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Abstract: The research effort in the microcombustor field has recently increased due to the demand
for high-performance systems in microelectromechanical and micro power generation devices. To
address rising concerns about pollutants from fossil sources, zero-carbon fuels such as hydrogen
(H2) and ammonia (NH3) have been considered as an alternative in microcombustion processes.
In a microcombustor, the surface area-to-volume ratio is much higher compared to conventional
combustion systems, resulting in faster heat transfer rates and more intense combustion reactions.
However, achieving efficient mixing of fuel and an oxidizer in a microcombustor can be challenging
due to its small size, particularly for highly reactive fuels like H2. For NH3, challenges in micro-
combustion involve a low reactive, high ignition temperature (923 K vs. 793 K of H2) and high
concentration of NOx combustion products. Therefore, studying the performance of these fuels in
microcombustors is important for developing clean energy technologies. In this paper, to explore
features of non-premixed NH3/air and H2/air combustion in micro-scale combustors, an Ansys
Fluent numerical investigation was conducted on a Y-shaped microcombustor. Results show that for
combustion with H2, stationary flames can be achieved even at lower equivalence ratios. Additionally,
the pollutants generated from H2 in the flame are generally twice those of NH3. The overall efficiency
of the microcombustor is two times greater for NH3 conditions than for H2 conditions.

Keywords: microcombustor; flow control; thermal performance enhancement; H2; pollutant
emissions; NH3

1. Introduction
1.1. Background

The 17 Sustainable Development Goals (SDGs) outlined for 2030 emphasize the im-
portance of improving the performances of microthermal energy conversion devices [1].
Combustion-based microdevices have revolutionized the field of energy conversion in the
past 30 years due to their high energy density, low weight, compact size, and long lifes-
pan [2–9]. These devices not only offer energy benefits but also have significant economic
and social implications. Microcombustors are essential components in compact energy sys-
tems, such as micro-thermophotovoltaic [9–11] and micro-thermoelectric systems [12,13].
In these applications, the main challenge is to achieve the highest possible temperature
difference between the inlet and outlet to reach wall temperatures between 1300 and
1800 K [14]. The microscale power generation length scale is typically defined as being
below 1 mm [15]. The microcombustion technology revolution has led to systems that are
lighter and smaller and have higher energy density [1,16]. It has been widely adopted in
various engineering power systems such as micro rotor engines and turbines [17,18]. The
high area-to-volume ratio and short mixture residence time make maintaining a stable
flame in micro burner systems a challenging task [19–22].
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The study of flame stability is crucial in numerous fields including energy production,
propulsion systems, and safety engineering. The stability of flames is influenced by var-
ious factors including heat and flow recirculation, which have been shown by multiple
researchers to have a significant impact. Addressing flame stability challenges requires
innovative approaches, including exploring new mixing configurations and implementing
advanced thermal management strategies [23,24].

Conducting experimental microcombustion research is complex, time-consuming,
and expensive, which is why significant computational effort is invested in numerical
modeling to reduce the need for experimental validation and final design phases [25].
Micro-Electro-Mechanic Systems (MEMSs) are a promising alternative to a combustion
device, but their effectiveness is hindered by various challenges such as batteries’ short
life, recharging time, and energy density [26]. Currently, the best battery performances
achieve 0.5 kJ/g [27], which is 300 times less than hydrogen and leads to reduced resources
and cost [28]. Short battery life and long recharging times are other persistent issues with
conventional batteries.

1.2. Literature Review

The impact of geometry on microcombustion applications is a highly relevant topic
today, as evidenced by numerous studies [29]. Variations in geometry can greatly influence
thermophysical properties such as heat conduction and residence time in the combustion
chamber, affecting the device performances. For instance, Peng et al. [30] conducted nu-
merical simulations to explore the effects of reducing wall thickness in hydrogen–air
combustion to improve the flame area and wall temperature. They simulated a pre-
mixed H2-air combustion in the microcombustors with different backward-facing steps and
wall thicknesses.

Another crucial aspect that has recently been investigated is the impact of increased
thermal conductivity on the combustion area, as discussed in [31]. The researchers stud-
ied three catalytic microcombustors made of various materials. They compared their
experimental results with those obtained from CFD simulations and observed that the
performance of each material varied.

