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Abstract: Laser micro-thrust technology is a type of propulsion that uses a laser beam to ablate a
propellant such as a metal or plastic. The ablated material is expelled out the back of the spacecraft,
generating thrust. The technology has the advantages of high control precision, high thrust–power
ratios, and excellent performances, and it has played an important role in the field of micro-propulsion.
In this study, a solid propellant laser micro-thruster was developed and then applied for the attitude
control of satellites during on-orbit tests. The micro-thruster had a volume of 0.5 U, a weight of
440 g, and a thrust range of 10 µN–0.6 mN. The propellant, 87% glycidyl azide polymer (GAP) + 10%
ammonium perchlorate (AP) + 3% carbon nano-powder, was supplied via a double-layer belt, and
the average power was less than 10 W. We present the development of the laser micro-thruster, as
well as the results regarding the thruster propulsion performance. The thruster was launched into
orbit on 27 February 2022 with the Chuangxin Leishen Satellite developed by Spacety. The on-orbit
test of the thruster for satellite attitude control was carried out. The thruster was successfully fired
in space and played an obvious role in the attitude control of the satellite. The experimental results
show that the thrust is about 315 µN.

Keywords: laser micro-thruster; micro- and nano-satellites; thrust; on-orbit test; attitude control

1. Introduction

In recent years, satellites have gradually developed toward miniaturization and in-
tegration. Micro- and nano-satellites have small sizes and low manufacturing costs [1]
and are suitable for mass production and application. Hence, they are playing an in-
creasingly important role in many fields [2,3]. However, the development of satellite
propulsion technology has greatly lagged behind other technologies used in micro- and
nano-satellites. With the increase in demand for orbit maintenance, formation networking,
and maneuvering of micro- and nano-satellites, there has been more and more attention on
the development of propulsion technologies for attitude and orbit control.

Micro- and nano-satellites require precise, controllable, and continuous thrust output
in order to achieve orbit change [4], attitude control [5], and rapid maneuvering [6]. Laser
micro-thrust technology is an important type of propulsion technology. The principle of
laser micro-thrust technology is that a laser beam from the thruster ablates the propellant,
and the ablated material is ejected to generate propulsion. Laser micro-thrust technology
has high specific impulses, high control precision, and low power consumption [7–10] and
has, thus, attracted extensive attention.

Research on laser micro-propulsion technology emerged in the 1990s. Phipps et al. [11,12]
first proposed the concept of laser ablation micro-propulsion. With the development of theory
and method, a large number of laser micro-propulsion experiments using metals, non-metals,
and polymers have been carried out, which have improved our understanding of the technology.
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There have been more and more studies on practical engineering applications of laser micro-
thrusters. The laser micro-thruster designed by Phipps’s team [13,14] went through seven
iterations from 2002 to 2008, and the performance was gradually improved. Moreover, various
laser micro-thrusters that operated at the ms, µs, and ns scales were designed and tested, yet so
far, there have been no reports of on-orbit applications of these micro-thrusters.

In 2005, Koizumi et al. [15] invented a dual-mode laser micro-thruster that operated
via ablation mode and ignition mode. The propellant used in the ablation mode was
customized polyvinyl chloride PVC + 5% carbon powder. By changing the laser pulse
width, the impulse of a single pulse could be precisely controlled between 1 and 40 µN·s.
In the ignition mode, the propellant used was the potassium boron nitrate series propellant
B/KNO3, and a single pulse could generate an average impulse of 11 mN·s. This dual-
mode design enabled the laser micro-thruster to achieve thrusts in a range spanning four
orders of magnitude (0.1 µN–10 mN).

On 23 January 2009, Japan simultaneously launched seven satellites, one of which,
named KKS-1, is equipped with a laser micro-thruster [16]. The satellite has a weight
of 3.1 kg and a volume of 1.5 U. It uses a dual-mode design to achieve propulsion, and
laser micro-thruster and flywheels are used for three-axis satellite attitude control. The
thruster uses a semiconductor laser with a wavelength of 808 nm. Due to a malfunction of
the on-board CPU, resulting in a communication interruption, the experiment of attitude
control was not carried out.

