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Abstract: Wingtip vortices generated from aircraft wingtips, as a result of the pressure differential
at the wingtip, constitute a major component of the total drag force, especially during take-off and
landing. In addition to the drag issue, these vortices also pose a significant hazard to smaller aircraft
flying in the wake of the larger airplane. The wingtip vortices play a crucial role in aerodynamic
efficiency, fuel consumption, flight range, and aircraft stability. This paper presents an overview
of the volume of work conducted over the past six decades to encapsulate the phenomena and the
techniques devised to mitigate the wingtip vortices. It is shown that the aerodynamic efficiency of
the examined wingtip devices ranges from 1% to 15%, depending on the type of wingtips and the
flight conditions. Furthermore, it is pointed out that the decrease in fuel consumption ranges from
3.4% to 10%, and the reduction in the induced drag ranges from 5% to 20%.
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1. Introduction

Vortices are circular patterns of spinning fluid, and they are generated when an
aerodynamic surface with a large span, like the wing of an airplane or the blade of a
chopper, moves in a fluid to produce lift. As these vortices often form close to the tips
of the lifting surface, they are called wing vortices, wingtip vortices, or trailing vortices.
The vortices are characterized by high vorticity levels, extensive areas of strongly spinning
fluid, and substantial persistence downstream of the surface. The same characteristics
may also prevail in vortices generated from other applications. Thus, a thorough physical
understanding is necessary to lead to a range of applications. A comprehensive review is
performed in this article, focusing on the fluid dynamics of wingtip vortices in the near
field.

1.1. Wingtip Vortices and Their formation

As a byproduct of lift generation, higher pressure below the wing induces the flow
to curl about the wingtip in the low-pressure region on the upper surface. The process
forms a flow of helical structure known as a wingtip vortex that entrains the wing wake
and propagates downstream, as shown in Figure 1. A vortex flow is typically considered
a region in a fluid in which the gradient or curl of the velocity components provides
vorticity magnitudes and directions, indicating a spiral flow [1–3]. Wingtip vortices have
an impact on the flight operations of aircraft because of the development of induced drag
and turbulence [4]. It is well known that wingtip vortices impact the pressure field near the
wing tip where the lifting surface terminates in the fluid [5]. In other words, when the wing
generates lift, a net circulation around the wing and in the downstream flow is essentially
inevitable [6–8].
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Figure 1. Wingtip vortices from an airplane during landing [9]. 

1.2. Role of Wingtip Vortices in Aerodynamics 
Wingtip vortices alter the trajectory of the fluid flow in the wake [10–12]. The dy-

namic behavior of the wingtip not only affects the induced drag forces on the wing [13–
15] but also creates an undesirable flow structure in the wake of the wing. Researchers 
have studied this phenomenon with a view to reducing its adverse effects on aircraft 
safety, fuel consumption, and the structural integrity of aircraft wings. The effects of wing-
tip vortices on aerodynamic performance are well known in many applications, such as 
in aeronautical, marine, agricultural, industrial, and environmental science [16,17]. The 
resultant wingtip vortices, for instance, prolong the durations of take-off, flying, and land-
ing. Moreover, they cause a non-uniform, inhomogeneous flow paĴern in the downstream 
flow when agricultural spraying is performed using an airplane [18]. In marine engineer-
ing, wingtip vortices initiate cavitation on the surface of the blades and cause detrimental 
vibrations [17]. Similarly, vortices are also generated from the finite structures [19–21]. 
The noise generation and energy losses are other demerits of wingtip vortices [22–24]. 
Engineers and scientists have, for many years, been dedicated to discovering methods to 
alleviate the detrimental impacts of these vortices across a broad spectrum of applications. 
In the natural world, creatures like owls alter their wingtip feathers in a manner that ef-
fectively suppresses wingtip vortices and the accompanying noise [25–28]. 

1.3. Control of Wingtip Vortices 
The phenomenon of wingtip vortices has captivated researchers for many decades in 

their aĴempts to minimize their harmful effects. Researchers have made extensive exper-
imental and theoretical studies [29–35] as well as numerical investigations [29,35–41] to 
understand the characteristics of wing tip vortices. To mitigate the adverse effect of wing-
tip vorticities, many wingtip devices have been proposed over the years with varying de-
grees of success. Some of the claimed benefits of these devices are summed up in the fol-
lowing points: 
1. Reduced fuel consumption [42]; 
2. Increased flight range [43,44]; 
3. Reduced take-off field length [44]; 
4. Increased cruise speed and altitude [45]; 
5. Reduced take-off noise [46,47]; 
6. Increased aircraft stability [48]; 
7. Improved runway throughput by mitigating wake turbulence and allowing for closer 

aircraft spacing [49]. 

Figure 1. Wingtip vortices from an airplane during landing [9].

1.2. Role of Wingtip Vortices in Aerodynamics

Wingtip vortices alter the trajectory of the fluid flow in the wake [10–12]. The dynamic
behavior of the wingtip not only affects the induced drag forces on the wing [13–15] but
also creates an undesirable flow structure in the wake of the wing. Researchers have
studied this phenomenon with a view to reducing its adverse effects on aircraft safety, fuel
consumption, and the structural integrity of aircraft wings. The effects of wingtip vortices
on aerodynamic performance are well known in many applications, such as in aeronautical,
marine, agricultural, industrial, and environmental science [16,17]. The resultant wingtip
vortices, for instance, prolong the durations of take-off, flying, and landing. Moreover,
they cause a non-uniform, inhomogeneous flow pattern in the downstream flow when
agricultural spraying is performed using an airplane [18]. In marine engineering, wingtip
vortices initiate cavitation on the surface of the blades and cause detrimental vibrations [17].
Similarly, vortices are also generated from the finite structures [19–21]. The noise generation
and energy losses are other demerits of wingtip vortices [22–24]. Engineers and scientists
have, for many years, been dedicated to discovering methods to alleviate the detrimental
impacts of these vortices across a broad spectrum of applications. In the natural world,
creatures like owls alter their wingtip feathers in a manner that effectively suppresses
wingtip vortices and the accompanying noise [25–28].

1.3. Control of Wingtip Vortices

The phenomenon of wingtip vortices has captivated researchers for many decades
in their attempts to minimize their harmful effects. Researchers have made extensive
experimental and theoretical studies [29–35] as well as numerical investigations [29,35–41]
to understand the characteristics of wing tip vortices. To mitigate the adverse effect of
wingtip vorticities, many wingtip devices have been proposed over the years with varying
degrees of success. Some of the claimed benefits of these devices are summed up in the
following points:

1. Reduced fuel consumption [42];
2. Increased flight range [43,44];
3. Reduced take-off field length [44];
4. Increased cruise speed and altitude [45];
5. Reduced take-off noise [46,47];
6. Increased aircraft stability [48];
7. Improved runway throughput by mitigating wake turbulence and allowing for closer

aircraft spacing [49].

