better adapt to the control
object dynamics, the pilot will adjust the balance term dynamics so that the frequency
characteristics of the system open-loop transfer function at the crossover frequency are
close to those of a single integrator system. In actual control tasks, the dynamic form of the
pilot’s control object is generally similar, which is mostly distributed in a higher frequency
band, and the pilot will balance it near this band [39,40]. Moreover, when the pilot tracks
the LOS angle error in the image screen, it has an adaptability to the image signal delay.
More precisely, a longer image signal delay results in a lead compensation instead of a
lag compensation from the pilot. Due to these two reasons, it is difficult for the lag time
constant τl, representing the low-frequency characteristics, to accurately describe the real
operation behavior of pilots. Furthermore, the authors in [37] show that it is hard to obtain
through an identification experiment. Hence, the structure of the PEC model expressed in
Equation (2) is optimized as follows:

Gp
′(s) = Kp(τLs + 1)

ω2
nm

s2 + 2ξnmωnms + ω2
nm

e−τds (3)

Figure 4. The PEC model.

The following study is based on the pilot model shown in Equation (3), while the
dynamic parameter vector to be identified is given by θ =

[
Kp, τL, τd, ξnm, ωnm

]T.

3.2. Dynamic Parameter Identification

Identifying the pilot model dynamic parameters from experimental measurement
data is a highly nonlinear optimization problem, which results in an objective function
containing many local minima besides the global minima. Compared to the frequency-
domain parameter identification methods, time-domain parameter identification methods
can identify the model parameters by directly fitting the time-domain data, while the
excitation signal has fewer design constraints and the frequency information of the exci-
tation signal has less influence on the parameter’s identifiability. MLE is a time-domain
parameter estimation method that has been widely used in several fields [41]. It belongs
to probabilistic Bayesian estimation methods. It consists of obtaining estimates of the
model parameters by introducing the conditional probability density of the observations,
constructing a likelihood function with the observations and the unknown parameters as
independent variables, and taking the maximum probability of the observed value as the
estimation criterion. In [37], the performance of the MLE algorithm is higher than that of
the Fourier coefficient method in identifying the parameters of a pilot dynamic model.

The MLE method based on output error structure (OES) is used to improve identifi-
cation accuracy. The hybrid gradient algorithm is used for optimization in order to deal



Aerospace 2023, 10, 806 7 of 28

with the problem that the gradient optimization algorithm of the parameter estimation
process is sensitive to the initial values and prone to scattering. In other words, a GA is
used to determine the initial value of the gradient algorithm. A Gauss–Newton algorithm
is then used to speed up the operation. Finally, a simplex method is used to improve the
robustness, which increases the probability of finding the global optima of a nonlinear
optimization problem.

3.2.1. OES-Based MLE

Before applying the MLE method, the PEC model should be expressed in the form
of state space. The pure delay link in the PEC model is a nonlinear link, which can be
approximated by a high-order transfer function, such as the Padé approximation [39,42],
expressed as follows:

e−τds =
P(−τds)
P(τds)

, P(τds) =
λ

∑
k̂=0

(λ + k̂)!
k̂!(λ− k̂)!

τd
−k̂sλ−k̂ (4)

where k̂ = 0, · · · , λ, λ is the order of the approximation.
In order to ensure an accurate description of the pure delay link at high frequency,

and avoid a high approximation of the PEC model, this paper uses a fifth-order Padé
approximation [25]:

e−τds ≈
−s5 + 30 1

τd
s4 − 420 1

τ2
d

s3 + 3360 1
τ3

d
s2 − 15120 1

τ4
d

s + 30240 1
τ5

d

s5 + 30 1
τd

s4 + 420 1
τ2

d
s3 + 3360 1

τ3
d

s2 + 15120 1
τ4

d
s + 30240 1

τ5
d

(5)

Substituting the expression of e−τds into Equation (3) results in the following:

Gp
′(s) ≈ b6s6 + b5s5 + b4s4 + b3s3 + b2s2 + b1s + b0

s7 + a6s6 + a5s5 + a4s4 + a3s3 + a2s2 + a1s + a0
(6)

Due to the introduced Padé approximation, the coefficients in Equation (6) are nonlin-
ear functions of the unknown identification parameters. For instance, the coefficients of the
first and last terms of the denominator can be expressed as follows:

a6 =
2ξnmωnmτ5

d + 30τ4
d

τ5
d

, a0 =
30240ω2

nm

τ5
d

(7)

The canonical form of the state space of Equation (6) is given by:

.
x = A(θ)x + B(θ)∆q, u = C(θ)x + n (8)

where x is the state vector of the system, A(θ) is the state matrix, B(θ) is the control matrix
and C(θ) is the output matrix expressed as follows:

A(θ) =



0 1 0 · · · 0

0 0 1
. . .

...
...