Improved flame stability can be achieved through better control of thermal energy
loss, resulting in a higher inlet mass flow rate, increased maximum temperature, and
improved combustion performance. Effective flame recirculation and thermal manage-
ment in microcombustors can also enhance residence time and stabilize the flame [32,33].
Recently, Resende et al. [34] analyzed the flame dynamics of a H2/air mixture in a wavy
micro-channel. Their results showed that at low inlet velocity (4 m/s), the flame became
stable, and, at higher inlet velocities, the flame showed pulsatory burst dynamics.

Despite hydrogen’s advantages, there are still challenges associated with its storage,
distribution, and infrastructure. NH3 potential as an alternative fuel stems from its H2-
rich composition and the absence of carbon, which makes it an attractive option in the
pursuit of reducing greenhouse gas emissions (GHGs) [35–37]. Microcombustion has
serious heat loss due to the large ratio of surface area to volume. This leads to some
unwanted characteristics such as a narrow blow-out limit. NH3 has relatively low flame
propagation speed and chemical activity compared to other hydrocarbon fuels. Therefore,
the combustion condition for NH3 is demanding especially in a microcombustor. This
work compares the flame behavior of a H2-air and NH3/air mixture for combustion in a
Y-shaped microcombustor.

The effects of using the mixture of NH3/air are discussed in terms of emissions and
combustion efficiency compared to the H2 condition.

Within the present work, authors start from their previous studies [38] to develop
a numerical model is developed in a Chemkin environment to study the combustion
evolution for the mixture in a non-premixed microcombustor. The Chemkin model is
used to validate the laminar burning velocity (LBV). Secondly, the developed scheme of
chemical equations developed in Chemkin that considers all the species provided from
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the combustion process is exported to steady-state CFD simulations that use a continuum
Navier–Stokes approach. The validity of the model is confirmed by comparing simulation
results with experimental data in the case of H2. The simulations are performed using
Ansys Fluent 2023 [39].

There are only a few studies on microcombustion fueled with NH3 and several studies
using methane (CH4) or H2, also in a blend, as fuel. Due to the diverse conversion pathways
of NH3 combustion, different oxides will be generated depending on the fuel. This leads to
changes in energy conversion efficiency. The main goal of the study proposed here is to
underline the effects of different zero-carbon fuels in a microcombustor on the improvement
in thermal performances and on environmental impact of these kinds of fuels.

Utilizing a numerical CFD approach, the paper carries out a step beyond the present
knowledge of the thermo-chemical processes distinguishing a microcombustor based on
new technology, as it investigates fundamental features that are strongly related to the
inefficiency of the heat thermal exchange in the energy conversion process.

2. Materials and Method
2.1. Geometric Features of the Microcombustor

The present study investigates a specific model geometry, featuring a Y-shaped com-
bustion chamber of 200 mm in length with a 90-degree angle and two inlet channels
for the considered fuel (hydrogen and ammonia) and dry air, as previously described
by Xiang et al., 2020 [40], Xang et al., 2021 [41]. The combustion chamber walls are
made of 1-mm-thick quartz glass, and the pressure and temperature are set to 1 atm and
300 K, respectively.

2.2. Modelling Combustion and Kinetic Mechanism Details

The CFD software Fluent 2023 [39] is employed to address the core equations repre-
senting conservation of mass, momentum, energy, and chemical species within the fluid,
leveraging a second-order upwind scheme. This methodology is reputed for its enhanced
accuracy and stability when simulating fluid flows exhibiting strong gradients and discon-
tinuities. A coupled algorithm, recognized as a pressure–velocity coupling technique, is
utilized in the simulation. This technique embodies a linkage between velocity and pressure
corrections to uphold mass conservation and deduce the pressure field, accompanied by a
second-order pressure spatial discretization. Gradients are ascertained utilizing the least
squares cell-based scheme. Convergence in the simulation is inferred when the residuals for
all parameters fall below 10−4 and the average temperature and the mass fractions of main
combustion products are constant. A three-dimensional (3D) steady model is adopted, and
the impact of gravity is disregarded. The fundamental governing equations for heat and
mass transfer are presented. A segregated solution solver coupled with a sub-relaxation
method is employed.