2. History of Wingtip Devices and Some Commercial Applications

A winglet is a device with an airfoil profile affixed to the wing tip that deflects the
wingtip vortex away from the lift-producing surface of the wing. Wingtip, on the other
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hand, is a more general term that refers to any device attached to the wing at its tip. The
two terms are sometimes used interchangeably. The use of these devices increases the
effective wingspan without making the wings longer. This effect leads to an increase in the
left and a reduction in the induced drag but at the expense of increasing the form drag and
the aircraft weight. Therefore, if the device is not carefully designed, the increases in the
form drag and weight could cancel out any possible improvement in wing efficiency.

The use of wingtip devices to mitigate the adverse effects of wingtip vortices dates
back to the 1800s. Lanchester, in 1897, as a pioneer in this field, came up with what
is considered the first attempt to use such devices [50]. Based on his theoretical and
experimental work, he proposed the use of a wing endplate to reduce wing drag under
high lift conditions (Figure 2a). Unfortunately, the reduction in drag was not realized under
other flight conditions. The endplate’s success in reducing the induced drag was offset
by the increase in friction and interference drag. It soon became obvious that, to reduce
these two forms of drag, the wingtip device must have a better aerodynamic shape. In
1952, Sighard Hoerner designed a wingtip that became known as the Hoerner tip [51]
(see Figure 2b). Despite the relative success of the Hoerner tip on small aircraft, a significant
improvement in drag reduction was not made until the invention of Whitcomb’s winglet
device in 1974 [52]. A detailed geometry of Whitcomb’s device can be seen in Figure 3a.
The winglet, through a series of wind tunnel tests, showed a reduction in induced drag
by 20% and an improvement in the lift-to-drag ratio CL/CD of 9% [50]. One of the first
commercial airplanes to use Whitcomb’s winglets was the Learjet 28 in 1977 [53,54], as
shown in Figure 3b.
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The introduction of the winglet on the Learjet 28 led to a 26% reduction in cruise fuel
consumption in comparison to an older model of the same size at the same payload/speed
combination. The modifications also improved take-off and landing performance [53]. In
recent years, further variants of winglets have been introduced, including fence wingtips,
blended wingtips, canted winglets, and raked winglets (Figure 4). Boeing was one of the
first airlines to incorporate winglets into one of their major commercial aircraft, the 747-400.
The addition of the winglet resulted in a 3% increase in flying range [50]. Aviation Partners
Boeing showed a clear improvement in flight range and payload as a result of retrofitting
the Boeing 737-800 with winglets [55].
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3. Survey of Various Types of Wingtip Devices

In general, wingtip devices can be divided into two categories as shown in Figure 5.
Passive devices involve affixing add-on attachments to the wingtip to alter the flow struc-
ture around the edge of the wing in such a way that it can reduce the strength of the vortices
generated from the wingtip. All the devices mentioned in the previous section fall under
this category. Other examples of the passive category reported in the literature include
porous wingtips [57,58], ducted wingtips [59], delta wingtips, spiroid winglets [60], slotted
wingtips [61], etc.

Figure 6 shows some variations of winglets and wingtip devices reported in the
literature. Active devices require an energy source to modify the flow field at the wingtip.
Examples of such devices are synthetic jets, plasma actuators, oscillating winglets, etc. In
the following sections, we review the research conducted on the main types of wingtip
devices and highlight the conclusions drawn at the end of the discussion.
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3.1. Passive Wingtip Devices

In this section, passive wingtip devices are listed and the features of each one are
explained in detail.

3.1.1. Endplates

As mentioned above, the endplate was first introduced in 1897 by Fredrick W. Lanch-
ester. Since then, several attempts have been made to investigate the effect of endplates
on wing performance. Beves et al. [63] carried out an experimental study on the effect
of a rectangular endplate (95 mm × 45 mm) mounted on an inverted Tyrrell026 airfoil
with a chord length of 0.075 m at a chord-based Reynolds number Rec = 0.5 × 105. They
found that the rectangular endplates inhibit spillage flow at the wingtip, thus maintaining
a pressure difference between the upper and lower surfaces. When endplates were used,
they found that the lift generated was higher and the drag caused by the lift was less. The
effect becomes stronger as the lift load increases.

Jung et al. [64] conducted a numerical study on the effect of the endplate on wing
performance and vortex structure. They found that the tip vortex moved laterally away
from the wing tip when the endplate was used in comparison with the baseline wing, as
shown in Figure 7. This led to a 46% increase in CL/CD and a reduction in the induced drag
as well as the total drag. It is important to point out that this improvement of the lift-to-drag
ratio occurs at the lowest ground clearance during landing and take-off, a phenomenon
known as the wing-in-ground (WIG) effect. The substantial in increase in lift-to-drag ratio
during this instant is predominately attributed to the increase in lift and is not necessarily
accompanied by a reduction in drag. For this reason, it is emphasized that the reported
46% improvement in the lift-to-drag ratio would not necessarily translate to a proportional
increase in the flight range.
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Gehlert et al. [65] conducted experimental investigations using multi-scale endplates
attached to half-wing NACA0012. The results showed that the endplate produced weaker,
less coherent vortices which, in turn, resulted in improving the maximum CL/CD by up
to 11%. Park et al. [66] conducted a similar numerical investigation on a low-aspect-ratio
wing based on the ground effect. They found that the extension of the endplate below the
wingtip prevented the escape of the high-pressure air from the bottom surface of the wing,
leading to an increase in the lift and reducing the induced drag without an appreciable
effect on the total drag.

