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Abstract: The wing aerodynamic shape optimization is a typical high-dimensional problem with
numerous independent design variables. Researching methods to reduce the dimensionality of
optimization from the perspective of aerodynamic characteristics is necessary. One traditional
aerodynamic-based approach decouples the wing’s camber and thickness according to the thin
airfoil theory, but it has limitations due to unclear application scope and effectiveness. This paper
proposes an improved approach that determines the values of certain thickness variables based
on a data-driven aerodynamic characteristics model before optimization, which considers longitu-
dinal stability. By reducing the number of design variables, the dimensionality of optimization is
decreased effectively. The derivation of the improved approach is accomplished through the design
of experiments, parametric modeling, computational fluid dynamics, and sensitivity analysis. The
effectiveness of the improved approach is validated by applying it to the aerodynamic optimization
of an ONERA-M6 wing in subsonic flow based on the surrogate-based optimization algorithm. The
results demonstrate that the improved approach significantly accelerates the optimization process
while maintaining global effectiveness.

Keywords: aerodynamic optimization; surrogate-based optimization; variable reduction; data-driven
aerodynamic characteristics model; longitudinal stability

1. Introduction

Aerodynamic analysis and optimal design methodologies based on high-fidelity com-
putational fluid dynamics have become widespread in modern aircraft design with the
development of high-performance computing [1–3]. Currently popular optimization algo-
rithms for aerodynamics:

• Gradient-based algorithm
(e.g., Sequential quadratic programming algorithm (SQP), BFGS quasi-Newton algo-
rithm, conjugate gradient algorithm, etc.)
This type of optimization algorithm has a fast solution speed. Combining with the
adjoint method [4–6] can effectively solve the wing aerodynamic optimization problem
at high subsonic and transonic cruise conditions [7–9]. However, for addressing multi-
extremum problems, it is possible to fall into a local optimum due to the algorithm’s
inherent limitations.

• Gradient-free algorithm
(e.g., Genetic algorithm (GA), simulated annealing method (SA), particle swarm
optimization algorithm (PSO), etc.)
Some of these optimization algorithms have proved their good global search capabil-
ities in practice. Nonetheless, these algorithms require a great deal of aerodynamic
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evaluation during optimization, which will significantly increase the time and resource
cost [10].

The surrogate-based optimization method (SBO) [11–14] arose for the purpose of
enhancing optimization effectiveness and global search capability. Initially, this method
builds a surrogate model based on limited discrete samples to obtain continuous samples
and then searches for the optimum through traditional optimization methods. With the
deepening of the research, an optimization algorithm based on historical data to drive
the addition of new samples [15,16] and continuously reconstruct the surrogate model
to approach the local or global optimal solution has been formed [3,17–21]. This method
can not only enhance optimization efficiency and minimize computing costs but also help
eliminate numerical noise [22].

With the continuous advancement of aircraft design concepts and the continuous
improvement of design criteria, the number of independent design variables describing the
shape of the aircraft in aerodynamic optimization is increasing. Aerodynamic optimization
has steadily evolved into a typical high-dimensional optimization problem, and the “curse
of dimensionality” increases the computational cost of optimization [23,24]. There are
several potential solutions:

• Develop optimization strategies to enhance high-dimensional problem adaptability
Introducing low-fidelity sample data [25–29] or gradient information [30–33] into the
surrogate-based optimization algorithm to establish the surrogate model has been
proven effective. Combining parallel computing technology to develop a parallel
infilling strategy [34–36] to maximize the usage of high-performance computers’ large-
scale parallel computing capabilities

• Research into methods to reduce the dimensionality of optimization problems

Methods to reduce the dimensionality of aerodynamic optimization problems can be
classified into two categories in principle:

• Methods based on the analysis of data
Variable screening can minimize the number of design variables by finding the most
pertinent variables to the design problem and eliminating those that are less perti-
nent [37,38]. However, this method reduces the design space, and correlations of
omitted variables may surface later in the optimization.
Dimensionality reduction [39] can capture potential patterns in variables in a reduced
space without deleting any variables, therefore enabling optimization to be performed
in a reduced space [40–43]. Some nonlinear dimensionality reduction methods [44,45]
are also progressively applied to aerodynamic optimization

• Methods based on aerodynamic characteristics
One is the camber-thickness decoupling based on the thin-wing theory [46]. The
effects of camber and thickness are considered separately in the optimization [47,48].
However, this method has shortcomings in the clarity of the application scope and the
efficacy of efficiency enhancement.

The longitudinal stability of an aircraft is crucial for safety, control performance, and
flight efficiency. In aerodynamic optimization, longitudinal moment constraints should be
met to satisfy trim requirements. The position of the center of gravity (CG) is one of the
dominant factors determining the magnitude of the longitudinal moment. For aerodynamic
optimization of a fixed layout, a fixed CG position is commonly employed. However, in
cases where there are local shock waves on the upper/lower surfaces of the wing, or the
layout is not fixed, using a fixed CG position can lead to performance loss and deviation
from expected longitudinal stability. In such scenarios, it is advisable to adopt a fixed static
margin approach or consider the CG position as one of the design variables [7]. This allows
for dynamic adjustment of the CG position to meet static margin requirements during the
optimization process.
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The main contribution of the current paper is to develop an effective method from
the perspective of aerodynamic characteristics for reducing the dimensionality of wing
aerodynamic optimization problems at cruise conditions.

This paper is organized as follows. In Section 2, the traditional method based on
camber-thickness decoupling and the proposed improved approach are described. The
methodologies employed in the aerodynamic optimization and sensitivity analysis of
variance are introduced and discussed. In Section 3, the feasibility of the traditional
method is analyzed, and the influence of design variables in the objective function and
the main constraint function is investigated in the preliminary. In Section 4, a data-driven
aerodynamic characteristics model is established through decoupling analysis, and the
derivation of the improved approach is completed. In Section 5, the proposed improved
approach is demonstrated by the surrogate-based aerodynamic optimization of an ONERA-
M6 wing in subsonic flow. Finally, the conclusion is presented in Section 6.

