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Abstract: The spaceborne solar observation system is crucial for the study of space phenomena
such as solar flares, which requires high tracking accuracy. This study presents a coupling model
that integrates mechanical, electrical, and control models to investigate the structural flexibility
effect on the micro-vibration response. We established a rigid–flexible model using mechanical
parts. We considered the influence of flexible features while studying the dynamic responses in its
operation. The state-space equations of the system showed that modal frequency, damping, and
modal participation factors played significant roles. We derived transfer functions using the Laplace
transform of the coupling models to better understand this mechanism, and Simulink models were
thereby established. We simulated the acceleration responses of the rigid–flexible and rigid models
under angle tracking modes, and the results showed significant differences. We also simulated the
acceleration responses of the models under various control frequencies, and the optimal control
frequency was thus obtained. Finally, we performed experiments, and the results indicated that the
rigid–flexible model could better predict the motion and acceleration responses for the spaceborne
solar observation system. This study provides valuable information for understanding the role of
flexible features in space performance high-tracking accuracy instruments and for micro-vibration
suppression research.

Keywords: satellites; 2D turntable; structural flexibility; micro-vibration; mechanical–electrical–
control coupling; Simulink model

1. Introduction

The Earth is influenced by powerful electromagnetic radiation and high-energy particle
radiation released from solar activity. Solar flares are among the most violent explosions in
the solar atmosphere and are a major focus of space science research [1,2]. Unfortunately,
high-energy particles and electromagnetic solid radiation pose a fatal threat to space
facilities and deep space exploration safety. High-energy particles can easily break through
the surfaces of satellites, causing charging and discharging in satellites and even destroying
spaceborne equipment [3]. A spaceborne solar observation system (SSOS) is an important
tool for achieving the real-time tracking, observation, and analysis of the Sun. The SSOS
must have high tracking accuracy to achieve real-time and accurate observation data.

The SSOS two-dimensional (2D) turntable presented in this study is a typical mechanical–
electrical–control coupled system that generates disturbing forces and torques during the
tracking rotation. These forces and torques are caused by manufacturing, assembly and
control errors, posing a significant threat to spacecraft pointing and tracking stability,
commonly known as the micro-vibration effect [4–7]. When these forces are coupled with
structural modes, resonance will occur, which may cause catastrophic impacts in many
fields, such as earthquakes [8,9]. In aerospace, resonance may cause a decrease in satellite
pointing accuracy and stability accuracy, further affecting the performance of satellite
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payloads [10]. Therefore, the flexible vibrations of the structure’s turntable cannot be
ignored and must be considered when designing SSOS systems.

When studying the published literature on the modeling of spaceborne 2D turnta-
bles, we discovered that the published literature is primarily focused on control system
design [11,12], structural design, and structural dynamic modeling [13–17]. Wang [11]
used non-magnetic technology to study turntable pointing accuracy and motion control,
analyzed the influence of the servo control parameters on the dynamic performance and
steady-state error, and tested the turntable angular positioning accuracy. Zou [15] inves-
tigated the micro-vibration characteristics of a spaceborne 2D turntable and conducted a
modal and frequency response analysis of the structure, which were later verified by exper-
iments. Yao [18] established the governing equations of the semi-rigid joints and integrated
them into the dynamic equation of the deployable structure. The research mentioned above
did not combine a control system model with a structural dynamics model. Moreover,
the rigid–flexible coupling effect has not been considered, and the influence of structural
high-frequency vibrations on the rigid body motion has been ignored. The challenge is that
satellites and their payloads are extremely sensitive to high-frequency micro-vibrations,
which can be particularly problematic for deep space exploration. For example, the pixel
offset for a high-resolution camera is limited by the frequency [19]. The higher the observa-
tion frequency is, the lower the amplitude of the pixel offset that can be tolerated becomes.
Several satellite images are blurred under the influence of micro-vibrations [20]. Thus,
the rigid–flexible coupling cannot be ignored and it should be considered in the model of
the SOSS.