Wei et al. [67] numerically investigated the influence of a tilted endplate on the performance
of wing-in-ground (WIG) crafts at Rec = 6 × 106, solving the incompressible Reynolds-averaged
Navier–Stokes equations with the realizable k-ε turbulence model. The study showed that the
wingtip vortex structure can be controlled favorably by changing the angle of the endplate in
WIG and out-of-ground effect (OGE) flight conditions. It has been noticed that, at a high title
angle of the endplate, the wingtip vorticity is forced to shift downward, hence increasing the lift
and reducing the induced drag under the ground effect. This provided an improvement in the
aerodynamic and economic performance of WIG crafts.
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3.1.2. Hoerner-Style Tip

As mentioned in Section 2, in 1952, Sighard Hoerner designed a wingtip device that
became commonly known as the ‘Hoerner tip’ [51]. His design was successful in redirecting
the core of the wing tip vortex away from the upper surface of the wing. As a result, the
wingtip vortex weakened, and the CL/CD enhanced. It has been reported by Met-Co-Aire,
a leading manufacturer of wingtips, that the Hoerner tip results in a 1–2% increase in flight
range without additional fuel cost [68]. It further reduces the take-off distance, yielding
a 10–20% quicker take-off time. A few other advantages were reported such as increased
cruise speed and the enhanced overall stability of the aircraft. The Hoerner tip, however, is
not without disadvantages. The effectiveness of the device deteriorates at high speeds due
to the spillover of the vortex onto the lifting surface. The device is thus more suitable for
small aircraft than for large aircraft. For the latter case, winglets are a more viable option.

3.1.3. Half Delta Wingtip (HDW)

Lee et al. [69] employed a NACA 0012 model modified with different configurations
of a half-delta wing (HDW) as shown in Figure 8 at Rec = 2.81 × 105. They found that the
presence of the HDW causes a significant reduction in axil core velocity with respect to the
free stream velocity when compared with the baseline wing as depicted in Figure 9. The
reduction in axil core velocity led to an increase in lift and a reduction in the induced drag.
By introducing the HDW, Lee and Pereira [69] succeeded in increasing the magnitude lift
coefficient from 0.85 to 0.95, a 10% increase in comparison with the baseline wing. However,
the results showed that the dynamic stall of the modified wing with a half-delta wing
(HDW) occurs at a smaller angle of attack (α ≈ 15◦) compared to that (α ≈ 16◦) of the
baseline wing (BW).
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Later, Lu et al. [70] used regular (HDW) and reversed half-delta (HRDW) wingtips
to reduce the lift-induced drag during take-off and landing. Their experiments were con-
ducted on the NACA 0012 semi-wing model in a subsonic wind tunnel at Rec = 2.81 × 105.
Two configurations of half-delta wingtips were used in their study, each with different
variations in the dimensions, namely, s and cr. The letters U and b refer to the upstream
air velocity and the length of the wing span, respectively. The results showed that these
wingtips result in various degrees of reduction in the tip vortices, which, subsequently,
led to a reduction in the lift-induced drag and an increase in the lift. These improvements
were attributed to the generation of counterrotating secondary vortices in the vicinity of
the ground.

3.1.4. Porous Wingtips

Porous wingtips were investigated by several researchers to determine their effective-
ness in reducing the induced drag and improving the aerodynamic efficiency of the wings.
Porous wingtips are made by drilling through holes in the wing’s outermost section to
bleed air from the pressure surface to the suction surface. Early attempts to experiment
with porous wingtips date back to the late 1960s by McCormick et al. [4] and Smith [71].
They showed that adding porous wingtips can significantly increase the core size of the
trailing vortices and reduce the tangential velocities.

Scheimm et al. [72], at Rec = 2.6 × 106, carried out wind-tunnel investigations on four
different configurations of wingtips, including a porous wingtip. The porous wingtip was
realized by affixing a porous plate to the wing tip and aligning it along the wing core. The
aim was to study the effect of the wingtips on the characteristics of tip vorticity. The results
showed that the porous wingtip caused the area outside the core to be more turbulent but
had no effect on shifting the core of the vortices when compared with a plain tip.

Gharbia et al. [57] experimented on a rectangular wing of a NACA66-209 profile with
a porous wingtip attached. The used wingtip had 4% porosity which was distributed over
an area with a length of 0.6c measured from the trailing edge and a width of 6% of the span
measured from the wing edge. The wingtip utilized in the study was created by perforating
small through-holes within a region extending 0.6 times the chord length from the trailing
edge and spanning a width of 6% of the wing’s total span from the wing’s edge. These
drilled holes collectively resulted in a porosity of 4%. The findings indicated a 14% decrease
in vorticity strength and a 1.5% enhancement in the CL/CD ratio at moderate angles of
attack. The percentage of porosity, the number and sizes of the holes, and the angle at
which the holes are drilled can all influence the performance of the porous wingtips, and,
hence, they need to be optimized for the best outcome.

Zhang et al. [58], at Rec = 2.5 × 104–2.25 × 105, conducted experiments on porous
wingtips with a percentage of porosity ranging from 13% to 50%. The porosities were made
by drilling holes of different sizes on two NACA profiles (NACA 0012 and NACA 6412) as
shown in Figure 10. Inspired by silent owl wings, they focused on acoustic measurements
to investigate the effect of the porous wingtips on reducing the noise level.
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3.1.5. Slotted/Serrated Wingtip

Zhang et al. [58] investigated the effect of using serrated wingtips on the level of noise
caused by wingtip vortices. This idea was inspired by the silent flight of owls, which
is a result of a combination of a few factors [28], one of which is their ability to orient
their wingtips into a comb-like shape, as shown in Figure 11. Zhang et al. [58] tested
serrated wingtips attached to NACA0012 and NACA4612 at Rec = 2.5 × 104–2.25 × 105 and
α = −10◦–20◦. Despite the useful acoustic data collected, no clear conclusion was drawn
about the effectiveness of the serrated wingtips in reducing the noise level in comparison
with the baseline case.

Delich et al. [73] studied the effect of a slotted wingtip on induced drag, parasite
drag, and vortex structure at Rec = 2.5 × 105 and α = −15◦–18◦. Different configurations
of slotted wingtips were attached to the NACA 0012 wing with an aspect ratio of 4. The
results showed that, compared to the solid winglet, slotted winglets typically have a
7.6–14% higher lift coefficient with a penalty of 8–14% induced drag.

Liu et al. [74] reviewed previous studies of birds’ slotted wingtips and proposed some
interesting insights into wingtip vortices. The authors cited a study conducted by Tuker on
Harris hawks with clipped and unclipped (slotted) wingtips flying freely inside a wind
tunnel. The study revealed that the slotted wingtips had a drag reduction of about 70–90%.
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3.1.6. Fenced Wingtip

Wingtip fences are made up of two surfaces that extend both above and below the
wingtips, as shown in Figure 12. This design was developed by British aerodynamicists
at Hatfield and Hertfordshire, UK, and it was more suited to the Airbus wing style. They
were first installed on the A310-300 in 1985, saving nearly 5% in fuel costs.
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3.1.7. Blended Winglet

A blended winglet is a winglet device that is attached to the plain wing to reduce
interference drag. The winglet was invented by Louis Gratzer in the 1990s [77]. Gulfstream
pioneered the use of blended winglets on their Gulfstream II airplanes. Blended winglets
are commonly used on modern passenger aircraft, such as several 737s, along with 757s and
767s. Khan et al. [60] compared the performance between different types of wingtips, such
as blended winglets, spiroid winglets, winglets, and fenced wingtips, for take-off and land-
ing conditions at α = 0◦–20◦. The blended winglet proved to be the most beneficial design,
with a 22% reduction in drag compared with the plain wing. Bravo-Mosquera et al. [78]
showed that the blended winglet provides a considerable improvement in aerodynamic
efficiency despite a very small increase in the wingspan and wing surface.