2. Methodology
2.1. Geometric Parameterization

The wing planform is described by the following parameters: half-wingspan (b/2),
chord length (L), leading-edge sweep angle (Λ), twist angle (θ), and dihedral angle (Γ).
Figure 1 depicts the parametric modeling of a common wing planform, and the number of
wing sections varies on demand.
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Figure 1. Parametric modeling of wing planform.

The shape of the wing section is described by the improved geometric parameter
(IGP) airfoil parameterization method [49], which realized camber-thickness decoupling so
that camber and thickness could be constructed separately with the following 8 geometric
parameters. These parameters are illustrated in Figure 2.
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Camber parameters:

• Chordwise location of the maximum camber (XC)
• Maximum camber (C)
• Camber line curvature on the location of maximum camber (bXC )
• The angle between the camber line and the chord line on the trailing edge (αTE)

Thickness parameters:

• Chordwise location of the maximum thickness (XT)
• Maximum thickness (T)

• Dimensionless quantity of the leading-edge radius (ρ0 = ρ
Original
0 /(T/XT)

2)

• Dimensionless quantity of the trailing edge boat-tail angle (βTE = β
Original
TE /arctan

(T/(1− XT)))

In practical application, the camber parameters evolve into 4 parameters of the curve
that control the camber line. To verify the effectiveness of the IGP method, this method is
applied to fit 2174 airfoils in the Profili airfoil library (which contains most of the airfoils in
the UIUC airfoil database). Figure 3 shows the fitted result. The abscissa represents the
value of P. The left ordinate and histogram represent the frequency of P. The right ordinate
and curve represent the cumulative relative frequency of P. P is defined as:

P = 10log10(1− R2) (1)

where R = cov(yori , y f it)/(σyori σy f it). yori is the ordinate of the original airfoil in the Profili
airfoil library. y f it is the ordinate of the fitted airfoil. σ is the variance. cov is the covariance.
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The IGP method offers a good match for the entire library of airfoils. All 2174 airfoils
have a fitting precision R2 of 0.99 (P = −20).

2.2. Problem Definition and Methods for Reducing Dimensions

For a typical wing aerodynamic optimization problem at cruise conditions, the objec-
tive is to minimize the drag. The constraints are associated with the velocity, lift coefficient,
and pitch moment.

min CD

s.t.
{

V = V0, CL = CL,0
|Cm| ≤ |Cm,0|

(2)

With the continuous improvement of aircraft design criteria, increasing numbers of
independent design variables are required to describe the wing shape in aerodynamic opti-
mization. Consequently, wing aerodynamic optimization is a typical high-dimensional op-
timization problem, which results in slow optimization progress and a significant increase
in high-fidelity evaluations (e.g., CFD). Researching the method for reducing dimensions
from the perspective of aerodynamic characteristics is one of the most effective solutions to
the aforementioned problem.

2.2.1. The Traditional Aerodynamic-Based Method Based on Camber-Thickness Decoupling

The objective function CD and constraint function Cm can be expressed as a function
of design variables:

CD = fCD (WP, CA, TH)
Cm = fCm(WP, CA, TH)

(3)

where:

WP = {b, L, Λ, θ, Γ} is a variable set composed of all variables that describe the wing planform.
CA =

{
XC,i, Ci, bXC ,i, αTE,i

}
is a variable set composed of all variables that describe the

camber of the airfoil section, i = 1, 2, . . . , n is the wing section identifier.
TH = {XT,i, Ti, ρ0,i, βTE,i} is a variable set composed of all variables that describe the
thickness of the airfoil section.

According to the thin airfoil theory, when the angle of attack and camber-thickness are
small for an airfoil in ideal incompressible flow, the camber and thickness can be considered
separately. And CL, Cm is primarily determined by the angle of attack and camber.

If {WP, CA} and TH can be decoupled in the objective function CD (called “camber-
thickness decoupling”) and TH hardly contributes to the constraint function Cm, then the
optimization can be decomposed into 2 sub-optimizations:

1. Fix TH = TH0 and perform optimization min fCD (WP, CA, TH0), s.t. fCm(WP, CA, TH0)
2. Under the optimal result of 1 (WP = WP∗, CA = CA∗), execute optimization

min fCD (WP∗, CA∗, TH)

Since CA and TH account for most design variables, a higher-dimensional opti-
mization can be decomposed into 2 lower-dimensional optimizations through camber-
thickness decoupling. However, according to our experience, this method may have the
following shortcomings:

• The application scope is uncertain because of the unclear definition of low angle of
attack and small camber-thickness (Assumptions of the thin-wing theory).

• The total time of two lower-dimensional optimizations may not be less than that of a
higher-dimensional optimization.

2.2.2. The Improved Approach Based on Decoupling Analysis

Equation (3) can be expressed as:

CD = fCD (WP, CA, TH) = fCD (WP, CA, XT,i, Ti, ρ0,i, βTE,i)
Cm = fCm(WP, CA, TH)

(4)
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where i = 1, 2, . . . , n is the wing section identifier.
If for any values of {WP, CA}, the following properties are satisfied (the properties

are derived from our experience and will be demonstrated in Section 4):

• {XT,i}, {Ti}, {ρ0,i}, {βTE,i} can be decoupled from each other in the objective function CD.
• TH hardly contributes to the constraint function Cm.
• For any values of {XT,i, ρ0,i, βTE,i}, min( fCD ) = fCD (WP, CA, XT,i, min(Ti), ρ0,i, βTE,i).
• For any values of {XT,i, Ti, βTE,i}, min( fCD ) = fCD (WP, CA, XT,n, Tn, min(ρ0,n), βTE,n).
• For any values of {XT,i, Ti, ρ0,i, }, min( fCD ) = fCD (WP, CA, XT,n, Tn, ρ0,n, min(βTE,n)).