. . . . . . . . . 0
0 0 · · · 0 1
−a0 −a1 −a2 · · · −a6

, B(θ) =
[
0 0 0 · · · 1

]T , C(θ) =
[
−b0 −b1 −b2 · · · −b6

]
(9)

Assuming that there is no influence of process noise, Equation (8) only contains an
additional noise term n in the output equation. Therefore, the MLE of the OES method can
be used to simplify the identification procedure. In the study of pilot model identification
in [43], it is assumed that the residual signal of the pilot response is a zero-mean Gaussian
noise, and this hypothesis was verified by experiments. Similarly, the residual signal n in
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Equation (8) is considered as a zero-mean Gaussian noise, and its mean and variance are
defined as follows:

E{n(k)} = 0, σ2
n = E

{
n(k)nT(k)

}
(10)

where n(k) is the discrete sampling time series of the residual signal n, and k = 1, · · · , m
represents the serial number, such that m is the number of sampling points.

The MLE method requires finding an estimate of the model parameter vector which
maximizes the likelihood function. The latter defines the conditional probability density
function of the prediction error:

L(θ) = f (v(1), v(2), . . . , v(k), . . . , v(m)|θ) (11)

where the prediction error v(k) is defined as the difference between the measured pilot
output signal u(k) and the PEC model output signal û(k):

v(k) = u(k)− û(k) (12)

According to the residual property defined in Equation (10), Equation (11) can be
rewritten as follows:

L(θ) =
m

∏
k=1

1√
2πσn

e
− v2(k)

2σ2
n =

(
2πσ2

n

)−m
2 e
− 1

2σ2
n

m
∑

k=1
v2(k)

(13)

It can be seen from Figure 5 that the OES requires minimizing a quadratic penalty
function related to the prediction error v(k). Hence, the penalty function is defined as
the match degree between the actual and simulated data, i.e., the difference between the
actual estimates and the parameter estimates. The OES uses an iterative search algorithm
in order to find the optimal parameter in the parameter space, and therefore minimize the
penalty function.

Figure 5. The output error structure (OES).

When applying the MLE method, the model parameter vector estimation θ̂ maximizes
the likelihood function. On the other hand, using the MLE of OES requires obtaining the
global minimum of the logarithmic likelihood function, thus simplifying it to a more direct
optimization problem. The resulting parameter vector is the maximum likelihood estimate
θ̂ML, expressed as follows:

θ̂ML = arg
θ

min{− ln(L(θ))} = arg
θ

min

{
m
2

ln(2πσ2
n) +

1
2σ2

n

m

∑
k=1

v2(k)

}
(14)
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Equation (14) summarizes the parameter estimation problem for the PEC model,
which defines a strongly nonlinear optimization problem. Similar to [39], the hybrid
gradient optimization algorithm is then used to obtain the global optimal solution of this
optimization problem.

3.2.2. Hybrid Gradient Optimization Algorithm

The traditional methods of solving the maximum likelihood minimum include the
Levenberg–Marquardt, Gauss–Newton and Newton–Raphson methods. This paper pro-
poses a hybrid gradient optimization algorithm (HGOA), which combines a genetic op-
timization algorithm and Gauss–Newton gradient optimization algorithm in order to
estimate the parameters of the PEC model, as illustrated in Figure 6.

Figure 6. The proposed HGOA.

In the absence of a priori knowledge, the HGOA firstly applies the GA for the initial
iteration, and then optimizes Equation (14) using the Gauss–Newton and simplex method
algorithms. Because a large initial error may lead to scattered parameter estimates, the
GA is used at the initial moment of the calculation in order to reduce the sensitivity of the
algorithm to the initial value. In addition, Gauss–Newton has a fast convergence speed.
However, it will produce inaccurate gradient information and lead to divergence when it
is far from the real solution. Hence, in order to enhance the robustness of the algorithm,
when the Gauss–Newton algorithm diverges, it is switched to the Nelder–Mead simplex
method in the next iteration until the Gauss–Newton algorithm converges.

Due to the inherent randomness of a GA and the search for the optimal solution in
the initial parameter vector set, the algorithm has a high probability of finding the global
optimal value of the problem [44]. The GA first requires creating an initial population, i.e.,
the initial parameter vector set. The latter is randomly selected on the upper and lower
bounds of the parameters, and it is represented by the following matrix:

Initial population =


θ1

1 θ1
2 · · · θ1

pi
θ2

1 θ2
2 · · · θ2

pi
...

... · · ·
...

θ
pj
1 θ

pj
2 · · · θ

pj
pi

 (15)
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where pi represents the number of model parameters, pj denotes the number of the param-

eter vector, element θ
pj
pi in each row represents the pi model parameter in the pj parameter

vector, and each row of the population matrix represents the gene sequence of an individual.
The GA selects the individuals with higher fitness using gene manipulation. The pop-

ulation size should be large enough for each generation in order to have a high probability
of searching for the global optimum.

The fitness of each individual in the population is assessed by the objective function
presented in Equation (14). Figure 7 shows the process of generating a new population
by applying three gene manipulations to each individual of the current population. The
detailed steps are given by:

1. Select: the fittest individuals are selected from the current population and copied to
the next generation.

2. Crossover: two individuals are randomly selected from the current population. The
position of the crossover point in the gene is randomly selected to simulate the
reproduction phenomenon in the evolution process, and therefore, the individuals
with brand-new genes are obtained.