3.1.8. Canted Winglet

The canted winglet is very effective in reducing the induced drag and increasing the
CL/CD. Abdelghani et al. [79] numerically investigated the effect of using canted wingtips
with cant angles of 0◦, 30◦, and 45◦ on the performance of a NACA653218 airfoil. The
winglet with a canted angle of 45◦ resulted in a 1.5–3.5% drag reduction while a canted
angle of 30◦ produced a 9–11% enhancement in CL/CD compared with the case without a
wingtip.

3.1.9. Sharklets

Starting from 2011, Airbus has integrated the Sharklet wingtips into their aircraft.
The sole distinction between the fenced winglets detailed in Section 3.1.6 and the Sharklet
wingtip lies in their appearance. These mentioned winglets share such a similar design
that there is no superior model between them. Smith et al. [80] demonstrated that using
Sharklet wingtips increases the specific air range (km/kgfuel) of up to 2.1% above datum
wing fences for all flying phases, partially due to a reduction in inducted-vortex drag by
10.7–11.1%. In another study by M. Marzova [81], it was reported that Sharklet winglets
mounted on the Airbus A320 family caused a 4% reduction in emission and an additional
100 nautical miles or 1000 pounds increase in cargo capacity.

3.1.10. Split Scimitar Winglet

Split scimitar winglets, as shown in Figure 13, were developed by Boeing for their
737–800 fleet [82]. The winglets have been named after a type of Middle Eastern sword
with a curved blade. The winglet reduces the induced drag by producing a mini co-rotating
pair of vortices. These winglets on the B737 Max have resulted in a 5.5% improvement
in aerodynamic efficiency, which translates to a 3.3% increase in fuel savings or a 120 km
increase in flight range [83].
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Cheng et al. [83] investigated three different configurations of split winglets with
different half angles between the upper and lower sides of the winglet (45◦, 60◦, and 75◦) as
illustrated in Figure 14. Their study concluded that the optimal half angle for split winglets
should be between 45◦ and 75◦.
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3.1.11. Upswept and Drooped Wingtips

Figure 15 shows the upswept and drooped designs, which are almost identical except
for the height parameter. For upswept wings, the height points upwards; meanwhile,
for drooped wings, the height points downwards by the same amount. Both surfaces
have leading and trailing edges that were tangent to the main wing’s leading and trailing
edges [84]. Dhara et al. [85] showed that the concept and development of the Hyper-elliptic
Cambered Span (HECS) wing are beneficial, improving aerodynamic efficiency. The HECS
wing is used in swept wings to enhance the CL/CD [85].
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3.1.12. Spiroid Wingtip

Gratzer [86] described in a US patent numbered 5,120,068 his invention of a spiroid
wingtip. The wingtip had an airfoil cross-section and molded into a closed continuous
contour of ovular shape when viewed from the airstream direction. The device works by
distributing the tip vorticity more uniformly over the trailing edge length, thus avoiding the
high concentration of vorticity associated with planar wing tips. As a result, the intensity
of the roll-up process is drastically reduced, leading to lower induced drag.
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Spiroid wingtips provide a viable method for enhancing the CL/CD of unmanned aerial
vehicles (UAVs). However, they may cause detrimental aerodynamic interference in the
wing with the wingtip device and degradation in the wing’s aerodynamic performance [87].
There are two varieties of spiroids: the forward spiroid winglet (FWD) and the after spiroid
winglet (AFT). Initial testing of the spiroid FWD, conducted on a Gulfstream II aircraft,
showed a 10% decrease in fuel consumption.

Inspired by birds’ wingtip feathers during cruise flight, Guerrero et al. [88] numerically
studied the effect of a spiroid wingtip on the vortex structure and the aerodynamic per-
formance of the wing. The results showed that, although there was an increase in parasite
drag due to the interference between the wing junction and the winglet, the device resulted
in an improvement in the aerodynamic performance of the wing by about 7%.

3.1.13. Raked Wingtip

Raked wingtips are designed in such a way that the tip of the wing has a higher
degree of sweep compared to the rest of the wing. These types of wingtips are mostly used
for aircraft that can fly for ultra-long distances, such as the Boeing 787, Boeing 767, and
Boeing 747-800. Raked wingtips work by redirecting wingtip vortices farther outboard and
aft of the rest of the wing, and, as a result, they reduce drag and fuel consumption during
the cruise segment of the flight.

It is important to highlight that there has been limited literature discussion on the
wingtips detailed in Sections 3.1.6–3.1.13. This signifies an opportunity for further research
endeavors aimed at enhancing the performance of these specific wingtip designs.

It is also worth mentioning here that none of the passive wingtips work well in all flight
conditions. Some types of passive wingtips perform well in take-off and landing conditions
but not so well in cruising conditions, and vice versa. For instance, the Hoerner tip works
well during take-off and landing but is much less effective during cruise conditions, whereas
the raked wingtips behave in the exact opposite way. As a result, Hoerner tips are more
common on small and short-range aircraft, while raked wingtips are more common on
large, long-range aircraft. Therefore, it soon became apparent to the researchers in the field
that, for best performance, the wingtips needed to reshape or act differently as dictated by
the flight conditions at hand during the journey. This realization led to the invention of a
new category of wingtip devices known as “active wingtips”.

3.2. Active Wingtip Devices
3.2.1. Oscillating Winglet

An oscillating winglet is an active wingtip device that is capable of oscillating about
its point of attachment to the base wing. Guha and Kumar [89] experimentally investigated
the effect of an oscillating winglet on perturbing the vortex at its onset. The oscillations
were induced using piezoelectric Macro Fiber Composite (MFC) while the flow measure-
ments were performed using stereo particle image velocity (SPIV). The experiments were
conducted at a Rec = 1.4 × 105 and a wingtip oscillation frequency of 35 Hz. The winglet
oscillations led to a sustainable perturbation of the vortex core, vortex diffusion, a 10%
reduction in vortex strength, and a 2% reduction in mean circulation. Breitsamter and
Allen [90] employed symmetrical and asymmetrical wingtip flaps and observed that the
addition of oscillating winglet flaps alters the velocity variations in the core area of the
residual vortex and causes distinct narrowband concentrations of turbulent kinetic energy
associated with the oscillation frequency.