Then Equation (4) can be further simplified as:

CD = fCD (WP, CA, XT,n, min(Tn), min(ρ0,n), min(βTE,n))
Cm ≈ fCm(WP, CA)

(5)

Since TH accounts for most design variables and values of Tn, ρ0,n, βTE,n can be de-
termined before optimization, a higher-dimensional optimization can be converted into a
lower-dimensional optimization. The number of reduced dimensions is 3n (where n is the
number of wing sections), and the effect of dimension reduction is amplified as the number
of wing sections increases.

2.3. Aerodynamic Analysis

The computational fluid dynamics (CFD) method based on Reynolds-Averaged Navier–
Stokes (RANS) equations with the Spalart–Allmaras turbulence model [50] is adopted for
evaluating the aerodynamic characteristics. The experimental data of the ONERA-M6
wing [51] and a clean wing [52] are utilized as benchmarks to validate the accuracy of the
CFD simulation. The flow condition of the ONERA-M6 wing is given by a freestream
condition of Ma = 0.84, Re = 1.17× 107, α = 3.06◦, and the flow condition of the clean
wing is Ma = 0.13, Re = 1× 106. Figure 4 depicts the O-type structured mesh adopted
in CFD simulation. Ensuring y+ < 1 is crucial to resolve the boundary layer adequately.
Figures 5 and 6 demonstrate a good agreement between the CFD simulation and the exper-
imental data.
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2.4. Dynamic Adjustment of the Center of Gravity

The position of the center of gravity (CG) significantly influences the pitch moment
and longitudinal stability of an aircraft. At the conceptual and preliminary design stages of
an aircraft, the CG location should be optimized subject to trim and longitudinal stability
constraints. The core idea of our approach is to optimize and adjust the CG position for
each configuration in accordance with the specified longitudinal static stability margin (Kn),
subsequently ensuring compliance with pitch moment constraints. Kn can be calculated as
the ratio of the moment and lift derivatives:

Kn = −Cmα

CLa
(6)

where Cmα = dCm
dα , CLα = dCL

dα . These can be calculated using finite differences with an
angle of attack step size of 0.1 deg.
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The process of dynamically adjusting the CG position can be transformed into the
following sub-optimization:

min |Kn − Kn,0|
s.t. xl < xCG < xu

(7)

where Kn is the static margin at any xCG, Kn,0 is the expected static margin. In all subsequent
studies within this paper, this method is employed for dynamically adjusting the CG
position, followed by the calculation of the pitching moment.

2.5. Surrogate-Based Optimization Algorithm

Surrogate models are mathematical models that can replace computationally complex
and time-consuming numerical analysis models in analysis and optimization design. The
surrogate-based aerodynamic optimization model represents a type of aerodynamic op-
timization method that uses surrogate modeling technologies to find the local or global
best rapidly. This method cannot only significantly improve the efficiency of optimiza-
tion design and reduce the complexity of engineering systems, but it can also filter out
numerical noise and realize parallel optimization. With the advancement of research, a
surrogate-based optimization algorithm is developed to drive the addition of new samples
based on previous data and ultimately locate the local or global optimum.

2.5.1. Algorithm Framework

The surrogate-based optimization algorithm with a parallel infilling strategy and
CFD is employed to solve the wing aerodynamic optimization problem. Figure 7 shows
the flowchart.
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The specific optimization process is as follows:

1. Generate initial samples by the design of experiments (DoE). The Optimal-LHS
method derived from the LHS method ensures a high level of uniformity in design
space-filling, as Figure 8 shows.

2. Evaluate samples by CFD with distributed computing, and the response values of
objective and constraint functions are obtained.

3. Construct surrogate models (Kriging model).
4. According to the infill criteria [23] of CMP, CEI-1, CEI-2, and CPI (CEI-1 and CEI-2 are

derived from multi-EI [34]), construct the sub-optimization problem. The traditional
optimization algorithms (e.g., GA, SQP) are used to solve for new samples.

5. Evaluate new samples by CFD with distributed computing, and the response values
of objective and constraint functions are obtained.

6. Return to step (3), add new samples to the dataset, and update the surrogate model.
Repeat the preceding steps until the resulting sample converges to the local or global
optimal solution.
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We can verify the efficacy of this framework by substituting CFD optimization prob-
lems with basic functions and executing optimization.

2.5.2. Constrained Global Optimization Test Case of a G9 Function

The G9 function is selected as the first test case, which is a frequently used benchmark
test case to evaluate global optimization algorithms. This problem contains 7 variables
and 4 constraints, and its feasible domain represents only 0.5% of the design space. The
problem is described as follows:

min f (x) = (x1 − 10)2 + 5(x2 − 12)2 + x4
3 + 3(x4 − 11)2

+10x6
5 + 7x6

2 + x7
4 − 4x6x7 − 10x6 − 8x7

w.r.t xi = [−10, 10], i = 1, 2, . . . , 7

s.t.


g1(x) = 127− 2x1

2 − 3x2
4 − x3 − 4x4

2 − 5x5 ≥ 0
g2(x) = 282− 7x1 − 3x2 − 10x2

3 − x4 + x5 ≥ 0
g3(x) = 196− 23x1 − x2

2 − 6x2
6 + 8x7 ≥ 0

g4(x) = −4x1
2 − x2

2 + 3x1x2 − 2x3
2 − 5x6 + 11x7 ≥ 0

(8)