Baumanets Moscow State Technical University (BMSTU) proposed the “Baumanets-2”
program in 2010, and the laser micro-thruster LDU-7 is the important test load of the
satellite. The LDU-7 laser micro-thruster has dimensions of 162 × 88 × 76 mm, a mass of
0.9 kg, and a design life of 1 year. It is powered through a 12 or 27 V on-board power supply.
The propellant of LDU-7 is polytetrafluoroethylene doped with carbon powder, which is
irradiated with light by a 10 W fiber-coupled semiconductor laser with a wavelength of
808 nm and a spot diameter of 300 µm. The total designed impulse of LDU-7 is 4 N·s, the
impulse of a single pulse can be changed by adjusting the laser power density and pulse
width, and the minimum impulse is 10−6 N·s. The maximum working frequency is 100 Hz.
With a 10 W power consumption and 50 ms pulse width, the average thrust is about 4 mN,
and the impulse coupling coefficient is 4 × 10−4 N/W. The “Baumanets-2” satellite was
launched on 28 November 2017 on board the Soyuz 2.1B rocket [17]. Unfortunately, the
satellites carried by the Soyuz 2.1B rocket crashed into the Atlantic Ocean due to the failure
of the rocket’s Fregat upper stage after reaching the 196 km apogee non-closed orbit [18].

On 27 July 2022, a laser micro-propulsion system designed by Cai et al. [19] was
successfully launched into orbit. The thrusters are used for ultra-precise orbit and attitude
control. However, there has been no report on the performance of the thruster so far. In the
past two decades, the field of laser micro-propulsion and its engineering applications have
seen great development. Many teams have attempted on-orbit tests. However, there is still
no successful on-orbit verification of laser micro-thrusters.

In this study, we developed a laser micro-thruster with a solid propellant. The thruster,
named SLP-1K, uses multiple semiconductor lasers. Propulsion is achieved through ab-
lation of the multi-layer solid propellant. It was launched into orbit by the Long March 8
carrier rocket at the Wenchang Space Launch Site in China on 27 February 2022, on board
the TY22 Chuangxin Leishen satellite. The orbital altitude was 500 km. After entering
orbit, the performance of SLP-1K was tested on-orbit in September 2022, and we obtained
on-orbit test data of the laser micro-thruster for the first time, which demonstrated the
feasibility of the laser micro-thruster for attitude control of micro- and nano-satellites.

2. Development of SLP-1K
2.1. Design

The SLP-1K laser micro-thruster is primarily composed of three parts: a laser source
and optical components for shaping and focusing; storage and supply systems for the
propellant; and electronic components for control and energy supply. The operation is
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as follows: The satellite platform sends signals, and the thruster’s control unit receives
them. Then, the control unit sends signals to the laser components and the propellant
supply system such that the propellant is translated at a specific speed, enabling a stable
ablation process. SLP-1K uses laser beams emitted by laser diodes with fiber output to
irradiate the strip-shaped thin-film energetic solid propellant, and the laser ablation plume
is ejected from the surface of the target at a high speed, thereby achieving propulsion. By
changing the ablation frequency (the laser pulse frequency), different thrust levels can then
be achieved.

The volume of SLP-1K is 0.5 U (100 mm × 100 mm × 50 mm), and the weight is 440 g.
The thruster is shown in Figure 1. The schematic depicting the diode laser configuration,
propellant feed system, power processing unit, and controller are shown in Figure 2. The
operating temperature of the thruster is −25 to 50 ◦C, the storage temperature is −50 to
80 ◦C, and the expected life of the satellite is 1 year.
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Figure 2. Details of the thruster: (a) power processing unit and controller, (b) diode laser configuration,
and (c) propellant feed system.

SLP-1K uses laser diodes to ablate the solid propellant. The thrust contains a total
of eight lasers. The laser beam is coupled with the optical fiber through the FC interface
which is at the end of each diode laser. A fiber-coupled output of eight-diode-laser array is
designed in order to achieve a high ablation effect. Each fiber-coupled output is arranged
side by side, and the distance between them is 714 µm. The maximum output power of
a single diode laser is 10 W; the wavelength is 940 nm; the output fiber core diameter is
105 µm; the numerical aperture is 0.22; and the power density of the focused spot is more
than 105 W/cm2. The laser can work at 100 µs~1 ms pulse width, and the highest pulse
frequency is 50 Hz.
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The ablation mode is used by SLP-1K, and the propellant is delivered using a belt with
two layers. The bottom layer is a transparent base made of polyethylene terephthalate (PET)
with good light transmittance (95%), high tensile strength, and high temperature resistance.
The component of the ablative layer is mainly GAP (87%) with 10% AP in order to achieve
an oxygen balance and 3% carbon nano-powder to improve the laser absorption rate of
the propellant. The initial thickness of the PET layer was about 100 µm, and that of the
ablative layer was about 200 µm. Once the laser ablates the top layer, the ablated material
was blocked by the transparent layer and ejected out. This design avoids the contamination
of optical devices. To make the belt, plasma was first used to treat the PET, and then a
GAP solution was applied to the PET. Plasma processing effectively increases the binding
force and avoids peeling due to ablation, thereby producing a stable impulse [20]. Figure 3
shows a schematic diagram of the double-layer belt.
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2.2. Propulsion Performance of Thruster
2.2.1. Measuring Equipment and Principles