3.2.2. Folding Wingtip

One solution to improving the aerodynamic efficiency of the aircraft is to increase the
wingspan and aspect ratio. However, the increase in the span brings with it new challenges
such as withstanding larger peak bending forces; integrating with existing airport infrastruc-
ture; and retaining appropriate control authority over the aircraft [91]. A folding wing is a
wing structure used to conserve room aboard aircraft carriers and solve the arising issues. Such
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wingtips were implemented on the Boeing 777X in 2020 with the sole purpose of navigating
through the airport’s structure as shown in Figure 16.
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Lassen et al. [92] produced a European patent in which they proposed a foldable wingtip
for flight control enhancement. Kaygan and Gatto [93] studied folding wingtips for the same
purpose. In that study, an off-the-shelf flying wing equipped with a Zagi-type airfoil section
served as the foundation of the aircraft. Later, the airplane was modified to have a winglet
with a span of 0.15 m added to either side of the wing, which was about 18% of the original
span. The scholars numerically studied different types of winglet configurations, including
dihedral, twist, and sweep. The findings showed that, if adjustable winglets were used on tiny
UAVs, both aircraft control and performance could be improved. To the author’s knowledge,
however, there have been no studies on the effect of this kind of wingtips on vortex structure
or the induced drag.

3.2.3. Flapping Wingtip

Flapping wingtips represent an active way of influencing wingtip vortex structure and
strength. Inspired by birds’ (such as geese’s) flapping wings, many researchers started studying
and analyzing the characteristics of the flapping motion. Figure 17 shows an example of
a flapping wingtip applied on an AlbatrossOne aircraft. These wingtips, which can freely
flap, possess the ability to respond and flex in reaction to wind gusts. This potential offers
the capability to reduce wing loads and prevent tip stalls, thereby enhancing overall aircraft
performance. To study wingtip vortices during flapping, Qin et al. [94] designed a flapping wing
prototype with two-jointed arms to produce a flapping motion. The frequency of the flapping
motion varied from fP = 1.0 (Hz) to 2.4 (Hz) while the freestream velocity was maintained at
U∞ = 6 (m/s). The flapping changed the wingtip vortex radius and intensity. In comparison
with the fixed wing, the results showed that, while the vortex intensity of the flapping wing
was much larger in the near-wake region, the vortex of the flapping wings quickly diminished
downstream whereas it remained constant for the fixed wing. This decrement was more
predominant for larger flapping frequencies. While the flapping wing was an interesting
innovation, the mechanism requires an improvement in the flapping control method.
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In a low-speed wind tunnel, Muniappan et al. [95] conducted an experiment to de-
termine how the flap angle and frequency affect the lift properties of a flapping wing of
a macro air vehicle. The authors found that raising the flap angle and frequency may
have a beneficial impact on lift production due to the increase in the angular velocity and
the Strouhal number. Azargoon et al. [96] investigated the stall characteristics of flapping
wings using a low-speed wind tunnel to simulate real insect flight. Their research revealed
that wing corrugations played a significant role in altering the flow regime from laminar to
turbulent, thereby delaying stalling and, ultimately, improving aerodynamic performance.

3.2.4. Synthetic Jet Wingtip

Synthetic jets refer to a technique through which air flows through orifices at the
wingtip. The airflow could be in the spanwise direction [97] or in the normal direction [98].
These jets are used to disrupt the wingtip vortex structure. Investigations conducted by
some researchers such as Margaris et al. [99] and other scholars [100–102] have found
that the jet flow causes the wingtip vortex core to shift laterally away from the wingtip,
effectively increasing the wingspan length and/or generating a counter-rotating vortex
pair, which leads to weakening the tip vortex strength. The airflow can be generated using
loudspeakers mounted at the base of the wing. The speaker space is connected through a
duct that extends in the spanwise direction, from the wing body to the wingtip.

Heyes and Smith [100] experimentally examined the effects of steady blowing and a
pulsed jet at pulsing frequencies of 10, 30, and 50 Hz on vortex displacement and changes
in the core structure. Their experimental results indicated that the vortex displacement and
core structure are functions of the airflow rate from the jet, the pulsing frequency, and the
jet slot angle. Using dielectric barrier discharge (DBD) plasma actuators, Hasebe et al. [103]
numerically and experimentally investigated the effect of spanwise jets on the wingtip vortex
structure, where the actuators were on the suction side of the NACA0012 airfoil. Although the
technique led to a reduction in wingtip vortex intensity, it caused an undesirable reduction
in CL/CD. Margaris and Gursul [104] conducted experimental studies to attenuate wingtip
vorticities using synthetic jets. Velocity measurements at the wingtip and the near-wake region
were performed using a PIV system. The blowing synthetic jet effectively diffused the trailing
vortex. Holloway and Richardson [105] conducted experiments on NACA 0015 (AR 5) to
investigate the effect of spanwise jets on vortex structure. Air was blown through holes in the
periphery of the wing cross-section. The jets substantially increased the diameter of the vortex
core.

3.2.5. Adaptive Multi-Winglets (Tip Sail)

Multi-winglets consist of small multi-sails attached to the wingtip and have the capability
of changing their sail incident and cant angles (Figure 18). This configuration of winglet
technology imitates the feathers of a bird. The sails are connected to a moving part so that the
cant angle and incidence for each sail can be independently changed. At most angles of attack,
the effects of the multi-winglets on the wind drag are negligible. Cosin et al. [106] showed that
when α = 0◦ and 2◦, the gadget generates a little bit more drag than the standard wing does.
When the angle is increased further, the drag reduction becomes significant, and the overall
drag decreases until it stalls. Additionally, the data indicates that the multi-winglets do not
alter the primary stall characteristics. Despite minor fluctuations in the stall angle of attack,
the separated region remains nearly identical for both the standard wing and the alternative
configurations. This consistency is crucial for maintaining consistent tip-stall characteristics,
which is essential for safety considerations. Furthermore, it was shown that the winglets
reduce the strength of the main wingtip vortex [106].



Aerospace 2024, 11, 36 15 of 26
Aerospace 2024, 11, x FOR PEER REVIEW 17 of 29 
 

 

 
Figure 18. Multi-wing configurations, including leading winglet (A), central winglet (B), and trail-
ing winglet (C). 