∂ρ

∂t
+

∂(ρui)

∂xi
= 0 (1)

∂(ρuj)

∂t
+

∂(ρuiuj − τij)

∂xi
=

∂p
∂xj

(2)

∂(ρh)
∂t

+
∂(ρuih)

∂xi
=

∂(λ∂Tf )

∂t
− ∑ j

∂(hj Jj)

∂xi
+ ∑ jhjRj (3)

∂(ρYi)

∂t
+

ρuiYi
∂xi

=
∂Ji
∂xi

− Ri (4)

where ρ is the gas density, p is the pressure, u is the velocity, τij is the stress tensor, h is
total enthalpy, Ji is the diffusion flux of species i, Yi is the mass fraction of species, T is the
temperature, Rj is the net rate of production of species j through chemical reaction i, λ is
the thermal conductivity. The effects of convection and radiation (P1 model) on the heat
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losses are computed considering Equation (5). An ideal gas flow model is adopted with a
mixing law, cp.

.
Qloss = h0 A(Tw − T0) + εσA(T4

w − T4
0 ) (5)

A numerical model is proposed in this study to analyze combustion chemical effects.
The combustion mechanism proposed by Mei et al. [42] was modified and validated. This
mechanism incorporates the base H2 mechanism from Hashemi et al. [43] and the NH3
sub-mechanism from Shrestha et al. [44] and includes reactions of excited species, such as
O2(a1∆g) and O(1D), introduced by Konnov [45].

2.3. Validation of Laminar Burning Velocity Using CHEMKIN

To investigate the flame speed of NH3/air and H2/air mixtures, numerical simu-
lations with different mechanisms were performed using CHEMKIN [46]. A premixed
laminar flame speed reactor (PLFSR) calculation module was used in this work to predict
laminar burning velocities (LBVs). All the simulations were converged to a grid-indepen-
dent solution.

The experimental results reported by Mei et al. [42], Ronney [47], and Lhuillier et al. [48],
as well as the simulation results reported by Han et al. [49], San Diego et al. [50], Mathieu
and Petersen [51], and Li et al. [52], were utilized to validate the updated version of the
NH3/air combustion mechanism by correlating the LBVs of NH3/air flame at various
equivalence ratios as shown in Figure 1. This figure illustrates that, under lean, stoichio-
metric, and slightly rich (<1.2) conditions, the current mechanism demonstrated good
agreement with the experimental results of Mei [42] and Ronney [47]. However, there are
slight deviations on the rich side because of the low LBV values of NH3/air mixtures.
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Figure 1. LBV of NH3/air flame at standard conditions (T = 298 K and p = 1 atm). Symbols
signify the experiment data and lines show the simulated findings of the current model and prior
models [42,47–52].

The validation of the H2/air combustion mechanism was achieved by establishing a
correlation between the LBV experimental data reported by Burke et al. [53], Pareja et al. [54],
and Taylor [55] as well as simulation results reported by Alekseev et al. [56] and Kon-
nov et al. [45] at a temperature of 298 K and a pressure of 1 atm across a range of different
equivalence ratios, as depicted in Figure 2. In this case, the predicted values using the
chosen mechanism are in good agreement with experimental data as well.
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Figure 2. LBV of H2/air flames at standard conditions (T = 298 K, p = 1 atm). Symbols signify the
experiment data and lines show the simulated findings of the current model and prior models [45,53–56].

The findings of these studies demonstrate that the ammonia/air mixture’s LBV peaks
at Φ = 1.1–1.15, whereas the hydrogen/air mixture’s LBV peak value is approximately
Φ = 1.50–1.70, 40 times greater than the ammonia/air mixture.

2.4. Computational Domain and Boundary Conditions

Two separate channels are used for the fueling of fuel and air. One channel is for pure
H2 or NH3 and the other channel is for air. Both channels represent the inlet conditions
with constant flow rates and an inlet temperature of 300 K. A pressure–outlet boundary
condition of 1 atm is set at the outlet. The wall is modeled as a no-slip wall with heat
transfer to the surroundings accounted for by adopting mixed thermal conditions that
include a heat transfer coefficient of 20 W/m2K. The specific quartz glass specific heat
capacity and thermal conductivity are 750 J/kgK and 2 W/mK [57]. A direct comparison
between H2 and NH3 as fuels was conducted, setting a mixture velocity of 6 m/s for H2
and different Φ from lean blow-out to 1. For NH3, mass flow rates were computed based
on a different Lower Heating Value (LHV), ensuring an equivalent heat of the reaction
source for each fuel type at the same Φ. Tables 1 and 2 report the inlet velocity value for
every considered case.