The known optimum of this problem:

x∗ = (2.330499, 1.951372,−0.4775414, 4.365726,−0.6244870, 1.038161, 1.594227)
f (x∗) = 680.6300573
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A total of 16 initial samples are obtained by the Optimal-LHS method to begin the
optimization. The convergence history of optimization is sketched in Figure 9. The results
show it converges to the global minimum after 60 iterations for a total of 240 function
evaluations (4 new samples generated per iteration). We consider that it can be regarded as
finding the optimum when the relative error is lower than 0.1%.
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2.5.3. Unconstrained Global Optimization Test Case of a Sum-Squares Function

We further use the Sum-Squares function as a test case for high-dimensional optimiza-
tion. This problem contains 30 variables and has no constraints, described as follows:

min f (x) =
n
∑

i=1
(ix2

i )

w.r.t xi = [−2, 2], i = 1, 2, . . . , n, n = 30
(9)

The true optimum of this problem: x∗ = [0, . . . , 0], f (x∗) = 0.
A total of 40 initial samples are obtained by the Optimal-LHS method to begin the

optimization. The convergence history of optimization is sketched in Figure 10. The results
show it converges to the global minimum after 80 iterations for a total of 320 function
evaluations (4 new samples generated per iteration). It can be regarded as finding the
optimum when the objective value is lower than 0.1%.
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2.6. Sensitivity Analysis of Variance

Identifying each design variable’s effect on the function is necessary before the opti-
mization begins. Once the surrogate model (ŷ = f (x)) has been constructed, functional
analysis of Variance (ANOVA) [53,54] can accomplish the aforementioned goal by decom-
posing the model’s total variance into that of each design variable and its interaction. This
method requires the function (ŷ = f (x)) to be centralized:∫ 1

0
f (xt1 , . . . , xtk )dtj = 0, tj = 1, . . . , k (10)

The total mean (µtotal) and total variance (σ2
total) of model ŷ are as follows:

µtotal =
∫

f (x1, . . . , xn)dx1 . . . dxn

σ2
total =

∫
[ f (x1, . . . , xn)− µtotal ]

2dx1 . . . dxn
(11)

The main effect of variable xi is:

Si =
σ2

i
σ2

total
=

∫
[µi(xi)]

2dxi

σ2
total

(12)

where µi(xi) =
∫

f (x1, . . . , xn) ∏
k 6=i

dxk − µtotal

The two-way interaction effect of variable xi, xj is:

Si,j =
σ2

i,j

σ2
total

=

∫ [
µi,j(xi,j)

] 2dxidxj

σ2
total

(13)

where µi,j(xi,j) =
∫

f (x1, . . . , xn) ∏
k 6=i,j

dxk − µi(xi)− µj(xj)− µtotal

In general, the interaction effect of variable xt1 , . . . , xtk is:

St1 ...tk =
σ2

t1 ...tk

σ2
total

=

∫
µ2

t1 ...tk
dxt1 . . . dxtk

σ2
total

(14)

The sensitivity indices (S) indicate the effect of design variables in the objective
function. All the St1 ...tk are nonnegative, and their sum is:

n

∑
k=1

n

∑
t1<...<tk

St1 ...tk = 1 (15)

In particular, if S1 + . . . + Sn = 1, that means f (x) is a sum of one-dimensional functions:

f (x) = f0 +
n

∑
i=1

fi(xi) (16)

To verify the correctness of the solver, a function with separated variables is considered:

f (x) =
n

∏
i=1

|4xi − 2|+ pi
1 + pi

(17)

where n = 8, p1 = p2 = 0, p3 = . . . = p8 = 3.
Figure 11 shows the theoretical values [54] and calculated values from our solver of

the effect of design variables on function. It can be seen that the value calculated by our
solver is in good agreement with the theoretical value. S1 + S2 means the sum of the main
effect of x1, x2, S1,2 means the interaction effect of x1, x2.
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Figure 11. Comparison of theoretical and calculated values of sensitivity of a benchmark function.

3. Analysis Based on the Traditional Method

The key to the traditional method is that variables describing the wing planform
and sections’ camber ({WP, CA}) and variables describing sections’ thickness (TH) can
be decoupled in the objective function CD, and TH hardly contributes to the constraint
function Cm.

We select 3 wing planforms of DLR-F4, ONERA-M6, and a typical flying wing to
investigate the coupling phenomenon of CA and TH in the objective function CD and the
constraint function Cm in a given V, CL, and design space. The top view of these wings
is shown in Figure 12. The proportions of all wing planforms are scaled to be essentially
identical, and twist and dihedral angles are eliminated.
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Figure 12. Wing planforms of DLR-F4, ONERA-M6, and a typical flying wing.

For sections’ parametric modeling, we specify the identical airfoil for each section of
each wing planform and adopt the IGP method. A wide-range and a low-range design
space are used in this analysis. The wide-range design space is defined as containing about
95% airfoils in the Profili airfoil library, while the low-range design space contains about
40%. A total of 8 parameters of the IGP method are used as design variables, and the
procedure of analysis is described as follows:

For each design space (wide-range and low-range):

1. Generate 300 samples by the Optimal-LHS method.
2. Evaluate each sample at 0.147Ma by CFD.
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3. Define the longitudinal static stability margin Kn = 3.5% and automatically adjust the
CG position. CD, Cm at CL = [0.6, 0.8, 1] · CL,(L/D)max

are used as the response values
to build the surrogate model:

CD = fCD (CA, TH)
Cm = fCm(CA, TH)

(18)

4. Based on ANOVA analysis, SCA, STH , SCoupled in CD, Cm are obtained, where:
SCA means the sum of the main effects of CA
STH means the sum of the main effects of TH
SCoupled means the interaction effect between CA and TH

There are 900 samples (3 configurations × 300) per design space, and each sample
needs to be evaluated for 4 angles of attack states and a specific velocity state. A total
of 7200 (2 × 3 × 300 × 4) CFD evaluations are required. The CFD evaluation adopts the
O-type structured mesh, with about 3 million cells in each model.