3. Mutate: the current individual gene randomly selects the mutation point to change
with a small probability, and then produces the new individual.

Figure 7. Population reproduction process.

These steps are repeated until the termination condition is met. Because a GA uses
probability search technology, the transfer mode and relationship from one search point
to another are uncertain, which leads to inconsistent results in each iteration. Hence, the
GA cannot be used only to estimate the PEC model parameters based on test data. The
PEC model parameters estimated by the GA are very close to the global optimal solution.
Furthermore, in order to obtain an accurate parameter estimation, the solution of the GA is
used as the initial parameter estimation of the Gauss–Newton optimization algorithm. This
gradient-based optimization algorithm is a classical method for solving MLE optimization
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problems [39,41]. The iterative equation of the Gauss–Newton optimization algorithm is
given by:

θ̂(i + 1) = θ̂(i) + ∆θ̂, ∆θ̂ = −M−1
θ=θ(i)gθ=θ(i) (16)

where θ̂(i) is the iterative value of the parameter vector θ at step i, and gθ=θ(i) is the
gradient of the likelihood function relative to the model parameters which can be obtained
by calculating the Jacobian matrix of the model output relative to θ.

The derivation process is presented in Appendix A.
In addition, to prevent the Gauss–Newton optimization algorithm from diverging and

terminating the iteration, the algorithm is switched to the Nelder–Mead simplex method.
The Nelder–Mead simplex method is a multi-dimensional direct search approach for local
optimization. It adapts itself to the local landscape and contracts on to the final minimum.
It is efficient and computationally compact. Its detailed process is provided in [45].

In this study, the residual variance of the PEC model is unknown. Its estimated value
is provided in [46]:

σ̂2
n =

1
m

m

∑
k=1

v2(k) (17)

It can be seen that the variance estimate σ̂2
n is related to the model parameter vector θ.

For actual optimization, the relaxation technique is often used to optimize the objective
function shown in Equation (14). It consists in alternately estimating the variance σ2

n and
the model parameter vector θ. More precisely, a variance estimate σ̂2

n is obtained based on
a fixed model parameter vector θ, by fixing σ2

n = σ̂2
n . The variable to be optimized then

becomes θ. When the iteration step is very small, the variance estimate σ̂2
n is calculated

based on the current model parameter vector θ. Finally, these steps are repeated until the
convergence criteria are met.

4. HIL Simulation Experiment
4.1. Experimental Setup

In HIL guidance, the pilot controls the inner loop of seeker, and its dynamic character-
istics slightly change. In the parameter identification experiment of the pilot model, the
pilot tracks and compensates for the error angle of the target in the field of view. In order
to make the excitation signal have a wide frequency range and high signal-to-noise ratio,
and show a certain randomness, the excitation signal was designed as the superposition of
some sinusoidal signals [47]:

qt(t) =
N

∑
j=1

Aj sin(ωjt + ϕj) (18)

In order to fully excite the pilot’s response, the spectrum of the excitation signal should be
distributed halfway between high frequency and low frequency. Therefore, the frequency of the
sinusoidal signal was designed to be evenly distributed in ωj = 0.1 ∼ 20 rad/s, according to
the logarithmic scale. The amplitude distribution was similar to a first-order low-pass filter.

The variance of the excitation signal was defined as the integral of the square of the
sinusoidal signal amplitude. The relationship is shown in Equation (19), and the derivation
process is provided in Appendix B.

σ2{qt(t)} =
1
2

N

∑
j=1

A2
j (19)

In addition, Damveld [40] mentioned that the phase has a small effect on the ex-
perimental results and was randomly selected. The excitation signal with a number of
sinusoidal signals is shown in Figure 8. It can be seen that the maximum field angle is less
than 15 degrees.
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Figure 8. The excitation signal.

Figure 9 shows the hardware-in-the-loop simulation system and HIL experimental
flow. The dynamic simulation module was developed on the basis of embedded system
RTX, which collects the output of the handle and simulates the dynamic of the seeker
system in real-time (cf. Figure 1), with a calculation frequency of 1000 Hz. The display
module was developed using vista2D+MFC to present the LOS error angle through the
UDP communication protocol. According to the error signal, the participants manipulate
the handle to point the optical axis of the seeker to the target in order to reduce tracking
error. It can be seen from the test time axis of Figure 9 that a preparation time of 10 s was set
as the initial transient response time before the test in order to ensure that the participants
could stably track the error signal. The test was divided into two stages:

1. Training stage: the participants were trained for five rounds. The duration of each
test round was 90 s. A fade-in time of 6 s and a fade-out time of 4 s was introduced to
make the participants adapt to the task and turn into a linear control behavior.