To fully consider the impact of the resonance on the SOSS system, this study develops
a coupling model integrating mechanical, electrical, and control models. We also investigate
the impact of rigid–flexible coupling on this model by establishing a rigid–flexible model
(R-F-model) and a rigid model (R-model). This study can provide a reference for the design
and optimization of the SOSS system.

The following sections of the paper detail our research on the mechanical–electrical–
control coupling model. In Section 2, we explain how we derived the transfer function
model using the Laplace transform. In Section 3, we present simulations of the R-model and
R-F-model acceleration responses under angle tracking mode. We also simulate acceleration
responses under different control frequencies to determine the optimal control frequency.
Section 4 outlines the experiments we performed and discusses the results. Finally, in
Section 5, we summarize our findings and conclude this study.

2. Mechanical–Electrical–Control Coupling Model of the Spaceborne Solar Observation
System (SSOS)

The SSOS is an exciting system that comprises a 2D turntable and an observation
payload. The 2D turntable contributes majorly to the dynamic response, and it is composed
of various components: a motor, a measurement feedback device, a drive controller, and a
power supply. Figure 1 depicts the schematic diagram of the system, illustrating that the
SSOS is a typical mechanical–electrical–control coupled system.

This section establishes the mechanical–electrical–control coupling model, which
consists of mechanical, electrical, and control models. We established the R-F-model and
R-model to investigate the influence of the structural flexibility on the model’s accuracy.

2.1. Mechanical Model

Based on Newton’s Law, the SSOS mechanical dynamics model based on its rotational
degrees of freedom is expressed as follows [21]:

J0
d2θ

dt2 + B
dθ

dt
= Te − Tl , (1)
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where θ is the rotation angle, J0 is the moment of inertia of the motor rotor, B is the
damping torque coefficient, Te is the motor torque, and Tl is the inertial torque. Due to the
approximately unconstrained rotation of the rotor, the stiffness part is ignored.
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Figure 1. Schematic diagram of the spaceborne solar observation system (SSOS).(  is a summa-
tion block and “−” is a minus sign). 
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Figure 1. Schematic diagram of the spaceborne solar observation system (SSOS). (⊗ is a summation
block and “−” is a minus sign).

The inertial motion of the moving components generates an inertial torque. Therefore,
when the structure is assumed to be a rigid body, the angular acceleration of the rotating
component generates an inertial torque. The turntable’s motion includes its rigid body
motion and elastic vibrations when the structure is assumed to be an elastic body. Therefore,
the rigid–flexible coupling characteristics should be considered. The inertial torques of the
R-model and R-F-model are established to analyze the impact of the structural flexibility,
as follows.

(a) Inertial torque of R-model

Assumptions:
For the R-model, the rotating component is assumed to be a rigid body.
The inertial torque of the rigid body can be expressed as:

Tl = J1
d2θ

dt2 , (2)

where J1 is the moment of inertia of the SSOS rotating component.

(b) Inertial torque of R-F-model

Assumptions:
For the R-F-model, the rotating component is assumed to be a flexible body, so the

flexible vibration and the rotational motion of the rotating component are coupled.
The rigid–flexible coupled dynamics equations are expressed as follows:[

J1 mp
mp

T In

][ d2θ
dt2
d2η
dt2

]
=

[
Tl

−2ξΛ
dη
dt − Λ2η

]
, (3)

where η is the modal coordinate vector, mp is the modal participation factor matrix, Λ is
the modal frequency matrix, In is the n-order identity matrix, n is the modal order, and ξ
is the modal damping ratio. Finite element analysis can be used to determine the modal
participation factors and modal frequencies, and engineering experience suggests that the
modal damping ratio is between 0.03 and 0.05 [22]. The inertial torque can be obtained by
solving Equation (3).

2.2. Electrical Model

This section presents the motor torque, and the voltage equation of the motor circuit is
expressed as follows:

Riq + Lq
diq

dt
= uq − uc, (4)
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where R is the circuit resistance, iq is the current, Lq is the inductor, and uq is the voltage.
Moreover, uc = Kedθ/dt is the counter electromotive force generated by the rotation of the
motor, and Ke is the counter electromotive force coefficient. The motor torque is expressed
as follows:

Te = Ktiq, (5)

where Kt is the motor torque coefficient. The motor voltage and torque equation derivations
are presented in Appendix A [23].