The propulsion performance of a micro-thruster is usually characterized by the size,
accuracy, and dynamic adjustability of the thrust. In this study, the impulse and average
thrust were measured based on the torsional pendulum method. The measurement of the
thrust was carried out using a customized platform (Figure 4). The platform was designed
based on the torsional pendulum principle. It was composed of a test platform, beam,
thruster, and signal acquisition and storage unit. The 12 V battery was attached to the
beam, and wireless communication was used to avoid external interference. Under the
action of thrust and impulse, the beam rotates around the shaft, and the flexural pivot at
both ends of the shaft generate a restoring moment. By measuring the swing displacement
of the beam, the thrust can be calculated.
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A single-pulse laser ablates the material on the torsional pendulum. After the propel-
lant is ablated, gasification and ionization occur, and jets are formed to generate a reaction
force, thereby pushing the torsional pendulum to move to a certain angle. A second-order
equation results in damped vibrations. Then, the displacement sensor is used to record
the relative position of the torsional pendulum at a high sampling rate. The magnitude
of the single impulse is then calculated based on the difference between the maximum
displacement and the equilibrium position of the pendulum.

During laser ablation, the torsional pendulum is mainly subject to two moments, a
restoring moment from the pivot and a rotational moment from the ejection of the ablated
materials. It is assumed that J is the moment of inertia of the entire system, c is the damping
coefficient, k is the stiffness coefficient of the pivot, and θ is the deflection angle; then the
angular velocity is

.
θ, the angular acceleration is

..
θ, and d is the distance between the laser

spot and the center of the pivot. The external force at time t is f (t). T0 is the action time of
the external force. Then, the motion of the pendulum is expressed as{

J
..
θ + c

.
θ + kθ = f (t)d 0 < t < T0

J
..
θ + c

.
θ + kθ = 0 t > T0

(1)

This can be changed to

..
θ + 2ξωn

.
θ + ω2

nθ = f (t)d/J 0 < t < T0

ωn =
√

k
J ξ = c

2
√

kJ

(2)

where ξ is the damping ratio of the torsional pendulum system, and ωn is the natural
oscillation frequency.

When measuring impulse, it is assumed that the impulse is instantly loaded. In this
case, the laser pulse width needs to be less than 1/12.8 of the pendulum’s oscillation period
to allow for accurate measurement (the relative error is less than 1%) [21]. The typical
torsion period is about 8 s, and the pulse thrust loading time is not more than 0.625 s,
which can be considered as instantaneous impulse coupling. At this point, the dynamic
equation for the impact of instantaneous coupled pulse impulse Iδ(t) (where δ(t) is the
Dirac distribution function) on a torsional pendulum is

..
θ + 2ξωn

.
θ + ω2

nθ = Iδ(t)d/J (3)

The solution of the equation is

θ(t) =
Id

Jωd
e−ξωnt sin ωdt (4)

where ωd =
√

1 − ξ2ωn is the actual vibration frequency.
According to Equation (4), the deflection angle θ is a function of time. To obtain the

single impulse, the constants d, ωd, J, and ξ are needed. Taking the derivative of this
equation, the maximum value of the deflection angle of the torsion pendulum is

θmax =
Id

Jωn
e
− ξ√

1−ξ2 arctan
√

1−ξ2
ξ (5)

By applying standard force and calibrating the parameters of the torsion pendulum, the
obtained result is d = 0.3915 ± 0.0001 m, k = 0.191 ± 0.001 Nm/rad, J = 0.308 ± 0.006 kg·m2,
ξ = 0.179 ± 0.002. Specifically, due to the small damping ratio, the exponential term of e is
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approximately 1, which means the influence of the damping ratio can be ignored. Then,
the relationship between the maximum torsion angle and the single impulse is rewritten as

θmax =
Id

Jωn
(6)

Obviously, the maximum amplitude position reached by the first oscillation of a
torsion pendulum after being subjected to instantaneous impulse corresponds to θmax.
In the actual measurement process, the small angle assumption is used to convert angle
measurement into linear displacement measurement at a certain measuring point, and
then combined with the calibrated torsion pendulum parameters, the impulse is measured.
According to the standard deviation transfer relationship of various calibration parameters,
it can be determined that the uncertainty of the impulse measurement range of the torsion
pendulum is better than 95% in the range of 10 µN·s~500 µN·s.