2. Test stage: it was performed under three conditions; no delay condition (phase I),
small delay condition (phase II) and large delay condition (phase III). Phase II and
phase III displayed the field error angle with an image signal delay of τ = 250 ms and
τ = 500 ms, respectively. As in the training stage, the participants also conducted five
rounds of tests.

Figure 9. Hardware-in-the-loop simulation and experimental flow.

Six participants were selected to perform the HIL experiment. Participant A as a
“new-hand”, did not carry out the preliminary training stage, but only carried out the test
stage of five rounds. As an “old-hand”, participants B~F had five rounds of early training,



Aerospace 2023, 10, 806 13 of 28

and then five rounds of testing. During the test phase, a short rest period was provided to
prevent the participants from becoming fatigued. After each test round, the participants
were informed of their tracking score, so as to motivate them to improve their tracking
performance during the initial familiarity period and maintain a stable performance after
reaching a certain proficiency level. Mcruer [22] believes that participants need a transition
process in order to adapt to changes in the dynamics of the controlled object. During the
transition process, participants still maintain the original control mode, and then gradually
adapt to the dynamic characteristics of the controlled object, and finally complete the
compensation operation. In this experiment, the fade-in time provided sufficient time
for the participants to make their control strategy adapt to the dynamics of the changed
controlled object. That is, a delay link was added to the control loop.

4.2. Dynamic Parameter Selection

The signals of all the participants were recorded in the experiment. In order to reduce
the signal noise influence and improve the accuracy of the pilot model parameter estimation,
repeated experimental signals of all the participants were averaged. Taking “old-hand”
participant B as an example, Figure 10 shows the LOS error angle signal, output signal,
excitation signal (LOS angle) and tracking signal (optical axis space angle) for 25 s before
the test. It can be seen from Figure 10c that participant B successfully aligned the optical
axis with the target.

Figure 10. Time-domain signal for participant B.

Figure 11 presents the amplitude spectrum of all the signals of Figure 10, where the
frequency of the excitation signal shown in Figure 8a is indicated by a circle. It can be
seen that, in the whole control loop, all the signals had a high signal-to-noise ratio at the
excitation frequency, which met the requirements of the identification experiment.
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Figure 11. Amplitude spectrum of the acquisition signal for participant B.

The LOS error angle signal ∆q and pilot output signal u in Figure 10 were used to
identify the pilot model parameter vector θ =

[
Kp, τL, τd, ξnm, ωnm

]T in Equation (3). The
HGOA (cf. Figure 6) was used. The GA was iterated 100 times before the GN optimization
algorithm was used. The upper and lower bounds of the GA parameter field were set as
shown in Table 3. The lower bound of the parameter field was set to 0, while the upper
bound was set large enough to make the initial parameter field include all the possible
solutions. In the process of GA optimization, the crossover probability and mutation
probability of genes were set to 0.7 and 0.1, respectively. In order to simplify the calculation,
the initial residual variance identification value σ2

n was set to 1. After the GA iteration, the
result was used as the initial value for the GN optimization. If the iteration step of the
parameter vector, objective function and residual variance identification value were smaller
than the convergence index, the GN iterations were stopped.

Table 3. Upper and lower bounds of the GA parameter field.

Parameter Kp τL ωnm ξnm τd

Lower bound 0 0 0 0 0
Upper bound 5 5 10 1 1

GA is a search algorithm based on a probabilistic heuristic. The results of each iteration
are not exactly the same under a certain iteration step constraint. The GA identification
operation was repeated several times for the experimental results of each participant,
and the eight solutions with the smallest iteration results were substituted into the GN
algorithm for further optimization. Figure 12 shows all the iterative processes of these
eight solutions for “old-hand” participant B. It can be seen that the final values given by
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the GA are different after eight repetitions. After performing the optimization using the
GN algorithm, the same results were obtained. In other words, the value of the global
minimum logarithmic likelihood function was obtained, and the corresponding model
parameters were the identification results. Because the initial identification values of the
residual variance in the two optimization algorithms were both set to 1, the obtained
objective function values were large. Finally, the identification value of each algorithm was
obtained through the previously mentioned alternate iteration process.

Figure 12. Optimization process for participant B.

One hundred initial parameter vectors were randomly selected from the parameter
domain in Table 3. The HGOA was used for optimization. The obtained results are
presented in Figure 13, in ascending order. It can be seen that the HGOA can highly reduce
the initial value selection, and accurately converge to the global minimum.

Figure 13. Optimization results of HGOA for participant B.

The test data of all the participants were collected for 80 s in the middle of the five
rounds of the test stage. The parameter estimation value was first obtained using the MLE
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method. The global optimal solution was then determined using the HGOA, so as to obtain
the dynamic parameter vector θ. Figure 14 shows the difference in the mean value of
the frequency response obtained by participant B, after five rounds of test stage. Under
the same excitation signal and control object conditions, participant B had a very similar
frequency response in the training stage and phase I stage. This shows that participant B
had a good training effect and reached the control level of the “old-hand”. In addition,
the frequency response of participant B had clear adaptive changes to the time delay. Its
amplitude at low frequency decreased to ensure the stability margin of the seeker loop, and
it provided the lead phase to compensate for the impact of the time delay. The identification
results of all the participants are shown in Table 4. Due to the individual differences of the
participants and different control strategies, the experimental results were slightly different.