The results of wide-range and low-range design spaces are presented as pie charts in
Figures 13 and 14. The inner ring pie chart represents CD, and the outer pie chart represents
Cm. The following conclusions can be drawn:

• In wide-range design spaces, the interaction effect between CA and TH in the objective
function CD cannot be ignored.

• In low-range design spaces, the interaction effect between CA and TH in the objective
function CD appears unimportant.

• In both wide-range and low-range design spaces, TH hardly contributes to the con-
straint function Cm.
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The shortcomings of this method are further explained as follows:

• The applicable range is ambiguous since the definitions of low angle of attack and
small camber-thickness are unclear. This section demonstrates that this method became
possible due to the drastic reduction of the design space.

• To reach the same objective, two lower-dimensional optimizations may not take less
time than one higher-dimensional optimization.

• In contrast to some rapid aerodynamic evaluation methods (e.g., vortex lattice method)
that only require the data of the camber in the wing, the CFD-RANS method requires
the complete data of thickness and camber. This means that before we start the first
low-dimensional optimization (planform and camber optimization), we need to assign
values to thickness variables for which the logic of the assignment is unclear.

4. Complete Derivation of the Improved Approach

The following steps are required to verify the preceding inference in Section 2.2.2:

1. Verify that thickness variables {XT,i}, {Ti}, {ρ0,i}, {βTE,i} can be decoupled from
each other in the objective function CD, and TH hardly contributes to the constraint
function Cm. Where i = 1, 2, . . . , n is the wing section identifier.

2. Establishing a data-driven aerodynamic characteristics model analyzing the correla-
tions between XT,i, Ti, ρ0,i, βTE,i and objective function CD.

To complete the preceding steps and ensure the universality of the results, 22 configu-
rations of wing camber surfaces without thickness (only use {WP, CA} as design variables)
are generated using the geometric parameterization method and the design of experiments.
The design variable and value ranges are shown in Figure 15 and Table 1.
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Figure 15. Design variables for wing planform used to generate wing camber surfaces.

Table 1. Range of values for design variables.

Baseline Lower Limit Upper Limit Range

L1 805.9 644.7 967.1 ±20%
L3 453.3 362.6 544.0 ±20%

b2/2 1196.3 837.4 1555.2 ±30%
Λ1, Λ2 30 0 45 /

θ2 0 −4 2 /
θ3 0 −8 2 /

Γ1, Γ2 0 −15 15 /
Section 1,2,3 / IGP (4 camber parameters)

Note: L2 = (L1 + L3)/2, b1 = b2/2, Length in mm, Angle in degree.

4.1. Verification of Decoupling of Thickness Variables

A total of 12 thickness variables (3 sections, 4 thickness variables per section) are used
as design variables.

For each configuration of wing camber surface (total of 22 configurations):

1. Generate 100 samples by the Optimal-LHS method.
2. Evaluate each sample at [0.147, 0.3, 0.6]Ma by CFD.
3. CD at CL = [0.75, 1] · CL,(L/D)max

are used as the response values to build the
surrogate model:

CD = fCD ({XT,i}, {ρ0,i}, {ρ0,i}, {βTE,i}) (19)

where i = 1, 2, 3 represents the wing section identifier.
4. Based on ANOVA analysis, S{XT,i}, S{Ti}, Sρ0,i}, S{βTE,i} in CD are obtained.
5. Define the longitudinal static stability margin Kn = 3.5% and automatically adjust the

CG position. Cm at CL = [0.75, 1] · CL,(L/D)max
are used to analyze the magnitude of

the influence of thickness variables on constraint function.
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There are 2200 (22 configurations × 100) samples, and each sample needs to be
evaluated for 4 angles of attack states and 3 velocity states. A total of 26,400 (22 × 100 ×
4 × 3) CFD evaluations are required. The CFD evaluation adopts the O-type structured
mesh, with about 3 million cells in each model.

Let SCoupled = 1− (S{XT,i} + S{Ti} + S{ρ0,i} + S{βTE,i}), and values of all configurations
are presented in Figure 16 as a box plot. Since planform variables and camber variables of
each non-thickness configuration are randomly sampled, and thickness variables overlaid
on this configuration are also generated through random sampling, this can lead to the gen-
eration of unusual wing shapes. These unusual wing shapes are prone to flow separation
under the given flow conditions, resulting in the occurrence of outliers that do not satisfy
the decoupling conditions at 0.6Ma. Table 2 provides the flow conditions and the number
of samples in which flow separation occurred during CFD aerodynamic evaluation after
overlaying the thickness variable for these 22 non-thickness configurations. The criterion
for evaluating the occurrence of flow separation is whether the wing surface streamlines
detach from the body.

Figure 17 depicts the standard deviation of the influence of thickness variables (TH)
on Cm (Excluded configurations with airflow separation). The longitudinal static stability
margin of each configuration is 3.5%, and the magnitude of the influence on Cm remains
at 10−3.
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Table 2. The flow conditions and the number of samples in which flow separation occurred.

Configuration Flow Conditions Number of Samples
(Existent Flow Separation)

1 V = 0.6Ma
CL = 0.75CL,(L/D)m a x

0
CL = CL,(L/D)m a x

17

3 V = 0.6Ma
CL = 0.75CL,(L/D)m a x

0
CL = CL,(L/D)m a x

13

8 V = 0.6Ma
CL = 0.75CL,(L/D)m a x

21
CL = CL,(L/D)m a x

1
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Figure 17. The standard deviation of the influence of thickness variables on Cm of all configurations
(longitudinal static stability margin is 3.5%).

From Figure 16 and Equation (16) and Figure 17, we can conclude that within the
given V, CL, and design space, for any values of {WP, CA}:
• {XT,i}, {Ti}, {ρ0,i}, {βTE,i} can be decoupled from each other in the objective function

CD. (we consider SCoupled negligible below about 5%)
• TH hardly contributes to the constraint function Cm.