2.3. Servo Control Model

The SSOS adopts a three-loop control system, as shown in Figure 1. The speed loop
and the current loop are proportional–integral (PI) controllers, with proportional control of
the position loop. The control instruction of the position loop is expressed as follows:

ωr = Kpθeθ , (6)

where eθ = θ0 − θ is the angle error, θ0 is the angle instruction, θ is the feedback angle, and
Kpθ is the parameter of the position loop controller.

The speed loop control instruction is expressed as follows:

ir = Kpωeω + Kiω

∫ ∆t

0
eωdt, (7)

where eω = ωr − βω is the angular velocity error, β is the angular velocity feedback
coefficient, ω is the mechanical angular velocity of the motor, ω = dθ/dt, and Kpω and Kiω
are the parameters of the speed loop controller.

The control instruction of the current loop is expressed as follows:

ur = Kpiei + Kii

∫ ∆t

0
eidt, (8)

where ei = ir − αiq is the current instruction, α is the current feedback coefficient, and Kpi
and Kii are the parameters of the current loop controller.

The inverter is simplified as an inertial system, and the relationship between the
output voltage and the input voltage is as follows:

duq

dt
+

1
TPWM

uq =
KPWM
TPWM

ur, (9)

where KPWM and TPWM are the inverter gain and the time constant, respectively.

2.4. State-Space Equation of the System

This section establishes the state-space equation of the system based on the discussions
in Sections 2.1–2.3. The mechanical–electrical–control coupling model is obtained based on
Equations (1)–(9):

Lq
diq
dt +

(
KpiKpω β + Ke

) dθ
dt = G − (R + α)iq

J0
d2θ
dt2 + B dθ

dt = Ktiq − Tl
, (10)

where

G = KpiKpωKpθeθ + KpiKiω

∫ ∆t

0
eωdt + Kii

∫ ∆t

0
eidt. (11)

The state-space Equation (10) is expressed as follows:Lq
1

J0

dx
dt

=

−(R + α) 0 −
(
KpiKpω β + Ke

)
0 0 1
Kt 0 −B

x +

 G
0

−Tl

. (12)
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(a) State-space equation of the R-model

We define iq = x1, θ = x2, dθ/dt = x3 and combine Equations (2) and (12). The
state-space equation of the R-model can be expressed as follows:Lq

1
J0 + J1

dx
dt

=

−(R + α) 0 −
(
KpiKpω β + Ke

)
0 0 1
Kt 0 −B

x +

G
0
0

. (13)

(b) State-space equation of the R-F-model

We define iq = x1, θ = x2, dθ
dt = x3, dη/dt = [x4, x5, . . . , xn+3]

T, and η = [xn+4, xn+5, . . . ,
x2n+3]

T , and combine Equations (3) and (12). Then, the state-space equation of the R-F-
model can be expressed as follows:

Lq

1
J0 + J1 mp

mp
T In

In


dx
dt

=


−(R + α) 0 −KpiKpω β − Ke 0 0

0 0 1 0 0
Kt 0 −B 0 0
0 0 0 −2ξΛ −Λ2

0 0 0 In 0

x +


G
0
0
0
0

. (14)

Equation (13) lacks some critical parameters, such as the modal frequency, damp-
ing, and participation factor, which are essential in actual structures. In contrast, these
parameters significantly contribute to the description of the rigid–flexible coupling char-
acteristics in the state-space equation of the model, as shown in Equation (14). Based
on the above information, the importance of the R-F-model is indicated by comparing
Equations (13) and (14).