Figure 14. Frequency response for participant B.

Table 4. Results of parameter identification for different subjects.

Dynamic Parameters
New-Hand Old-Hand

A B C D E F

Kp 0.18 0.32 0.32 0.27 0.29 0.31

τL/s 0.36 0.34 0.36 0.46 0.36 0.38

ωnm/(rad·s−1) 4.33 4.78 5.09 4.78 4.82 4.79

ξnm 0.26 0.15 0.27 0.31 0.27 0.26

τd/s 0.19 0.16 0.15 0.15 0.14 0.16

Figure 15 shows the Bode diagram of the identification model for all the participants.
It can be seen that the amplitude frequency characteristics of participant A are significantly
lower than those of other participants, which resulted in a lower tracking performance.
In order to more truly and generally reflect the dynamic characteristics of the pilots, the
identification results of participants B~F were selected for further analysis.
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Figure 15. Frequency characteristics of the identified model, for all the participants.

The correlation coefficient ρuû is generally used to evaluate the accuracy of an identifi-
cation model. It can be used to represent the ability of the identification model output to
reproduce the measured output. If ρuû is close to 1, the output of the identification model
can well fit the measurement output, and the identification model can truly reflect the
dynamic characteristics of the actual object. On the other hand, if ρuû is close to 0, the
identification result is poor and the dynamic characteristics of the actual object are not
captured. ρuû is expressed as follows [48]:

ρuû =

m
∑

k=1
ε1ε2√

m
∑

k=1
ε2

1

√
m
∑

k=1
ε2

2

, ε1 = u(k)− (1/m)
m

∑
k=1

u(k), ε2 = û(k)− (1/m)
m

∑
k=1

û(k). (20)

Figure 16 shows a comparison between the measured output of participant B and
the PEC model output. It can be seen that the output of the PEC model can better fit the
measured output. Table 5 shows the ρuû values of all the participants. It can be seen that
the ρuû values of the PEC model for participants B~F are greater than 70%. Therefore, the
PEC identification model can better fit and reflect the dynamic characteristics of the pilots.

Figure 16. Comparison between the PEC model output and measurement output for participant B.
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Table 5. The ρuû values of the PEC model.

Participant B C D E F

ρuû/% 88.16 76.73 82.08 86.84 92.94

It can be seen from Figure 14 that trained pilots will adjust their control behavior
in order to adapt to the dynamic changes of the controlled object caused by time delay.
Simultaneously, it can be observed from Table 4 that differences in the identification results
of trained pilots exist. The difference of pilot dynamics in [33] is mainly reflected in the
visual perception lead time constant τL and visual perception response delay τd. Moreover,
the τd of trained pilots is usually stable at almost 0.15 s. Thus, based on the identification
results of participants B~F (cf. Table 4), the average value of Kp, ξnm, ωnm was considered
and the value range of τL, τd was given, so as to represent the different control strategies
and tracking compensation behaviors used by different pilots when facing the dynamic
changes of the controlled object caused by delay. The values of the dynamic parameter
vector θ are presented in Table 6.

Table 6. Dynamic parameter settings.

Parameter Kp τL/s ωnm/(rad·s−1) ξnm τd/s

Value 0.3 0.34~0.46 4.85 0.25 0.1~0.2

It can be seen from the Bode diagram shown in Figures 14 and 15 that the dynamic
response of the new-hand and old-hand are quite different. The dynamic response of
the new-hand trained by the simulator can be expressed by the PEC model shown in
Equation (3). When the dynamic parameters of the new-hand meet Table 6, they can be
judged to have a good operation performance and meet the conditions for becoming a
professional pilot, so as to improve the efficiency of the pilot training and screening.

Figure 17 shows the open-loop frequency response (Bode diagram) of the seeker
tracking loop, including the image signal delay, pilot link and stabilization loop. Figure 17
validates the crossing theorem proposed by McRuer. That is, in the amplitude frequency
characteristic curve, the slope at the amplitude crossover frequency is almost −20 dB/dec,
while the slope at the high-frequency input area is less than −20 dB/dec, because the
participants have an adaptive advance adjustment behavior when dealing with image
signal delay.

Figure 17. Open-loop frequency characteristics of all the man–machine systems.
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5. HIL Image Seeker Stability Analysis
5.1. Stability Domain Analysis

It can be seen from Figure 14 that participants will adjust their control behavior
according to the existence of delay and the delay length, when the LOS angle error ∆q
is displayed. For example, they will provide lead phase τL to compensate for the delay
impact, and adaptively adjust their own response delay τd, so as to improve the tracking
performance.