Table 1. Velocity boundary conditions for H2.

Heat of Reaction Source (W) Φ VH2 (m/s) Vair (m/s)

15.2 0.5 1 5
17.6 0.6 1.16 4.83
19.9 0.7 1.31 4.69
22.1 0.8 1.46 4.54
24.1 0.9 1.59 4.41
26.4 1 1.72 4.28

Table 2. Inlet velocity magnitude boundary conditions for NH3.

Heat of Reaction Source (W) Φ VNH3 (m/s) Vair (m/s)

17.6 0.6 0.873 6.06
19.9 0.7 0.98 5.81
22.1 0.8 1.09 5.67
24.1 0.9 1.17 5.49
26.4 1 1.29 5.33



Aerospace 2024, 11, 12 6 of 14

Mesh is realized using hexahedral cells, except for the confluence zone, where pris-
matic cells are used (Figure 3).
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Figure 3. Discretization in the mixing zone.

To ensure the grid independence, the simulation results were compared at v = 6 m/s,
the H2 case condition with three different grids. To reduce computational times without
having any substantial effect on results, the inlet length has been reduced by 100 mm. Three
different mesh resolutions, 140,000, 175,000, and 237,000 cells, were compared. The Grid
Convergence Index (GCI) for three meshes has been computed [58]. This process allowed
us to ascertain the discretization error associated with the numerical solution, improving
the overall accuracy and reliability of the models. Refinement was applied in the mixing
chamber with r = 1.5. It is known that the relative error for a function f is equal to

ε =

∣∣∣∣ f2 − f1

f2

∣∣∣∣ (6)

P = ln(
f3 − f2

f2 − f1
)/ln(r) (7)

GCI =
fs ε

rP − 1
(8)

f ∗ =
rP f3 − f 2

rP − 1
(9)

The safety factor was equal to 1.25. Temperature values are displayed in Table 3 at
x = 9 mm, y = 0, and z = 0.785 for H2-air combustion, velocity being equal to 6 m/s and Φ
equal to 1.

Table 3. Temperature values at x = 9 mm, y = 0, and z = 0.785.

Temperature (K)

Refined Mesh 2359.8

Middle Mesh 2349.9

Coarse Mesh 2328.4

GCI for 1/2 mesh was 0.2% while for 2/3 mesh, it was 0.5%. Moreover, the extrapo-
lated f* value was computed with Equation (9) and the predicted value is equal to 2362 K.
Thus, the middle mesh has only a 0.5% error, inside the 5% confidence. Figure 4 presents the
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temperature profiles along the centerline, emphasizing the consistency of our results across
different mesh sizes and underscoring the accuracy of our grid independence verification.
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2.5. Validation of 3D Model

The simulation results were compared to experimental data for an unburned mixture
velocity of 6 m/s and various values for Φ ranging from 0.5 to 1. However, for Φ values
lower than 0.6, the simulations did not exhibit a stable flame, and this lack of stability
is consistent with the findings in the experimental data. There is no specific numerical
parameter available to directly define the chemical flame length and facilitate a direct
comparison with the experimental visible flame length. However, correlations between
the flame and the mole fraction of OH distribution have been established. Nevertheless,
in this study, a promising correlation is observed between the distribution of the heat of
reactions and the flame length. By using a threshold of 1 W/m3, meaningful insights
can be gained from the relationship between the heat of reactions and flame length. This
correlation proves to be valuable in understanding the combustion process within the
microcombustor. Figure 5 shows the trend of the heat of the reaction correlated with
the flame length identified from the experimental data [41]. Despite some discrepancies,
such as the data point at 0.9, the overall trend of the function can be considered in good
agreement with the experimental data for the simulation.
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3. Results