2.5. Transfer Function and Simulink Model of SSOS

It is challenging to quickly determine the impact of the relevant factors on the SSOS
performance using the state-space model obtained in Section 2.4. Therefore, we established
a Simulink model to simplify the process, which required the use of transfer functions
obtained by performing the Laplace transform of each module in Sections 2.1–2.3. The
mechanical model’s transfer function is expressed as follows:

θ(s)
Te(s)− Tl(s)

=
1

J0s2 + Bs
. (15)

The motor transfer function is expressed as follows:

iq(s)
uq(s)

=
1

R + Lqs
− Kesθ(s). (16)

The position controller transfer function is expressed as follows:

ωr(s)
eθ(s)

= Kpθ . (17)

The speed controller transfer function is expressed as follows:

ir(s)
eω(s)

= Kpω +
Kiω

s
. (18)

The current controller transfer function is expressed as follows:

ur(s)
ei(s)

= Kpi +
Kii
s

. (19)
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The transfer function of the inverter is expressed as follows:

uq(s)
ur(s)

=
KPWM

1 + TPWMs
. (20)

The transfer function of the inertial torque of the R-model is expressed as follows:

Tl(s)
θ(s)

= J1s2. (21)

The transfer function of the inertial torque of the model is expressed as follows:

Tl(s)
θ(s)

= J1s2 − mp

(
Ins2 + Λ2 + 2ξΛs

)−1
mT

p s4. (22)

Note that Tl(s) = Tl0(s) + Tf (s), where Tl0(s) is the rigid torque, and Tf (s) is the
flexible torque. Then, Equation (22) is divided into two parts, where the transfer function
of the rigid torque is expressed as follows:

Tl0(s)
θ(s)

= J1s2. (23)

The transfer function of the flexible torque is expressed as follows:

Tf (s)
θ(s)

= mp

(
Ins2 + Λ2 + 2ξΛs

)−1
mp

Ts4. (24)

As illustrated in Figure 2, we combined the transfer functions of the modules men-
tioned above to create two schematic diagrams, where (a) shows the schematic diagram of
the R-model, and (b) shows the schematic diagram of the R-F-model.
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rigid–flexible model (R-F-model).

3. Simulations of SSOS

We established a Simulink model to analyze the SSOS dynamic characteristics based
on the schematic diagram in Section 2. The natural frequency of the turntable may couple
with the excitation frequency, causing resonance. Therefore, it is necessary to calculate the
natural frequency of the turntable structure. These external excitations may arise from
the control frequency of the motor, motor noise, and nonlinear factors. Thus, we built
a finite element method (FEM) model of the 2D turntable to investigate the effect of the
rigid–flexible coupling characteristics. Moreover, we obtained the modal frequencies and
participation factors [8,9] of the SSOS through FEM analysis and additional calculations.

3.1. Finite Element Method (FEM) Modeling and Simulations of Two-Dimensional (2D) Turntable
3.1.1. FEM Model and Modal Analysis

The 2D turntable has dimensions of 463 mm × 336 mm × 550 mm and weighs 23 kg.
The 2D turntable FEM model was established. A mesh convergence study was conducted
and mesh size 10 was adopted. The first 10 modes were calculated through modal analysis.
Figure 3 depicts the first three modal deformation cloud diagrams, and Table 1 presents the
first 10 modal frequencies. The natural frequencies of the 2D turntable are all higher than
100 Hz, and 0.03 is the modal damping ratio.
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Table 1. Modal frequency and participation factors.

1 2 3 4 5 6 7 8 9 10

Modal
frequency 119.6 133.0 180.2 314.1 332.6 465.0 472.1 635.3 647.9 667.2

X −0.026 −1.116 −0.111 0.004 −0.280 0.012 −0.020 −0.003 −0.003 5 × 10−5

Y −0.006 0.056 −0.390 −1 × 10−5 −0.005 0.063 −0.088 −0.005 −0.006 0.001
Z −1.124 0.024 0.016 0.389 0.003 0.002 −0.001 −0.002 −0.004 0.016