Reddy et al. [107] found that the layout with several winglets provided a considerable 
improvement in lift coefficient, diffusing the vortex core more efficiently than other wing-
let arrangements. The three-element winglet structure used in their model enabled each 
element to impact the flow paĴern created. This caused the vortex to dissipate signifi-
cantly farther upstream than with other winglet arrangements [107]. Segui et al. [108] con-
ducted a similar study that focused on enhancing aircraft performance during flight through 
the implementation of an adaptive winglet, applied to the Bombardier Regional Jet CRJ700. 
The adaptive winglet can move from deflection angles varied from −95 to +95 deg, relative 
to the spanwise axis. Various winglet deflection angles were tested to cover the typical flight 
conditions of this aircraft, which includes Mach numbers ranging from 0.31 to 0.79. The out-
comes were exceptionally encouraging, resulting in an increase in lift-over-drag ratio by up 
to 6.10% as a result of moving the winglet from −35 deg to 35 deg on the entire aircraft flight 
envelope in comparison with a passive winglet fixed at a deflection angle of 73 deg. 

Ceron-Muñoz et al. [109] carried out an experimental investigation to analyze the 
aerodynamic properties of adaptive multi-winglets, referred to as “tip sails”. The objective 
of this research was to investigate the potential of adaptive tip sails in reducing induced 
drag by adjusting the tip sail cant angles. The model featured a rectangular wing with a 
NACA 653-018 airfoil profile. The experiments were conducted at a Reynolds number of 
350,000. The results were analyzed with a focus on lift and drag. The findings revealed 
that it is feasible to determine the optimal configuration of the three winglets to achieve 
the best possible aerodynamic performance for various flow conditions during climb and 
cruise. 

In another wind tunnel study, Catalano and Ceron-Muñoz [110] examined the influ-
ence of an adaptive multi-winglet system on the aerodynamic properties of a low aspect 
ratio wing. Six main configurations were considered in their studies, known as Conf. 11, 
Conf. 19, Conf. 40, Conf. 44, Conf. 47, and Conf. 48. Figure 18 shows Conf. 11 based on the 
angle of winglets. The authors found that combining the configurations of three winglets 
could improve the aerodynamic properties of a wing. 

The configurations of the multi-winglets were defined as the functions of the angles 
of three winglets with angles of A, B, and C (Figure 18). To be consistent with the pub-
lished studies [110], the examined test cases associated with Figure 18 are shown in Table 
1. 

Table 1. Configurations of the multi-winglets extracted from [110]. 

Configuration Winglet Angles in Degree 
Conf. 11 A = −30, B = −15, and C = 0 
Conf. 19 A = −30, B = 0, and C = +30 
Conf. 40 A = +45, B = +30, and C = +15 
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Reddy et al. [107] found that the layout with several winglets provided a considerable
improvement in lift coefficient, diffusing the vortex core more efficiently than other winglet
arrangements. The three-element winglet structure used in their model enabled each element
to impact the flow pattern created. This caused the vortex to dissipate significantly farther
upstream than with other winglet arrangements [107]. Segui et al. [108] conducted a similar
study that focused on enhancing aircraft performance during flight through the implemen-
tation of an adaptive winglet, applied to the Bombardier Regional Jet CRJ700. The adaptive
winglet can move from deflection angles varied from −95 to +95 deg, relative to the spanwise
axis. Various winglet deflection angles were tested to cover the typical flight conditions of
this aircraft, which includes Mach numbers ranging from 0.31 to 0.79. The outcomes were
exceptionally encouraging, resulting in an increase in lift-over-drag ratio by up to 6.10% as a
result of moving the winglet from −35 deg to 35 deg on the entire aircraft flight envelope in
comparison with a passive winglet fixed at a deflection angle of 73 deg.

Ceron-Muñoz et al. [109] carried out an experimental investigation to analyze the
aerodynamic properties of adaptive multi-winglets, referred to as “tip sails”. The objective
of this research was to investigate the potential of adaptive tip sails in reducing induced
drag by adjusting the tip sail cant angles. The model featured a rectangular wing with a
NACA 653-018 airfoil profile. The experiments were conducted at a Reynolds number of
350,000. The results were analyzed with a focus on lift and drag. The findings revealed that
it is feasible to determine the optimal configuration of the three winglets to achieve the best
possible aerodynamic performance for various flow conditions during climb and cruise.

In another wind tunnel study, Catalano and Ceron-Muñoz [110] examined the influ-
ence of an adaptive multi-winglet system on the aerodynamic properties of a low aspect
ratio wing. Six main configurations were considered in their studies, known as Conf. 11,
Conf. 19, Conf. 40, Conf. 44, Conf. 47, and Conf. 48. Figure 18 shows Conf. 11 based on the
angle of winglets. The authors found that combining the configurations of three winglets
could improve the aerodynamic properties of a wing.

The configurations of the multi-winglets were defined as the functions of the angles of
three winglets with angles of A, B, and C (Figure 18). To be consistent with the published
studies [110], the examined test cases associated with Figure 18 are shown in Table 1.

Table 1. Configurations of the multi-winglets extracted from [110].

Configuration Winglet Angles in Degree

Conf. 11 A = −30, B = −15, and C = 0
Conf. 19 A = −30, B = 0, and C = +30
Conf. 40 A = +45, B = +30, and C = +15
Conf. 44 A = −15, B = −30, and C = −45
Conf. 47 A = +60, B = +30, and C = 0
Conf. 48 A = +45, B = +15, and C = +15
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Furthermore, the authors have investigated the effect of the adaptive wingtip shown
in Figure 18 on turbulence intensity [110]. It was found that the size of the wing wake
does not change significantly for the case without multi-winglets. Moreover, they found
that the tip-tank wake has the biggest impact on the magnitude of the wake at the tip.
However, there was a small decrease in the turbulence’s intensity in the vicinity of the
tip-tank, suggesting that roll-up may be less frequent. The results of turbulence intensity
are shown in Figure 19.
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Another example of adaptive wingtips being used to reduce the induced drag was
proposed by Guerrero et al. [62]. Their approach was to propose variable cant angle
winglets which could potentially allow aircraft to achieve the best all-around performance
in terms of lift-induced drag reduction throughout the flight envelope. The investigation
was carried out using CFD simulation at Mach numbers of 03 and 0.84 and different angle-
of-attack values. The findings indicate that careful control of the winglet cant angle can
lead to significant reductions in drag for a given lift value, both at high and low Mach
numbers. Furthermore, it was observed that the use of variable cant angle winglets does
not have a negative impact on stall behavior. In a separate CFD investigation, the same
researchers [111] explored the influence of the sweep angle on aerodynamic performance
at a fixed cant angle. Their results demonstrated that introducing a sweep angle to the
winglet positively impacts the overall aerodynamic performance of the wing. This effect
can be attributed to the fact that higher sweep angles result in reduced parasite drag.
Additionally, at high Mach numbers, the sweep angle plays a role in reducing wave drag,
further contributing to drag reduction.