When measuring thrust, it is considered as the steady-state average thrust. In this
case, the torsion pendulum is subjected to a constant force F, which can be regarded as the
superposition of a series of pulse excitations, and the system response under the constant
force can be obtained through the principle of linear superposition. Within a small time
interval of t = τ to τ + dτ, the pulse impulse generated by constant force is Fdτ. According
to the superposition principle of linear systems, it can be obtained that the response of the
system under constant force F is equal to the sum of the pulse responses of the system
within 0 ≤ τ ≤ t. That is to say,

θ(t) =
∫ t

0 dIh(t − τ)Fdτ

= dF
k

(
1 − 1

k
√

1−ξ2
e−ζωnt sin(ωdt + ϕ)

)
(7)

where h(t) is the impulse response function,

tan ϕ =
√

1 − ξ2/ξ (8)

When time approaches infinity, the steady-state response under constant force can be
simplified as

lim
t→∞

θ(t) = θ(∞) =
dF
k

(9)

After obtaining the steady-state system response under constant force through mea-
surement, the magnitude of the applied constant force can be obtained according to the
above equation.

F =
kθ(∞)

d
(10)

Similarly, under the assumption of small angles, the relationship between the line
displacement P can be obtained from a line displacement measurement point with a
distance of l from the axis of rotation, and the deflection angle is P = θ(∞)l. Therefore,
based on the calibration results of the torsion pendulum parameters, the magnitude of the
measured thrust can be calculated by measuring the swing line displacement at a certain
measuring point on the torsion pendulum (l set to 0.5 m).

The thrust F is calculated as follows:

F =
k
dl

P (11)

Since d, l, and k are all constants, the linear relationship between the thrust F and the
linear displacement P can be determined. The range of the thrust measurement platform
was 2 µN~350 µN, and the measurement accuracy was higher than 97%.
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2.2.2. Thrust Performance of the Laser Micro-Thruster

In order to verify the accuracy and repeatability of the thruster impulse, the total
impulse under different pulse numbers is measured. The total impulse of the thruster
changes with the number of pulses, as shown in Figure 5. The pulse width of the laser is set
to 900 µs. As the number of laser pulses increases from 10 to 30, the total impulse increases
from 31.44 µN·s to 100.74 µN·s. Through linear fitting, it can be seen that the total impulse
is approximately linear with the change in the number of pulses.
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The pulse width of the laser has great influence on the performance of the thruster.
The total impulse of the thruster varies with the pulse width of the laser, as shown in
Figure 6, where the number of pulses is set to 20. It can be seen that as the laser pulse width
increases from 100 µs to 900 µs, the total impulse increases approximately linearly from
58.52 µN·s to 72.24 µN·s.
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Table 1 shows the power consumption parameters of the thruster in four different
modes. From the results, it can be observed that with the increase in the thrust, the thrust–
power ratio gradually increased. A maximum thrust–power ratio of 45.82 µN/W was
reached under a thrust of 300 µN.
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Table 1. Performance of SLP-1K under four modes.

Thrust (µN) Total Power Consumption (W) Thrust–Power Ratio (µN/W)

10 2.07 4.84

150 3.95 37.96

200 5.02 39.88

300 6.55 45.82

3. Mechanical Tests

Assessment of the environmental adaptability of SLP-1K is essential for a successful
mission. In order to test the reliability, stability, and adaptability of the laser micro-thruster
in the space environment, we carried out relevant assessments in this study.

3.1. Mechanical Tests

The purpose of the mechanical test was to evaluate the structural strength of SLP-
1K and the reliability of the components. In order to prevent damage to the thruster, a
customized fixture was designed, and then the thruster and the fixture were placed on the
vibration test bench. The range of frequencies in the test was at the qualification level, i.e.,
the highest level of mechanical testing. The test conditions are shown in Tables 2–4.

Table 2. Sinusoidal vibration test.