4.2. Establishment of the Data-Driven Aerodynamic Characteristics Model

According to the conclusions in Section 4.1, the relationship between thickness variable
sets ({XT,i}, {Ti}, {ρ0,i}, {βTE,i}) and objective function CD can be analyzed decoupled. We
obtain the source data through the following steps to establish the data-driven aerodynamic
characteristics model:

There are 4 rounds in all:
1st round, Pi = XT,i
2nd round, Pi = Ti
3rd round, Pi = ρ0,i
4th round, Pi = βTE,i
Where i = 1, 2, 3 represent the wing section identifier.
In each round, for each configuration (22 configurations in total) of wing camber surface:

1. {Pi} are used as design variables (3 sections, a total of 3 variables) to generate
28 samples by the Optimal-LHS method, while the remaining thickness variables
are generated randomly. Combine wing camber surfaces to form wing shapes.

2. Evaluate each sample at [0.147, 0.3, 0.6]Ma by CFD.
3. CD at CL = [0.75, 1] · CL,(L/D)max

are used as the response values to build the
surrogate model:

CD = fCD ({Pi}) (20)

4. Based on ANOVA analysis, Si in CD are obtained, where:
5. First-order fit P and CD, where:

P = S0P0 + S1P1 + S2P2 (21)
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There are 2464 (22 configurations × 4 types of thickness variables × 28) samples, and
each sample needs to be evaluated for 4 angles of attack states and 3 velocity states. A total
of 29,568 (22 × 4 × 28 × 4 × 3) CFD evaluations are required. The CFD evaluation adopts
the O-type structured mesh, with about 3 million cells in each model.

Figure 18 depicts the result of configuration 1 and serves as an example for later figures.
The dots indicate the original data of samples, while curves show the first-order fitting
result. The diagram from left to right illustrates the relationship between XT , T, ρ0, βTE
and CD.
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Figure 18. Relationship between thickness variables and CD of configuration 1 at 0.147Ma.

The results of all configurations at different velocities are shown in Figures 19–21
(See Figure 18 for the chart format). Each figure is divided into 22 regions, each of which
represents a configuration. In each region, the leftmost is the geometric shape of the config-
uration, while the 4 diagrams on the right illustrate the correlation between XT , T, ρ0, βTE
and CD. As can be seen from the figure, the correlation between T, ρ0, βTE and CD of each
configuration is strong and positive, while the correlation of XT is weak.
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We further define the Spearman correlation coefficient (R) to measure the correlation.
The absolute value of the correlation coefficient (|R|) is between 0 and 1. A correlation value
of 1 shows a complete association, while a correlation value of 0 indicates no correlation.
All results are presented in Figure 22 (where P = 10log10(1− |R|)). The |R| of T, ρ0, βTE
are greater than 0.9, which further illustrates the high correlation between T, ρ0, βTE and
CD. And the |R| of XT range from 0 to 1, which means its correlation is weak.
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From Figures 18–21, we can conclude that within given V, CL, and design space, for
any values of {WP, CA}:
• For any values of {XT,i, ρ0,i, βTE,i}, min( fCD ) = fCD (WP, CA, XT,i, min(Ti), ρ0,i, βTE,i).
• For any values of {XT,i, Ti, βTE,i}, min( fCD ) = fCD (WP, CA, XT,n, Tn, min(ρ0,n), βTE,n).
• For any values of {XT,i, Ti, ρ0,i, }, min( fCD ) = fCD (WP, CA, XT,n, Tn, ρ0,n, min(βTE,n)).

Based on the aforementioned conclusions, we can develop a data-driven aerodynamic
characteristics model. In the given V, CL, and design space:

∀{WP, CA} ∈ R,
{

CD = fCD (WP, CA, XT,n, min(Tn), min(ρ0,n), min(βTE,n))
Cm ≈ fCm(WP, CA)

(22)

4.3. Application Scope

Since it is difficult to prove the applicable boundary strictly, we provide the range
based on calculation and experience. The criteria for determining the applicability of this
method are as follows:

1. There is no regional flow separation on the upper and lower surfaces of the wing.
2. The coupling (SCoupled) of {XT,i}, {Ti}, {ρ0,i}, {βTE,i} is not greater than about 5%.
3. The correlation coefficient (|R|) between X, T, ρ0, βTE and objective function CD is

greater than about 0.9.

The following variables have a significant impact on the applicability of this approach:

• Mach number (Ma)∈ [∗, 0.147] ∪ [0.147, 0.6]Ma

Uncertainty of lower limit. The Reynolds number decreases as the Ma decreases,
which may result in more significant laminar flow effects. Higher Ma may result in shock
waves on the wing surface, and this airfoil parameterization method (IGP method) has
poor adaptability to transonic flow due to its lack of local geometric modification capability.
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• Design lift coefficient (CL) ∈ [0.75, 1] · CL,(L/D)max

Lower or Higher CL results in stronger coupling between design variables in some
configurations. Meanwhile, higher CL exceeds the lift coefficient at the maximum lift-drag
ratio. The aircraft can easily enter the speed instability area, which is not conducive to
flight control.

• Leading-edge sweepback (Λ)∈ [0, 45]deg

Large Λ increases the equivalent angle of attack of the vertical leading edge, which
more easily causes the leading-edge airflow separation.

• The IGP method’s parameters. On the basis of design space containing 95% of the
airfoils in the Profili airfoil library:

XC ∈ [9.6, 87.5]%, C ∈ [−2.7, 6.4]%, XT ∈ [20, 45]%, T ∈ [8, 18]%

A larger camber with a smaller thickness makes it easier to cause airflow separation
on the wing surface.

Please note that this method is still partially available beyond this range but may incur
some performance loss that is difficult to quantify.