3.2.6. ATLAS Active Winglets

The Active Load Alleviation System (ATLAS) Winglet, developed by Tamarack Aerospace
Group [112], exhibits a remarkable capability to autonomously adjust wing loading during
load events. This adaptive technology, as shown in Figure 20, employs load sensors and a
responsive camber surface, and enhances aerodynamic efficiency without requiring pilot in-
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tervention or additional wing structure. Furthermore, its ‘bolt-on’ installation feature, coupled
with a patented amalgamation of these elements, bestows upon active winglets a substantial
two-to-three-fold performance advantage over passive winglets. Such enhancements include
an extended range, faster climb, significant fuel savings of about 33% as claimed by the
manufacturer [113], increased weight limits, and improved useful load, among other benefits.
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given load condition [113].

As evident from the preceding discussion in this article, the majority of the research has
relied on experimental work. Nonetheless, it is essential to highlight that computational stud-
ies have significantly contributed to enhancing aircraft performance. Delavenne et al. [114]
considered the wing flexibility and the impact of the winglet on the wing shape on aerody-
namic predictions using different models. High-fidelity CFD/CSM computations have been
studied to minimize the drag and wing root bending moment. The study resulted in a drag
reduction of 4% and 0.8% fuel saving with a limited 2% increase in the wing root bending
moment. In a different study, Delavenne et al. [115] investigated the influence of cant angle
deflections on flutter characteristics. They have also studied the effect of the hinge line location
and its orientation with respect to the longitudinal axis of the aircraft. The study demonstrated
that the active winglet could result in drag reductions to around 1%. The orientation of the
hinge mainly impacted loads but to a far lesser extent compared to the spanwise direction.

Babigian et al. [116] conducted an analysis of the vortices generated by winglets on
aircraft wingtips, employing a three-dimensional approach with the Fluent computational
fluid dynamics software (FLUENT, ver. 6.3.26) and the Spalart–Allmaras turbulence model.
Their investigation revealed a notable reduction in vortex formation at the wingtips of a
moving aircraft. In a similar study, Mattos et al. [117] investigated the impact of winglets
installed on the wingtip of an Embraer 170 model airplane, employing a three-dimensional
Fluent analysis. Their findings indicated a substantial 4.5% reduction in the total drag force
attributable to the incorporation of winglets.

Furthermore, Yahaya et al. [118] undertook a comprehensive examination of the flow
patterns around Whitcomb winglets, combining both numerical simulations and experi-
mental analyses at a Reynolds number of 2.33 × 106. They relied on Fluent-based methods
for their analysis, which demonstrated a reduction in vortex formation around the Whit-
comb winglets compared to the wingtips without winglets, consequently reducing induced
drag. Narayan and John [119], in their study, investigated the formation and distribution
of vortices at the wingtips of wingleted wings using Ansys Fluent, incorporating the k–ω
Shear Stress Transport (SST) turbulence model. Their focus was on evaluating the aerody-
namic performance during flight, expressed as the Lift-to-Drag (L/D) ratio. Their results
showcased a significant 3.54% enhancement with blended winglets, a substantial 14.81%
improvement with BMAX, an impressive 11.03% increase with Multi-Tip-2, a substantial
22.59% boost with Multi-Tip-3, and a noteworthy 20.24% enhancement with Multi-Tip-4.

Based on the key wingtip criteria emphasized in this paper, such as aerodynamic ef-
ficiency, induced drag reduction, fuel consumption, and increased flight range (refer to
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Figure 21), our assessment positions fuel consumption as the most critical metric among these
factors. Upon closer examination of various metrics, it is evident that the spiroid wingtip
emerges as one of the optimal wingtip designs meeting these criteria, notably excelling in
terms of fuel consumption. Moreover, sharklets rank second after spiroid wingtips, delivering
commendable performance not only in fuel consumption but also demonstrating favorable
performance in mitigating induced drag.
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4. Summary and Conclusions

In this study, a significant volume of research over the last sixty years is reviewed.
Particular attention is paid to the concept of wingtip vortices, the early history of wingtip
devices, and the development of these devices throughout several decades. Wingtip devices
have typically fallen into two classifications: passive and active. The predominant wingtips
employed in commercial settings have been of the passive variety such as sharklets, raked
wingtips, and split scimitar winglets.

Over the past several years, there has been a surge in research on active wingtips
that can be manipulated to yield the best performance for the given flight condition and,
consequently, make the airplane more aerodynamically efficient and stable. Some of the
active wingtips proposed in the past are oscillating winglets, folding winglets, synthetic jet
wingtips, flapping winglets, and adaptive multi-winglets.
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Table 2 shows a summary of the studies on passive and active wingtips. It highlights
the major effects of passive wingtips on vortex strength, aerodynamic efficiency, fuel con-
sumption, flight range, and induced drag. The available data collected from the literature
are summarized, focusing on the effects of wingtips on forces, flight conditions, and CL/CD.

Table 2. Salient features of passive and active wingtips.

Wingtip Name Wingtip Type Salient Features

Blended Passive

• Aerodynamic efficiency (CL/CD): 3.93% increase [120]
• Vortex strength: decreased significantly [121]
• Fuel consumption: up to 4% decrease [121,122]
• Flight range: 303 km increase [120]; 5% improvement [123]
• Induced drag (Di): 5% decrease [124]

Fenced Passive

• Vortex strength: reduced tip vortices [122]
• Aerodynamic efficiency (CL/CD): improvement of up to

1–2.96% [125,126]
• Fuel consumption: improves fuel efficiency [122]
• Flight range: 4.3% increase [120]

Endplates Passive
• Aerodynamic efficiency (CL/CD): 46% increase [64]
• Induced drag (Di): decreased induced drag [64]

Porous wingtip Passive
• Vortex strength: up to 90% reduction [127]
• Aerodynamic efficiency (CL/CD): 10–15% increase [127]

Canted winglet Passive • Flight range: 3.5% increase [122]

Spiroid Passive

• Aerodynamic efficiency (CL/CD): 5.68% increase [128]
• Fuel consumption: 6–10% decrease [122,129]
• Flight range: 3.56% increase [120]
• Induced drag (Di): 3.3% decrease [130]