Therefore, it is important to clarify the influence of the variation of the typical pilot
model parameters on the stability of the image seeker under different image signal delays,
for the design of the guidance control system and improvement of guidance accuracy. The
influence of the pilot model parameters τL and τd on the stability of the seeker control
system was studied according to the image seeker control loop shown in Figure 1. The
closed-loop transfer function of the seeker stabilization loop is given by:

Φ1(s) =
K2KTGc

K2KTGcGg + KTKE + Js(Ls + R)
(21)

The dominant pole plays an important role in the transient response of the system.
Therefore, by combining the lag correction network shown in Equation (1) and the plat-
form seeker parameters shown in Table 1, Equation (21) is approximately equivalent to
the following:

Φ1(s) =
213(s2 + 427s + 2.85× 105)

(s + 313)(s2 + 166s + 1.95× 105)
≈ 1

0.0032s + 1
(22)

The open-loop transfer function of the seeker tracking loop is given by:

G(s) =
K1e−τsGp

′(s)Φ1(s)
s

(23)

The stability margin represents the relative stability of the control system, including
the amplitude margin and phase margin. The phase margin γ is expressed as follows:

γ = π+ Φ(ωc) (24)

The physical meaning of γ is that, when Φ(ωc) lags behind the γ angle, the system is
in a critical stable state, and γ = 30◦ ∼ 60◦ is generally considered.

The Nyquist stability criterion plays an important role in the frequency domain control
theory, which can obtain the stability degree of the system. Equations (25) and (26),
respectively, present the relationship between the image signal delay τ and the seeker
tracking loop open-loop gain K under the change of the visual perception lead time constant
τL, and under the change of the visual perception response delay τd, when the phase margin
is γ and according to the Nyquist stability criterion. The derivation process is provided in
Appendix C.

ω =
π/2− γ

(τ + 1.75− τL)
K ≤ ω

√
1− 0.07ω2√

1 + (τLω)2
(25)

ω =
π/2− γ

(τ + 1.2 + τd)
K ≤ ω

√
1− 0.07ω2√

1 + (0.4ω)2
(26)

The stability region of the seeker under different parameter changes of the pilot model
is shown in Figure 18. The stability region at special values is shown in Table 7. It can be
seen that the larger the phase margin γ (or the longer the image signal delay τ), the smaller
the stability region of the seeker, and therefore, the smaller the designed open-loop gain
K. This reduces the seeker speed of target tracking. In addition, the smaller the visual
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perception lead time constant τL (or the greater the visual perception response delay τd), the
smaller the stability region of the seeker, and therefore, the smaller the designed open-loop
gain K.

Figure 18. Seeker stability region when considering the PEC pilot model.

Table 7. Stability region of the seeker open-loop gain K.

τ
γ = 40◦, τd = 0.15s γ = 50◦, τd = 0.15s γ = 40◦, τL = 0.4 γ = 50◦, τL = 0.4

Visual perception lead time constant τL Visual perception response delay τd
0.34 0.4 0.46 0.34 0.4 0.46 0.1 0.15 0.2 0.1 0.15 0.2

0.1 0.56 0.58 0.59 0.45 0.47 0.49 0.60 0.58 0.56 0.48 0.47 0.45
0.2 0.53 0.54 0.56 0.43 0.44 0.45 0.56 0.54 0.53 0.45 0.44 0.43
0.3 0.50 0.51 0.53 0.40 0.41 0.43 0.53 0.51 0.50 0.43 0.41 0.40
0.4 0.47 0.48 0.50 0.38 0.39 0.40 0.50 0.48 0.47 0.40 0.39 0.38
0.5 0.45 0.46 0.47 0.36 0.37 0.38 0.47 0.46 0.45 0.38 0.37 0.36

5.2. Disturbance Rejection Rate Analysis

The DRR of the seeker is an important index that characterizes its isolation ability to
projectile disturbance. The greater the DRR, the lower the seeker’s ability to isolate the
projectile disturbance. In order to achieve the stability of the seeker optical axis in the
inertial space, the DRR should be reduced as much as possible in the seeker design. At
present, the existing research on DRR [49–54] is limited to its amplitude percentage at the
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typical frequency, without considering the influence of the pilot dynamics in a real appli-
cation. However, the DRR amplitude characteristics at different frequencies are generally
concerned with engineering applications. In addition, the amplitude characteristics of the
seeker DRR vary with the frequency change. Hence, the influence of the pilot dynamics on
the DRR amplitude characteristics at different frequencies should be clarified in engineering
applications.

The interference torque is generated by the relative rotation between the seeker frame
and the base, which is the main factor leading to the DRR of platform seeker. It mainly
includes spring torque and damping torque. The simplified model shown in Figure 19 is
used to analyze the influence of the interference torque on the DRR and output accuracy of
the seeker [49]. In the process of aircraft flight, the aircraft attitude disturbance is partially
coupled to the seeker, so that the output LOS angular velocity has an error. The seeker DRR
represents the decoupling ability of seeker to aircraft disturbance. It is defined as follows:

GGS =
∆

.
q

.
ϑ

(27)

where ∆
.
q is an additional component of the seeker output caused by projectile disturbance.