5. Validation by Surrogate-Based Aerodynamic Optimization

In contrast to transonic aerodynamic optimization, low subsonic aerodynamic op-
timization is less sensitive to the geometric shape, as demonstrated by the fact that two
geometrically distinct designs can achieve almost identical aerodynamic performance un-
der given conditions. Therefore, low subsonic optimization is a typical multi-extreme
problem, necessitating an optimization method with a high global search capability. Low
global search capability can easily lead to optimization results with unusable geometry. As
a verification case, we select a surrogate-based low subsonic aerodynamic optimization
based on the aforementioned concerns.

5.1. Determination of Full-Dimensional and Reduced-Dimensional Optimization

According to whether the improved approach is adopted, aerodynamic optimization
is classified into 2 types: full-dimensional optimization and reduced-dimensional optimiza-
tion. In reduced-dimensional optimization, certain thickness variables (T, ρ0, βTE) can
be determined before optimization by the proposed improved approach. By comparing
the full-dimensional and reduced-dimensional optimization of an ONERA-M6 wing in
subsonic flow, the effectiveness of the improved approach can be verified.

The optimization problem is stated below as Equation (23). The objective is to minimize
the drag. The constraints are associated with the velocity, lift coefficient, pitch moment
(longitudinal static stability margin is set to 3.5%), area of the wing, maximum thickness,
and dimensionless quantity of the trailing edge boat-tail angle of all wing sections. The
design variables and their value ranges are depicted in Figure 23 and Table 3.

min CD

s.t.


V = 0.147Ma, CL = 0.3
|Cm| ≤ 0.03
|Sw − Sw,0|/Sw,0 ≤ 5%
T1 ≥ 12%, T2, T3 ≥ 10%
βTEi ≥ βTEi,0, i = 1, 2, 3

(23)
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Table 3. Range of values for design variables.

Baseline Full-Dimensional
(30 Variables)

Reduced-Dimensional
(21 Variables)

L1 805.9 [0.85, 1.15] · Baseline

Same as
Full-dimensional

L3 453.3 [0.85, 1.15] · Baseline
b/2 1196.3 [0.85, 1.15] · Baseline
Λ1 30 [−5, 5] + Baseline
θ2 0 [−4, 2]
θ3 0 [−8, 2]

Section 1 NACA 0012 IGP
8 parameters

IGP
5 parameters

(XC, C, bXC , αTE, XT)
Section 2 NACA 0008
Section 3 NACA 0008

Note: Length in mm, Angle in degree.

5.2. Optimization Results

Optimal-LHS is used to generate 60 initial samples, and the surrogate models of each
objective and constraint function are established, respectively. Then, 4 infill criteria of CMP,
CEI-1, CEI-2, and CPI are used for iterative optimization (4 new samples generated per
iteration). During the optimization process, the initial and new samples obtained in each
iteration are evenly distributed to 256 CPU cores (@2.25GHz) for parallel computing.

Figure 24 sketches the convergence history of 2 types of optimizations. Compared
with the baseline, the optimized CD is reduced by 13.59% (177.42 to 153.30 counts) in full-
dimension optimization and 13.61% (177.42 to 153.28 counts) in reduced-dimension opti-
mization, and other variables strictly meet the constraints. Compared with full-dimensional
optimization, reduced-dimensional optimization starts from a lower initial value and con-
verges faster.

Figure 25 compares the planform, pressure distributions, and spanwise lift distri-
butions of the baseline wing and the optimal wing. Compared with the baseline, the
suction peak on the upper surface shifts backward, therefore expanding the region of the
favorable pressure gradient. In addition, the spanwise lift distributions of optimal wings
are closer to the elliptical distribution. Compared with full-dimensional optimization,
the reduced-dimension optimization result has the same planform and similar pressure
distribution. Our analysis reveals that the difference in pressure distribution is attributable
to the optimization’s randomness.
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Please note that the optimal planform presented is constrained by the limitations
specified. The value of Cm after optimization is greater than the baseline because the
constraint value of Cm is set to 0.03 to expand the feasible region to verify further the
effectiveness of the improved approach and the surrogate-based optimization algorithm.

Furthermore, in order to eliminate the effect of randomness, each type of optimiza-
tion is repeated 3 times. Figure 26 shows the average convergence history of 2 types of
optimizations in normal and semi-logarithmic coordinates (where P = CD − 153). The
reduced-dimensional optimization with the improved approach significantly improves
the convergence speed while maintaining global convergence. More detailed optimization
results are listed in Table 4. On average, reduced-dimensional optimization is 43% quicker
than full-dimensional optimization. As the number of wing sections increases, the number
of dimensions that can be reduced increases, and the optimization speeds up further. Judg-
ing from the prediction accuracy of the surrogate model at the optimal value, the surrogate
model is accurate enough for the engineering designer.
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Table 4. Results of repeated 3 runs during optimizations.

No.
Number
of CFD

Evaluations

Total
Time Cost

(h)

Average
Time Saved

(%)

Optimal Results
Reduction of CD

(%)

Prediction Error of CD
at Optimum

(%)CL
CD

(Counts) Cm

Baseline 0.3 177.42 −0.0092

Full-
dimensional

1 60 + 360 45.5 0.3 153.34 −0.0300 13.57 0.024
2 60 + 360 45.6 0.3 153.30 −0.0298 13.59 0.024
3 60 + 360 45.3 0.3 153.31 −0.0299 13.59 0.020

Reduced-
dimensional

1 60 + 200 25.8
42.96

0.3 153.37 −0.0299 13.56 0.016
2 60 + 200 26.2 0.3 153.37 −0.0299 13.56 0.002
3 60 + 200 25.8 0.3 153.28 −0.0300 13.61 0.013

Note: Each CFD evaluation consists of 4 Angle of attack state evaluations.

The details of the wing planform are listed in Table 5. Figure 27 depicts the average
geometric shapes of wing sections of repeated 3 runs during optimizations. Compared
with these results of full-dimensional and reduced-dimensional optimization, the wing
planform is the same, and each section’s average shape and twist angle are highly similar.
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Table 5. Results of wing planform of repeated 3 runs during optimizations.