3.1.2. Modal Participation Factors

Since the turntable only moves via rotation, the rotational modal participation factor
is expressed as follows:

mp =
N

∑
i=1

miri × Φi, (25)

where mi represents the mass of node i, N is the total number of nodes, ri ∈ R1×3 is the
vector of node i relative to the reference point, and Φi ∈ C3×n represents the modal vector
matrix of node i, where n is the modal truncation order. We calculated the generalized modal
effective mass and its proportional factor relative to the moment of inertia to determine
the modal truncation order. The modal effective mass of the first n modes is expressed
as follows:

Me f f (n) = mp(n)mp
T(n). (26)

The proportional factor of the first n modal effective masses is expressed as follows:

f actor(n) =
1
3

(Me f f 11(n)
Jxx

+
Me f f 22(n)

Jyy
+

Me f f 33(n)
Jzz

)
. (27)

We computed the first 10 modes’ participation factors (unit: m ·
√

kg) based on
Equation (25), and the results are presented in Table 1. Moreover, we calculated the first
five modes’ proportional factors, based on Equations (26) and (27), as shown in Figure 4,
where each column represents the proportional factor of the first n modes. The larger the
proportional factor is, the closer it is to the actual vibration.
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Figure 4. Proportional factors of the first five modal effective masses.

Figure 4 shows that the modal proportional factors of the first three modes reached
80%. As the modal order increased, the proportional factor increased slightly. As a result,
the modal truncation order was selected as 3 in the simulation, considering both the
accuracy and the calculation complexity.
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3.2. Simulation of SSOS

In this section, we established a Simulink model, which was used to perform simu-
lations with the R-model and R-F-model to analyze the impact of rigid–flexible coupling
on the turntable’s rotation angles and acceleration responses. Thereafter, we performed
simulations with the R-model and R-F-model for different control frequencies to obtain
the optimal value of the control frequency. The control frequency represents the number
of instruction signals per second. In order to avoid resonance caused by coupling be-
tween the control frequency and the natural frequency of the turntable, we selected control
frequencies that are lower than 1/10 of the turntable’s natural frequency.

3.2.1. Simulink Model

The Simulink simulation model of the R-F-model was built based on the schematic
diagram in Figure 2. Some parameters of the turntable’s pitch axis are presented in Table 2,
and the flexible module was disabled when R-model simulations were conducted.

Table 2. System parameters.

Parameter Value Parameter Value

Kpθ 38.18 Ke 0.19
Kpω 18.84 Kt 0.21
Kiω 6.27 Lq 9.6 × 10−4 (H)
Kpi 2.02 R 1.56 (Ω)
Kii 315.13 Ta 6.17 × 10−4

KPWM 13.86 Ka 0.64
TPWM 0.001 J1 0.036 (kg·m2)

B 0.0033 J0 7.21 × 10−5 (kg·m2)

3.2.2. Acceleration Response Simulation under Angle Tracking Mode

The SSOS mainly operates in an angle tracking mode, and its axis always points to the
Sun. The solar altitude from 6:00 to 6:01 on March 24 was selected based on the simulation
input data, and the control frequency was 1 Hz. Figure 5a shows the tracking angle of
the R-F-model and R-model, where the red solid line is the curve of the R-F-model. The
green dotted line is the curve of the R-model, and the blue dashed line is the input angle.
Figure 5b depicts the R-F-model and R-model angle tracking errors. Figure 5 shows that
the angles of the R-F-model and R-model are similar, and the angle tracking errors are less
than 5”. Based on this figure, theoretically, the turntable’s structural flexibility with high
natural frequencies has little influence on the angle tracking.
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Figure 6 shows the acceleration spectral curves, indicating that the acceleration spectra
of the R-F-model generated peak responses in high frequencies caused by structural flexi-
bility compared with the R-model. Eventually, the extra responses caused by the structural
flexibility would affect the SSOS. The simulation results indicate that the rigid–flexible
coupling characteristic has little influence on the angle tracking of the simulation model.
However, this rigid–flexible coupling affects the high-frequency distribution of the acceler-
ation spectrum. This mechanism is essential for a spaceborne SSOS, as micro-vibrations
at a high frequency may negatively affect the satellites’ stable precision and the image
definition of optical cameras. Therefore, this issue requires attention, which is verified in
Section 4. Overall, the proposed coupling model can describe the difference between the
R-model and the R-F-model.
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Figure 6. Acceleration spectra.