Raked Passive
• Aerodynamic efficiency (CL/CD): 3.36–8.24% increase [126,131]
• Fuel consumption: 2% decrease [84]

Sharklets Passive
• Aerodynamic efficiency (CL/CD): 9% improvement [132]
• Fuel consumption: 3.4% reduction [84]
• Induced drag (Di): 20% depreciation [132]

Oscillating winglet Active
• Vortex strength: 10% reduction in vortex strength; 2.2% reduction

in circulation [89]; Turbulent kinetic energy increases earlier [90]
• Method: experimental [89,90]

Pulsed jet winglet Active

• Vortex strength: Pulsed jet on the leading edge: diffused vortex;
Pulsed jet on trailing edge: providing single or multiple
vortices [99]. Decreased vortex lifetime, increased vortex-core size,
decreased peak rotational velocities, and velocity deficit [100].
Reduced strength of wingtip vortices [103]

• Method: experimental [99]; Exp. (PIV) [100]; Exp. and Num. [103]

Flapping winglet Active

• Vortex strength: Vortex radius decreases with flapping frequency;
vorticities disappear. Changing vortex shape; increased energy
concentration of wingtip vortices [94]

• Forces: Thrust linearly increases with flapping frequency.
Increasing span decreases propulsive efficiency [133]. Lift
increases with flap angle, flap frequency, and aspect ratio [95]

• Method: Exp. (PIV) [94,95,133]

Adaptive Multi-winglets Active

• Vortex strength: Diffused, weak Axisymmetric tip vortices are
generated. Maximum tangential velocity in the vortex core with
tip blowing increases six times that without [107]

• Forces: 14% increase in lift coefficient, 3% increase in drag
coefficient [107]

• Method: numerical [107]
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Figure 21 provides a visual representation of the improvement caused by the wingtip
devices, in aerodynamic efficiency, fuel consumption, induced drag, and flight range.
Porous wingtips result in the highest aerodynamic efficiency (around 14%) while fenced
wingtips produce the least (around 2%). Raked and sharklet wingtips achieve an acceptable
aerodynamic efficiency of 8% and 9%, respectively (Figure 21a). Figure 21b demonstrates
that the highest reduction of 9.8% in fuel consumption is attained using the spiroid wingtip,
which is five times more effective than raked wingtips. The high fuel consumption of the
racked wingtip could be attributed to the high induced drag in comparison with the spiroid
tip (Figure 21c). The blended winglet, as shown in Figure 21d, is reported to have the
highest flight range. It is to be noted here that these graphs are meant to give a summary of
the values reported in the literature and are not meant for direct comparison among the
wingtips. Such a comparison would be difficult due to the difference in the evaluation tools
and the conditions in which these studies were performed.

It would have been intriguing to conduct a comparison regarding the various wingtip
designs in terms of their manufacturing cost. Regrettably, there is a notable scarcity of
information available in the existing literature addressing this aspect. The sole exception to
this lack of data may be found in a New York Times article, which cites Captain Joel Booth,
the Managing Director of Operations Planning and Fuel Efficiency at United Airlines [134].
He provided insights into the cost associated with outfitting Boeing 737 aircraft with
winglets. According to the report, the cost of winglets for large airplanes ranges from USD
500,000 to USD 2 million. Furthermore, he anticipated that the return-on-investment period
could be approximately two years, contingent upon fluctuations in fuel prices and the
number of flights.

In conclusion, we have reviewed a considerable volume of research work conducted
over the last six decades, focusing on the theory of wingtip vortices, the early history of
wingtip devices, and the latest developments of these devices in recent years. These devices
are classified as passive and active. The majority of the wingtips in commercial applications
are passive types, including winglets, sharklets, raked wingtips, and split scimitar winglets.
Active device research has gained popularity in recent years. This interest was prompted
by the quest to develop wingtips for the different flight conditions of the airplane and to
improve the aerodynamic efficiency and the airplane’s stability. Some of the active wingtips
featured in the literature include oscillating winglets, folding wingtips, pulsed jet wingtips,
flapping wingtips, and adaptive multi-winglets. It is important to note that, since the
active wingtips are designed to adjust to varying flight conditions, they are anticipated to
deliver superior aerodynamic performance when compared to their passive counterparts.
However, this enhanced performance comes at a considerable cost. While there is a lack of
readily available manufacturing cost data in the literature, it is reasonable to assume that
active wingtips would incur higher expenses due to the necessary mechanisms required to
make them adaptive, as well as the subsequent maintenance costs.

Overall, the examined wingtip devices achieved varying levels of success, with im-
provements in aerodynamic efficiency ranging from 1% to 15%, reductions in fuel con-
sumption ranging from 3.4% to 10%, and decreases in induced drag ranging from 5% to
20%. The extent of these improvements depended on the specific types of wingtips and the
prevailing flight conditions.

Regarding the future prospects of these devices, it appears that passive wingtips may
have reached their maximum potential, with research in this area having reached a certain
level of saturation. In contrast, active wingtips are a relatively recent development and are
still primarily confined to research laboratories at the moment. Commercial applications of
active wingtips in the aviation industry have yet to materialize. Therefore, we anticipate
more research and development related to active wingtips in the future.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare that they have no conflicts of interest.



Aerospace 2024, 11, 36 21 of 26

Nomenclature

Latin Alphabet
c Chord length
CD Drag coefficient
CL Lift coefficient
D Drag
Di Induced drag
fP frequency of flapping motion
L Lift
Re Reynolds number
u Time–mean velocity
U∞ Free stream velocity
x Stream-wise coordinate
(x, y) Coordinate system
Greek Alphabet
α Angle of attack, degree
Acronym
AR Aspect ratio
BW Baseline wing
CFD Computational Fluid Dynamic
DBD Dielectric Barrier Discharge
DDES Delayed Detached-Eddy Simulation
DNS Direct Numerical Simulation
HDW Half Delta Wingtip
HRDW reversed half-delta wingtips
LES Large Eddy Simulation
LSA Linear Stability Analysis
NACA National Advisory Committee for Aeronautics
FVM Finite volume method
MFC Macro Fibber Composite
PLT Prandtl lifting-line theory
PIV Particle Image Velocimetry
RANS Reynolds-Averaged Navier–Stokes
RSM Reynolds stress equation model
SAT Spalart–Allmaras Turbulence
SRS Scale-Resolving Simulation
SPIV Stereo Particle Image Velocity
UAV Unmanned Aerial Vehicles
HECS Hyper Elliptic Cambered Span
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