Figure 19. Linearized interference torque model.

In an aircraft guidance system, due to the existence of DRR, the seeker outputs the
wrong LOS angular velocity, which is introduced into the guidance system. It then generates
an overload instruction according to the guidance law and passes it to the autopilot. The
actuator on the aircraft deflects according to the control command, changes the aircraft
attitude, and generates the aircraft motion. The motion passes through the seeker DRR
model and causes the seeker to produce an error output. The block diagram of the platform
seeker DRR under interference torque is shown in Figure 20. Considering the pilot model,
the DRR transfer function caused by interference torque is given by:

GGS(s) =
(Ls + R)GDGgs + KEKTGgs

(Ls + R)Js2 + (Ls + R)GDs + KEKTs + K2KTGcGgs + K1K2KTGcGp
′e−τs (28)
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Figure 20. Block diagram of the platform seeker DRR under interference torque.

The parameter settings are presented in Table 8. Figure 21 shows the variation of the
DRR amplitude near projectile frequency with different signal delays. It can be seen from
Figure 21 that:

1. When the pilot dynamics are not introduced into the system, the DRR is highly affected
by the signal delay. In the vicinity of the projectile frequency, with the increase in
signal delay, the DRR amplitude increases, resulting in the reduction of the seeker’s
ability to isolate the projectile disturbance. In addition, the influence of signal delay
on the DRR decreases with the increase in the projectile frequency. Therefore, when
there is no pilot to track and compensate for the LOS error angle in the field of view,
the large signal delay will reduce the stability of the seeker’s optical axis in the inertial
space.

2. When pilot dynamics are introduced into the system, the pilot will track and com-
pensate for the LOS error angle in the field of view. The change of signal delay has a
small influence on the DRR amplitude of the seeker.

Table 8. Parameter settings.

Parameter Kω KN τL τd

Value 0.04 0.8 0.4 0.15

Figure 21. Variation of the DRR amplitude near projectile frequency.
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6. Conclusions

The proposed optimized pilot model describes more accurately the pilot’s lead com-
pensation characteristics for the image signal delay and high-frequency distribution of
operation behavior. Multi-round HIL experiments were performed based on the simulation
platform, and a wide frequency random excitation signal was designed to fully stimulate
the pilot’s response. MLE was used to identify the dynamic parameters of the PEC model.
In addition, the GA and HGOA were used to find the global optimal solution, while the
simplex method was used to improve the robustness of the algorithm, so as to solve the
nonlinear optimization problems encountered in the identification process. Moreover, the
impacts of different image signal delays on the stability and DRR of image seeker control
system were studied.

The simulation experiment shows that in the HIL tracking mode, the longer the image
signal delay, the smaller the stability region of the seeker. This results in a slower seeker
tracking speed and a larger error angle during stable tracking, which can easily cause the
target to escape from the probe field. The adaptive control behavior of the pilot compensates
for the phase lag caused by the signal delay to a certain extent. The smaller the visual
perception lead time constant τL (or the larger the visual perception response delay τd),
the smaller the stability region of the seeker, and therefore, the slower the seeker tracking
speed. When the pilot dynamics are introduced into the system, the pilot will track and
compensate for the error angle of the probe field, and the change in image signal delay
has a small impact on the DRR amplitude of the seeker. Furthermore, the optimized PEC
model and identified dynamic parameters improve the efficiency of the pilot training and
screening.
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Nomenclature

qt Line of sight (LOS) angle, rad
qs Seeker optical axis angle, rad
∆q LOS angle error, rad
ϑ Pitch angle, rad
ϕr Seeker frame angle, rad
τ Image signal time delay, s
n Residual signal
u Pilot’s output signal
K1 Operational amplifier of tracking loop
K2 Operational amplifier of stabilization loop
KT Torque constant, N·m·A−1

L Inductance, H
R Resistance, Ω
J Motor moment of inertia, kg·m2

ua Motor input voltage, V
K Open-loop gain
ωn Natural frequency of rate gyro, Hz
ξ Damping coefficient of rate gyro
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KE Back EMF constant, V/(rad·s−1)

Kg Amplitude margin, dB
γ Phase margin, degree
ωc Amplitude crossing frequency, Hz
Kp Visual perception gain of PEC model
Aj Amplitude of sinusoidal signal
ωj Frequency of sinusoidal signal
ϕj Phase of sinusoidal signal
K1 Track loop amplifier gain
Kω Damping moment coefficient
τd Visual perception response delay, s
KN Spring moment coefficient
τL Visual perception lead time constant of PEC model
τl Visual perception lag time constant of PEC model
ξnm Neuromuscular system damping of PEC model
ωnm Neuromuscular system natural frequency of PEC model, rad·s−1

j = 1,. . . ,N; N is the number of sinusoidal signals

Appendix A

gθ=θ(i) is the gradient of the likelihood function relative to the model parameters. It
can be obtained by calculating the Jacobian matrix of the model output relative to parameter
vector θ:

gθ=θ(i) =
1
σ2

n

m

∑
k=1

[[
∂(û(k, θ))