3.2.3. Acceleration Response Simulations under Various Control Frequencies

We input the angle commands at different frequencies to conduct dynamic simulations,
selecting the solar altitude from 6:00 to 6:01 on March 24 as the simulation input data, where
the control frequencies were 0.2, 1, 2, 5, and 10 Hz. The maximum angle tracking error
curves under different control frequencies were obtained through simulations, as shown
in Figure 7, where the solid blue line is the R-F-model’s simulation result, and the dashed
red line is the R-model’s simulation result. These results indicate that the angle tracking
error decreases as the control frequency increases. The maximum angle tracking error is
less than 5′′, and it satisfies the angle tracking requirement when the control frequency is
higher than 1 Hz.
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Figure 8. Acceleration spectral curves: (a) acceleration spectra of the R-F-model and (b) accelera-
tion spectra of the R-model. 

Figure 7. Maximum angle tracking errors under different control frequencies.
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Figure 8 shows the acceleration spectral curves under different control frequencies,
where (a) shows the acceleration spectral curve of the R-F-model, and (b) shows the acceler-
ation spectral curve of the R-model. The third modal frequency of the turntable is 180.2 Hz
(Table 1), which amplifies the vibration of the turntable, resulting in a peak acceleration at
about 180 Hz in Figure 8. Moreover, the acceleration peak value increases as the control
frequency increases. We calculated the acceleration response’s root mean square (RMS)
values under different control frequencies, as shown in Figure 9a. Interestingly, the RMS
of the acceleration response of the R-F-model is two times larger than that of the R-model.
The RMS of the acceleration response shows an upward trend as the control frequency
increases. To obtain the optimal control frequency of the SSOS, the acceleration RMS and
maximum angle tracking error were plotted, as shown in Figure 9b. The acceleration RMS
and the angle tracking error shows opposite trends. When the input frequency was 2 Hz,
the angle tracking error is less than 5′′, lower than the precision SSOS requirement. The
angle tracking error tends to be convergent, and the acceleration RMS is relatively small at
the same time. As a result, 2 Hz was selected as the control frequency when developing
the SSOS.
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Figure 8. Acceleration spectral curves: (a) acceleration spectra of the R-F-model and (b) acceleration
spectra of the R-model.
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4. Experiments

We set up an SSOS experimental system to further prove the effectiveness of the
coupling model and the research value of flexible features in high-accuracy spaceborne
tracking instruments.

4.1. Experiment Setup

Figure 10a shows that the experimental system comprised a 2D turntable, three ac-
celerometers, a signal acquisition system, a controller, a power supply, and a computer with
control software. The type of the controller is Elmo’s BMTWID20SE. The accelerometers (P1,
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P2, and P3) were mounted on the rotating component of the 2D turntable. The experimental
setup is shown in Figure 10b. The angle command curve was input to the control software
to realize a continuous observation of the Sun, and the control frequencies were set to 1, 2,
5, and 10 Hz.
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4.2. Processing and Analysis of Experimental Data

Figure 11 shows the acceleration spectral curves, which are measured using accelerom-
eters. The control frequency is 2 Hz, where the blue solid, red dashed, and yellow dotted-
dashed curves represent the acceleration results measured using P1, P2, and P3, respectively.
The purple dotted curve shows the R-F-model simulation result, while the green curve
shows the R-model simulation result. The measured acceleration results show that there are
peaks between 100 and 200 Hz, indicating that resonances are generated by the coupling of
the turntable’s structural modes and the excitation frequency. The R-F-model simulation
result replicates the 2D turntable’s vibration characteristics in the high-frequency regions,
and its predictions were closer to the experimental results than those of the R-model. The
results showed that the mechanical–electrical–control coupling model could better reflect
the SSOS dynamic characteristics than the traditional rigid-body model when considering
rigid–flexible coupling characteristics.