Frequency Range
Vibration Amplitude

Qualification Level

10~20 Hz 10 mm (0–P)

20~100 Hz 16 g

Scan rate 2 oct/min

Loading direction Three axial directions

Table 3. Random vibration test.

Frequency Range
Power Spectral Density

Qualification Level

10~100 Hz +6 dB/oct

100~800 Hz
800~2000 Hz

0.25 g2/Hz
−15 dB/oct

Total RMS 2 oct/min

Loading time 2 min

Loading direction Three axial directions

Table 4. Shock response test (Q = 10).

Frequency Range Qualification Level

100~600 Hz +6 dB/oct

600~4000 Hz 1000 g

Loading time 2 times

Loading direction Three axial directions

3.2. Low-Pressure Discharge Test

Low-pressure discharges; corona and arc discharge phenomena; or high-voltage micro-
discharges can occur in the components at the power-on stage of the active section and the
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initial orbital phase. The test pressure changed from normal ambient pressure to 1.3 Pa
gradually; the laboratory ambient temperature was 23–24 ◦C; and the humidity was 33–38%
RH. The half cycle time was 10 min, and three tests were performed. It was found that
there were no abnormal phenomena, such as arc discharges and coronas.

3.3. Vacuum Thermal Cycling Test

To verify the adaptability of SLP-1K to high and low temperatures under vacuum
conditions, a vacuum thermal cycling test was carried out, and the laser output capability
was verified. The thermal cycling test conditions were as follows: The ambient pressure
was less than 1.3 × 10−3 Pa, and the temperature was −20 ◦C to +100 ◦C. The temperature
was cycled three times from room temperature to +50 ◦C and then three times from room
temperature to +80 ◦C. Finally, a temperature limit test was carried out. Specifically, the
temperature was first lowered to −20 ◦C, and then the temperature gradually rose to
100 ◦C. Each temperature level was held for 2 h in each cycle. The temperature sensor was
placed on the external surface of the component to ensure that the measured value was the
temperature of the component.

3.4. Electromagnetic Compatibility Test

The conduction emission of the power input of the whole thruster was measured. In
order to detect whether the electric field emission from the laser micro-thruster exceeded
the specified requirements, the laser micro-thruster was placed on a platform in a shielded
dark room. At a distance of 1 m from the device being tested, a source rod antenna, biconical
antenna, and double-ridge horn antenna were set up. The two polarization modes of the
antennas were measured above 30 MHz, and the field radiation was monitored.

It was found that the conduction emission amplitude of the power input and power
return line of the laser micro-thruster was lower than the limit, and the thruster passed the
CE102 power line conduction emission test. In the electric field radiation emission test, the
laser micro-thruster had an over-standard point in the 10 kHz–30 MHz frequency band.
The over-standard frequency was 622.5 kHz, and the amplitude was 45.15 dBuV/m, which
was 3.23 dBuV/m above the limit. The over-frequency phenomenon could be avoided by
wrapping the thruster with a shielding layer.

4. On-Orbit Test of SLP-1K

Figure 7 shows the TY22 Chuangxin Leishen satellite. It has a volume of 6 U and a
weight of 10 kg. The SLP-1K micro-thruster was used as a test load and installed at one
end of the satellite to facilitate attitude control. The red circle showed the location of the
thruster. The X-axis moment of the thruster was 9.5 µN·m.
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In this study, the satellite body and flywheel were considered to be one body, and the
angular momentum was conserved when there were no external moments. The spatial
disturbance moment and the angular momentum produced by other rotatable parts on
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the satellite were all external moments for the satellite–flywheel system. In the inertial
mode, the three angular velocities of the satellite were kept at 0, and the effect of external
moments on the satellite–flywheel system could be reflected by changing the rotational
speed of the flywheel.

The possible external moments in the test included the spatial disturbance moments
(aerodynamic moments, solar pressure moments, gravity gradient moments, and geomag-
netic moments), moments generated by the rotor of the laser micro-thruster, and moments
generated due to the moment arm of the thrust axis relative to the spacecraft CG. The first
step of the test was to determine the spatial disturbance moment of the satellite in the
inertial mode, that is, to measure the change in the rotational speed of the flywheel when
the laser micro-thruster was not operating.