Considering that variations in Φ can lead to changes in inlet velocity, it is expected that
these changes will significantly impact the circulation flow field and subsequently reduce
temperature, ultimately affecting the formation of NO. Therefore, we assessed the impact of
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several critical parameters on NO formation by varying the fuel-oxidizer Φ within a range
of 0.5 to 1.0 with an equivalent provided power volumetric flow rate. A direct comparison
between H2 and NH3 as fuels was conducted following the boundary conditions displayed
in Tables 1 and 2. As anticipated, experimental results indicate that for H2 fuel, a flame
is present when the Φ is greater than 0.5. On the other hand, for NH3 fuel, the minimum
Φ required for flame ignition is 0.7. The curves for ammonia are shifted downstream in
comparison to those for hydrogen (see Figure 6).
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This is due to the lower laminar burning velocity of ammonia in comparison to H2 and
HC fuels, which makes it more difficult to sustain. This is due to the lower laminar burning
velocity of ammonia in comparison to hydrogen and hydrocarbon fuels, which makes it
more difficult to sustain a flame at lower equivalence ratios. Due to different Reynolds
and fuel chemistry, ammonia flames move toward the outlet, becoming a flame at lower
equivalence ratios. Due to different Reynolds and fuel chemistry, ammonia flames move
toward the outlet. Figure 7 shows temperature centerlines for different equivalence ratio
values at the same source of power of 26 W and 19.9. At Φ = 1, the maximum temperature
of ammonia/air flames is about 200 K lower than that of H2/air flames at the same Φ.
The flame temperature is mostly affected by the specific heat of combustion and the flame
speed. As the flame temperature and specific heat of combustion are quite higher for H2,
the flame temperature is higher. The variation in the Φ demonstrates distinct behaviors
between H2 and NH3 in combustion scenarios. As the Φ varies, the peak temperature of
H2 exhibits a significant increase, while the peak temperature of NH3 remains relatively
stable. The effect of Φ on NH3 is more pronounced in the extension of the flame region at
temperatures exceeding 1800 K, as evident from Figure 7.
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In the simulations of NH3 combustion conducted, it was observed that higher equiva-
lence ratios resulted in lower levels of nitrogen oxides (NOx) (Figure 8).
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This can be attributed to several factors inherent in the combustion dynamics of NH3.
Enhanced combustion efficiency in ammonia combustion processes at elevated equiva-
lence ratios plays a pivotal role in mitigating NOx emissions. This is primarily because
higher equivalence ratios facilitate a more complete combustion of the fuel, predominantly
yielding water and nitrogen. Consequently, this reduces the incidence of partial combus-
tion, a process that typically leads to the formation of NOx. Therefore, the modulation of
equivalence ratios in ammonia combustion emerges as a critical parameter in curtailing the
generation of nitrogen oxides, aligning with environmental directives and sustainability
goals. On the other hand, one important NO production route from the combustion of
nitrogen-free fuels in air, such as hydrogen, is the thermal-NO mechanism, usually referred
to as the extended Zel’dovich mechanism [59], which is favored at high temperatures.
So, the mole fraction of the NO value is two times that of the ammonia/air combustion
(Figure 8b). The symmetry plane contours of the different species produced at ϕ = 0.9 are
presented for the symmetry plane predicted in the case of the NH3/air mixture. In Figure 9,
the temperature symmetry plane field is provided.
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NH3 burning decreases both flame temperature (Figure 9a,b) and the concentration
of the light radicals, as OH, relative to H2, (Figure 10a,b) which negatively impacts the
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NH3 flame reactivity, and thus flame burning velocity. Hence, the NH3 flame is shifted
forward compared to that of H2. This information is reflected in both the NO concentration
and the concentration of water vapor produced through combustion in both cases (see
Figure 11a,b). A high concentration of NO is found to be associated with excess oxygen
(O2) atoms and OH radicals. This is the reason why NO concentrations are lower for NH3
at higher equivalence ratios. OH primarily reacts with NH3 through H abstraction. Other
secondary consumption steps include reactions with H and O, with NH2 being the common
product. Oxidation of NHi (i = 0, 1, 2) may primarily lead to NO formation through an
HNO intermediate or to NO reduction through NHi + NO reactions, depending on the
concentration of O/H radicals. The abundance of O/H radicals leads to the conversion of
NHi + O and may inhibit the reduction of NO by NHi radicals. Furthermore, the HNO
intermediate channel is also a main NO production path in NH3/air flames. HNO is mainly
due to the reaction of NH2 with O atoms. HNO is converted to NO mostly reacting with H,
OH, and O2, and through thermal dissociation.
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Microcombustor Efficiency Evaluation

The efficiency of the system is calculated as the ratio of the enthalpy increase be-
tween the inlet and outlet to the total input thermal power, which encompasses the out-
put chemical power from the complete combustion of fuel considered (see Equation (4)).
Equation (11) is used to calculate the fuel conversion efficiency, denoted as η f , which serves
as an indicator of whether complete combustion has been achieved in the chamber wall.