We conducted tests to measure the acceleration responses at different control frequen-
cies (1, 2, 5, and 10 Hz). In Table 3, the experimental results of the acceleration peak values
and the corresponding frequencies are compared with those obtained with the R-F-model.
The average error of the frequencies is approximately 10.3%, while the average error of the
peak value is approximately 29.9%. The frequency errors of the R-F-model are smaller than
the ones of the R-model. However, the peak value errors are relatively large because it is
difficult to simulate all system characteristics, such as the structural damping ratio and
the nonlinear factors. However, the simulation model still simulates the high-frequency
vibrations of the system. The simulation results can help to predict the micro-vibration
frequencies and provide suggestions for vibration isolation design.
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Figure 11. Comparison of experimental and simulation results of acceleration.

Table 3. Frequencies and peak values of the simulations and experiments.

Frequency of
Simulation (Hz)

Frequency of
Experiment (Hz) Frequency Error Peak Value of

Simulation (m/s2)
Peak Value of

Experiment (m/s2)
Peak Value

Error

1 Hz 177.5 161.3 10.0% 0.0077 0.0055 44.0%
2 Hz 177.1 160.8 10.1% 0.0081 0.0063 28.6%
5 Hz 177.3 160.8 10.3% 0.0092 0.0073 26.0%

10 Hz 177.6 160.5 10.7% 0.0093 0.0077 20.8%

5. Conclusions

The purpose of this study is to investigate how the elastic characteristics and control
frequency impact micro-vibration acceleration responses in a high-precision SSOS. To
achieve this goal, we developed the R-F-model and R-model of the SSOS, and analyzed
the effect of rigid–flexible coupling by establishing the state-space model. We then built
a Simulink model using the Laplace transform to derive a transfer function model. By
simulating the R-F and R-model acceleration responses under the angle tracking mode,
we observed differences when flexible features were considered. Specifically, the RMS
of the model’s acceleration response was found to be two times larger than that of the
R-model. We also conducted simulations with various control frequencies to determine
the optimal value. Finally, we conducted experiments and validated the theoretical model
and simulation results using measured data under different control frequencies (1, 2, 5, and
10 Hz). Our findings suggest that the flexibility of the structure affects the high-frequency
distribution of the acceleration spectra and poses threats to the high tracking accuracy. This
study highlights the significance of elastic structures in dynamic response and provides a
valuable reference for the design and micro-vibrations of spacecraft structure systems.
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Appendix A

In the d- and q-axis coordinate systems [23], the motor magnetic linkage equations are
expressed as follows:

Ψd = Ldid + Ψm
Ψq = Lqiq

, (A1)

where Ψd and Ψq are the magnetic linkages along the d-axis and q-axis, respectively; Ld
and Lq are the inductances along the d-axis and q-axis, respectively; id and iq are the
currents along the d-axis and q-axis, respectively; and Ψm is the magnetic linkage of the
permanent magnet.

The voltage equations of the motor are expressed as follows:

ud = Rid +
dΨd
dt − ωeΨq = Rid + Ld

did
dt + dΨm

dt − ωeΨq

uq = Riq +
dΨq
dt + ωeΨd = Riq + Lq

diq
dt + ωeΨd

, (A2)

where ud is the voltage along the d-axis, uq is the voltage along the q-axis, ωe is the electrical
angle, ωe = pn

dθ
dt , pn represents the pole pairs of the motor, θ is the motor angle, and R is

the resistance.
The motor torque equation is expressed as follows:

Te = pn
[
Ψmiq +

(
Ld − Lq

)
idiq

]
, (A3)

where the first term is the magnetic excitation force, and the second term is the magnet
restraining torque.

Using the id= 0 control strategy, the required current is the minimum, and the max-
imum torque can be obtained per unit current. In this case, the magnetic linkage is
expressed as

Ψd = Ψm
Ψq = Lqiq

. (A4)

and the voltage equations are expressed as

ud = dΨm
dt − ωeLqiq

uq = Riq + Lq
diq
dt + ωeΨm

(A5)
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