The conversion between the rotational speed and angular momentum is described as
follows. Suppose the rotational speed is

[
x y z s

]T . The flywheel installation matrix

(direction cosine matrix) is C =

xx’
xy’
xz’

yx’
yy’
yz’

zx’
zy’
zz’

sx’
sy’
sz’

, representing the positional

relationship between the flywheel and the satellite. The angular momentum of the four
flywheels in the satellite coordinate system Hwheel is calculated as follows:

Hwheel = C × [x y z s]T × Iwheel × (2π/60) (12)

xspeed, yspeed, zspeed, and sspeed are the rotational speeds of the flywheels along the x, y,
z, and s axes, respectively, and C is the installation matrix of the flywheel:

C =

−1
0
0

0
1
0

0
0
1

−0.57729
0.57729
0.57729


Iwheel is the moment of inertia of the flywheel, which is 0.000006095 kg·m2.
The formula for the angular momentum of the satellite Hsat is as follows:

Hsat = Isat × [wx wy wz]
T (13)

where Isat is the moment of inertia of the satellite; and ωx, ωy, and ωz are the angular
velocities of the satellite relative to the inertial system; and the moment of inertia of the
satellite is

Isat =

 0.183687
−0.000552
0.000058

−0.000552
0.389528
0.004162

0.000058
0.004162
0.463517


The angular momentum of the flywheel–satellite system H_total is as follows:

Htotal = Hwheel + Hsat (14)

The relationship between the moment and angular momentum is as follows:

M =
dH
dt

(15)

where M is the moment, H is the angular momentum, and t is time. Equation (11) shows
whole star when the laser micro-thruster is operating into the above formula, and the ex
that the derivative of the angular momentum with respect to time is the sum of external
moments of the flywheel–satellite system. The angular momentum of the flywheel–nano-
satellite system can be obtained by inserting the flywheel speed and the angular velocity of
the nano-satellite when the laser micro-thruster is operating into the above formula, and
the external moment of the system can be obtained by deriving the angular momentum
with respect to time.
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Figure 8 shows the rotational speeds of the x-axis flywheels. Figure 8a shows the
rotational speeds of the flywheels when SLP-1K was not operating, and Figure 8b shows
the speeds of the flywheels after SLP-1K was turned on. From the two graphs, it can be
found that when the thruster was off, there were some oscillation changes in the flywheel
speed, and the slope change in its average value is slight. The reason for the slight change
is perhaps attributed to the spatial disturbance moments. When the thruster was turned
on, the rotational speeds of the flywheels changed significantly, indicating a significant
effect of the thruster. The total angular momentum of the system can be further obtained
according to the speed of the flywheel, as shown in Figure 9. The thrust outputs were
calculated based on the fitting coefficients. The x-axis thrust was about 315 µN. From the
experimental results, it can be seen that the average thrust of the laser micro-thruster on
orbits was higher than that of the ground experiments. The possible reason is the additional
torque produced by the thruster. When the laser thruster is working, the rotations of the
driving wheel and the driven one, which are used in the propellant feed system, bring some
additional torques. Those torques will increase the attitude changes besides the net thrust
produced by the thruster, eventually leading to a larger on-orbit thrust. However, in the
ground test, the torsion pendulum system was used to measure the thrust perpendicular to
the nozzle direction of the thruster, so the rotation torques in the thruster did not affect its
thrust value. Therefore, the on-orbit thrust is higher than the ground one.
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The flywheel used by the satellite has a deviation of about 100 rpm near the 0 speed,
so there may be some errors in the test results. However, through on-orbit attitude control
tests of the micro-nano-satellite, we evaluated the capability of the laser micro-thruster for
satellite attitude control and proved the applicability of the new technology and devices in
the laser micro-thruster. In future work, we will carry out further on-orbit tests to evaluate
the abilities of the laser micro-thruster in various scenarios, such as scenarios with long
flight durations and large maneuvers. In addition, our team synchronously promoted the
laser micro-thruster to carry out technical verification of orbit control capabilities with other
micro- and nano-satellites, and related tasks are in the process of implementation.

5. Conclusions

In this paper, we presented the details of the SLP-1K laser micro-thruster, including the
structural design, system composition, operating principle, and performance evaluation.
The single impulse and average thrust of SLP-1K were measured based on ground measure-
ment data. Then, it was launched into orbit to verify the actual on-orbit performance, and
the actual on-orbit thrust of SLP-1K was obtained, which verified the feasibility of the laser
micro-thruster for attitude control of micro- and nano-satellites. In conclusion, the SLP-1K
laser micro-thruster developed in this study was the first to obtain on-orbit flight data; the
results and performance data are of great significance for the field of micro-propulsion. The
design, research and development process, and on-orbit test methods provide a reference
for future development of laser micro-thrusters.
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