ηc =

.
mexit cp Texit −

.
minlet cp Tinlet

.
m f LHV f

(10)

η f = 1 −
.

m f outlet
.

m f inlet
(11)

Table 4 illustrates the combustion efficiency, revealing that the overall efficiency of the
microcombustor is higher under NH3 fueling conditions compared to hydrogen conditions.
In all the configurations examined, whether using NH3 or H2 as fuels, we consistently
observe nearly complete combustion. This is evident in the fuel conversion efficiency
consistently exceeding 99%. A crucial factor contributing to this high efficiency is the
system’s geometry.

Table 4. Microcombustor predicted efficiencies and heat losses through the walls.

Φ ηfNH3 ηfH2 ηcNH3 ηcH2

.
QNH3

(W)
.

QH2
(W)

0.7 99.5% 99.9% 19.4% 9.6% −16.5 −17.4
0.8 99.9% 99.9% 18.1% 9.3% −18.5 −19.9
0.9 99.9% 99.9% 16.9% 8.8% −20.1 −20.6
1 99.8% 99.5% 16.5% 8.4% −23.2 −24.0

This design promotes more effective mixing of the fuel with the oxidizer and ensures
an ample residence time for the combustion process to reach completion.

NH3 has a lower LHV, specifically 18.6 MJ for NH3 compared to 190 MJ for H2. So,
the combustion efficiency is greater mainly because of the forward shift of the flame, which
results in lower heat losses.

It is important to emphasize that in this study, the comparison was made at equal
equivalence ratios and supplied power, but the mixture mass flow rates are different and
significantly higher for NH3, thus making the efficiency comparison useful but in need of a
further in-depth analysis.

Higher equivalence ratios correspond to lower efficiencies due to significant chamber
wall losses: in fact, even though the thermal power input increases, the wall losses grow
more significantly, resulting in a decrease in combustion efficiency. Equation (5) results, as
presented in Table 4, depict the heat losses through the walls for each case. The notably
higher diffusivity of H2 significantly amplifies the mixture’s thermal diffusivity, leading to
a more rapid spread of heat and enhanced heat transfer to the combustion chamber walls.
This phenomenon is clearly illustrated in Figure 7, where the temperature of H2 decreases.

Additionally, an essential factor influencing the heat transfer process is the role of
radiation. In the combustion of hydrogen, a larger amount of water vapor is produced
compared to NH3 combustion. This increase in water vapor results in heightened radiation,
contributing to the observed greater wall losses in H2 combustion.

4. Conclusions

A Y-shaped microcombustor designed for eco-friendly fuels is analyzed in this research.
Due to their distinct attributes, microcombustors exhibit different combustion dynam-

ics for H2 and NH3 when compared to larger-scale combustion apparatuses.
Numerical simulations developed in an Ansys Fluent environment investigate the

NOx emission behaviors considering the impact of the flow field.
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A 3D CFD computational framework incorporating intricate chemical–kinetic mech-
anisms is crafted and authenticated through juxtaposition with existing experimental
findings from the literature.

The outcomes demonstrate the influence of the different fuels on the generated species,
emissions, and the microcombustor efficiency.

Thermal performance alongside NOx generation processes is assessed under scenarios
of NH2/air and H2/air mixtures, with a steady flow velocity of 6 m/s and varying equiv-
alence ratios. The NOx formation in the microcombustor follows the mechanism of NOx
following the temperature distribution in agreement with the Zeldovich theory.

Specifically, with H2 combustion, stable flames are attainable even at reduced equiva-
lence ratios, leading to elevated flame temperatures and pollutant emissions.

The microcombustor-predicted efficiencies and heat losses through the walls are
evaluated and discussed.

This research could represent an important tool in the microcombustor field, and thus
in MEMS devices, which are a current research topic deeply investigated in these past
few years.
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