∂θ

]T
(u(k)− û(k, θ))

]
θ=θ(i)

(A1)

The Fisher information matrix can be expressed as follows:

Mθ=θ(i) =
1
σ2

n

m

∑
k=1

[
∂(u(k)− û(k, θ))

∂θ

]2

θ=θ(i)
(A2)

Equation (16) requires that M be invertible. By solving M, the Cramér–Rao Lower
Bound (CRLB) [55] can be obtained, that is, the minimum variance Jc achievable for
parameter estimation. When there are too many unknown model parameters or insufficient
information in the data, M tends to become pathological or singular, which results in a
too-large iteration step size in some directions, or is irreversible. Thus, the singular value
decomposition and inversion of M is given by:

M−1 = T



1/δ1
1/δ2

. . .
1/δks

. . .
1/δr

0
. . .

0


UT =

r

∑
ks=1

1
δks

tks uT
ks

(A3)

where tks , uks are, respectively, the ks row of matrix T and U, and δ1, . . . , δr are r singular
values of M having the following descending order:

δ1 ≥ δ2 ≥ · · · ≥ δks · · · ≥ δr (A4)
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In general, the smallest singular values contain less matrix information and lead to
a pathological or irreversible M. The criterion of eliminating the small singular values is
given by:

δks

δmax
< mε (A5)

where ε is the computational accuracy of the computer and δmax is the largest singular value.
Based on the reduced-order algorithm of matrix inversion [46], if there are η singular

values that satisfy the eliminating criterion shown in Equation (A5), the order of M−1

reduces from r to r− η.

Appendix B

The variance of the excitation signal is defined as the integral of the signal amplitude
square. It can be expressed as follows:

σ2{qt(t)} = lim
T→∞

1
2T

∫ T

−T
|qt(t)|2dt (A6)

By substituting Equation (18) into Equation (A6), the following is obtained:

σ2{qt(t)} = lim
T→∞

1
2T

∫ T

−T

∣∣∣∣∣ N

∑
j=1

Aj sin(ωjt + ϕj)

∣∣∣∣∣
2

dt =
N

∑
j=1

A2
j lim

T→∞

1
2ωjT

∫ ωjT+ϕj

−ωjT+ϕj

|sin(∂)|2d∂ (A7)

where T is the duration of the excitation signal, and ωj is the frequency of the sinusoidal signal.
When the condition ωjT = k jπ (k j ∈ N+) is satisfied, Equation (A7) can be expressed

as follows:

σ2{qt(t)} =
N

∑
j=1

A2
j lim

T→∞

k j

2ωjT

∫ π

−π
|sin(∂)|2d∂ =

N

∑
j=1

A2
j

1
2π

∫ π

−π
|sin(∂)|2d∂ =

1
2

N

∑
j=1

A2
j (A8)

Note that Equation (A8) is the derivation process of Equation (19).

Appendix C

According to Table 6, by setting the parameters to τd = 0.15, τL = 0.34, 0.4, 0.46, the
open-loop transfer function of the image seeker tracking loop is given by:

G1(s) =
K(τLs + 1)e−(τ+0.15)s

s(0.04s2 + 0.1s + 1)
(A9)

where the open-loop gain is K= 0.3K1.
Equation (A9) is written in the plural form:

G1(jω) ≈
K
√

1 + (τLω)2

ω
√

1− 0.07ω2
e−j(Φ1ω+γ+π

2 ) =
K
√

1 + (τLω)2

ω
√

1− 0.07ω2
[− sin(Φ1ω + γ)− j cos(Φ1ω + γ)] (A10)

where Φ1ω = (τ + 0.15)ω + arctan(ω−4.84
1.25 ) + arctan(ω+4.84

1.25 )− arctan(τLω).
According to the Nyquist stability criterion, the stability condition is given by:{

L(ω) = |G1(jω)| ≤ 1
ϕ(ω) = −π (A11)

By substituting Equation (A10) into Equation (A11), the following is obtained: K
√

1+(τLω)2

ω
√

1−0.07ω2 ≤ 1

(τ + 0.15)ω + arctan(ω−4.84
1.25 ) + arctan(ω+4.84

1.25 )− arctan(τLω) = π
2 − γ

(A12)
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Assuming that the ballistic variation of the air-to-ground aircraft and anti-tank aircraft
studied in this paper is small, and the frequency of the seeker input signal is low (i.e., ω is
small), then: {

arctan(ω±4.84
1.25 ) ≈ ω±4.84

1.25
arctan(τLω) ≈ τLω

(A13)

Hence, the relationship between image signal delay τ and seeker tracking loop open-
loop gain K, under the change of visual perception lead time constant τL, is expressed as
Equation (25).

According to Table 6, the parameters are set to τL = 0.4, τd= 0.1, 0.15, 0.2. Similarly,
the relationship between image signal delay τ and seeker tracking loop open-loop gain K,
under the change of visual perception response delay τd, is expressed as Equation (26).
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