No. L1 L3 b/2 Λ1 ∆Sw

Baseline 805.9 453.3 1196.3 30
Full-

dimensional
Both in

1,2,3 runs 685.0 385.3 1375.7 35 −2.25%

Reduced-
dimensional

Both in
1,2,3 runs 685.0 385.3 1375.7 35 −2.25%

Note: Length in mm, Angle in degree.
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Figure 27. Average geometric shapes of wing sections of optimal wings of repeated 3 runs
during optimizations.

Please note the optimized shape of the wing in Section 3 in Figure 27, where the
leading edge is sharp because of lower ρ0 and large XT . The airflow is slightly separated as
it passes over the wingtip of the baseline because the wingtip is not modified to make a
smooth transition. The optimized shape reduces the flow separation area at the wingtips,
as shown in Figure 28. However, this shape will lead to a sharp increase in the suction peak
at the leading edge as the angle of attack increases. The increase in the adverse pressure
gradient on the upper surface will lead to flows separating at the leading edge more easily.
This issue can be improved by adding constraints on XT and ρ0 in the optimization and
modifying the wingtip.

The values of T, ρ0, βTE of 2 types of optimizations are listed in Table 6. It is evident that
the values determined through the improved approach before optimization are identical
to those acquired by full-dimensional optimization. This reverse verifies the correctness
of the relationship between thickness variables (T, ρ0, βTE) and the objective function CD
described in Section 4.2.
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Table 6. Results of T∗, ρ∗0 , β∗TE of repeated 3 runs during optimizations.

No. T1, T2, T3 ρ0.1, ρ0.2, ρ0.3 βTE,1, βTE,2, βTE,3

Full-
dimensional

Both in
1,2,3 runs

0.12, 0.10, 0.10 0.16, 0.16, 0.16 1.50, 1.50, 1.50
(Determine by optimization)

Reduced-
dimensional

Both in
1,2,3 runs

0.12, 0.10, 0.10 0.16, 0.16, 0.16 1.50, 1.50, 1.50
(Determine by the improved approach)

6. Conclusions

From the perspective of reducing dimensions based on aerodynamic characteristics,
aiming to address the shortcomings of the traditional method based on camber-thickness
decoupling, this paper proposed an improved approach to reduce dimensions to accelerate
the wing aerodynamic optimization process at cruise conditions. The improved approach
was derived through the analysis of the traditional method, the decoupling analysis of
thickness variables, and the establishment of a data-driven aerodynamic characteristics
model. The surrogate-based aerodynamic optimization of an ONERA-M6 wing in sub-
sonic flow verified the effectiveness of the proposed improved approach. The following
conclusions are drawn:

• In the design space encompassing about 95% of the Profili airfoil library, camber and
thickness variables in the objective function CD are strongly coupled. As the design
space is drastically reduced to 40%, decoupling can be achieved gradually. The constraint
function Cm is determined primarily by the wing planform and camber variables.

• For each configuration with varied planform and camber variables in a particular V,
CL, and design space, thickness variables (XT , T, ρ0, βTE) in the objective function CD
can be decoupled separately, while the influence of thickness variables in the constraint
function Cm is kept to a tiny order of 10−3(longitudinal static stability margin is 3.5%).

• With the conclusions in (1) (2) and the data-driven aerodynamic characteristics model,
it is possible to first identify certain thickness variables (T, ρ0, βTE) according to the
minimization based on the structural requirements. The dimension reduction amounts
to 3n (where n represents the number of wing sections). As the number of wing
sections increases, the effect of dimension reduction becomes more pronounced.

• In the aerodynamic optimization of an ONERA-M6 wing, the reduced-dimensional op-
timization (21-dimensional) utilizing the improved approach and the full-dimensional
optimization (30-dimensional) have a consistent optimization effect (compared with
the baseline, CD is reduced by about 13.6%). The results have a uniform planform
and highly similar average shape of wing sections. The application of the improved
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approach accelerates the optimization process by an average of 43%. The values of
T, ρ0, βTE determined by the improved approach are consistent with the results of
full-dimensional optimization, which proves the accuracy of the aerodynamic charac-
teristics model in reverse.

Overall, we proposed an improved approach on the premise that the airfoil param-
eterization method has a robust physical meaning (e.g., IGP, PARSEC). Unfortunately,
this approach is not applicable to transonic aerodynamic optimization. Moreover, other
commonly used airfoil parameterization methods (e.g., CST) have no apparent physical
meaning but have strong local geometric modification capability. Since subsonic aerody-
namic optimization is a typical multi-extreme problem, we will attempt to transform this
paper’s findings into optimization constraints to accelerate optimization by reducing the
feasible domain in the future.
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Nomenclature

α angle of attack
b wingspan
bXC camber line curvature on the location of maximum camber
C maximum camber
CA a variable set composed of all variables that describe sections’ camber
CG center of gravity
CD drag coefficient
CL lift coefficient
CL,(L/D)max

lift coefficient at maximum lift-to-drag ratio
Cm pitch moment coefficient
Cp pressure coefficient
Kn longitudinal static stability margin
L chord length
L/D lift-drag ratio
Ma Mach number
S sensitivity indices, indicates the effect of design variables on the function
Sw wing area
T maximum thickness

TH a variable set composed of all variables that describe sections’ thickness
V velocity
WP a variable set composed of all variables that describe the wing planform
XC chordwise location of the maximum camber
XT chordwise location of the maximum thickness
αTE the angle between the camber line and the chord line on the trailing edge
βTE dimensionless quantity of the trailing edge boat-tail angle
Γ dihedral angle
Λ leading-edge sweep angle
ρ0 dimensionless quantity of the leading-edge radius
θ twist angle
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