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Abstract: The design of integrated and highly efficient solutions for thermal management is a key
capability for different aerospace products, ranging from civil aircraft using hydrogen on board to
miniaturized satellites. In particular, this paper discloses a novel numerical tool for the design and
thermal performance assessment of heat pipes. To achieve this goal, a numerical Ansys Parametric
Design Language code is set up to verify the effective subtractive heat flux guaranteed by the selected
heat pipe arrangement. The methodology and related tool show their ability to provide good thermal
performance estimates for different heat pipe designs and operating conditions. Specifically, the paper
reports two very different test cases: (1) solid metal heat pipes to cool down the crotch leading-edge
area of the air intake of a Mach 8 civil passenger aircraft, and (2) a copper-water heat pipe to cool
down a Printed Circuit Board of a generic small LEO satellite. The successful application of the
methodology and numerical code confirms the achievement of the ambitious goal of developing
in-house tools to support heat pipe thermal performance prediction for the entire aerospace domain.

Keywords: thermal management; heat pipes; hypersonic civil aircraft; small LEO satellite; numerical
simulation

1. Introduction
1.1. Thermal Management Challenges in the Aerospace Sector

Thermal management is one of the main technical issues for the aerospace industry. In-
deed, the latest advancements in the aerospace sector require highly integrated approaches
to efficiently manage the thermal environment. This is visible in many specific applications
in the aerospace domain. For example, as far as subsonic aviation is concerned, the imple-
mentation of green and digital transitions is forcing the international community to develop
new integrated thermal management solutions to deal with competing requirements, such
as the presence of cryogenic fuels on board and the increased dissipated heat due to in-
creased installed computational power [1–5]. Another example deals with the advancement
of flight technology, where aircraft speeds transitioned from subsonic to transonic and now
towards supersonic and hypersonic. These vehicles, however, face severe aerodynamic
heating, subjecting the aircraft surface and system components to high temperatures [6–9]
and potentially threatening the overall technical feasibility of the concept. This issue is
even more relevant for vehicle configurations with highly integrated layouts to enhance
aerodynamic efficiency in cruise, which brings them to higher heat fluxes, particularly in
leading-edge areas [8]. As already anticipated, in previous international aerospace research
activities, including the well-known National Aerospace Plane (NASP) program, a very
effective solution for leading-edge protection can consist of coupling high-temperature
materials with specially tailored, highly integrated heat pipes [10–16]. Another aerospace
sector deeply affected by thermal issues is represented by satellite constellations that keep
growing in numbers and in power consumption. A proper TCS should reduce temperature
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gradients across the spacecraft and in some components like lenses [17]. Several methods
and techniques are employed in satellite thermal management, either active and/or pas-
sive [18]. Some examples are represented by the following: the use of thermal radiators,
which reject heat to deep space through radiation; thermal straps made of highly conduc-
tive materials like copper or graphite, used to thermally couple parts and components of
a spacecraft; heaters, sometimes required when passive control is sufficient to maintain
components above their minimum survivable and operational temperatures; Phase Change
Materials (PCMs) to store thermal energy directly by using latent heat (the heat required to
conduct a phase change) [19]. In this context, Faraji et al. [20] and Arshad et al. [21] have
recently presented a work on numerical simulations of passive cooling of an electronic
component. The strategy is based on the fusion of a nano-enhanced phase change material
(NePCM) by insertion of hybrid Cu-Al2O3 nanoparticles. The study analyzes the combined
effects of the position of the electronic component and the inclination of the heat sink
for simple geometries (e.g., rectangular and square geometries) on the heat transfer and
flow structure of liquid NePCM. Moreover, surface finishes and coatings are often used
to change the absorptivity and emissivity characteristics of satellite surfaces. Another
non-negligible aspect is represented by the capability of insulating the spacecraft. For this
purpose, Multi-Layer Insulation (MLI), i.e., the use of multiple layers of low-emittance
films (generally in the number of 25) separated by low-conductivity spacers between layers
is commonly employed on medium/large-size satellites, while it is not indicated for small
CubeSats. Indeed, due to the reduced dimensions, it is more appropriate to focus the design
on conduction insulation by means of insulative washers to be applied on PCB standoffs.
The thermal control system has not been widely used in the past for CubeSats due to the low
level of power generation, but currently, CubeSats are getting more functionality and are
“power hungry,” so the thermal control system is paramount for a successful mission. Tem-
peratures outside of the operating limits can result in temporary or permanent impairment
of electronics, misdirected pointing of sensors, reduced performance of propulsion systems,
and fatigue failures in wire bonds. Temperatures outside of the survival limits can ruin
electronics and batteries and freeze and rupture propulsion lines. To maintain the desired
temperature range, sometimes heat has to be conserved and provided, and sometimes
heat must be rejected, depending on the particular phase of the mission and operational
mode. More recently, efforts to create new extraterrestrial outposts or reach farther space
destinations are pushing researchers to develop space nuclear reactors. These systems will
require extreme cooling capabilities, which might be granted by ultra-high-temperature
heat pipes [22].

As it emerges from this overview, heat pipes, which are excellent conductors and heat
spreaders, are one of the most versatile solutions for thermal management. In this context,
the development of a methodology for the design and thermal performance assessment of
the architecture of generic heat pipes is crucial.

1.2. Recent Studies of Heat Pipes

Once the proper liquid and wick structure is chosen, heat pipe technology can be
widely used. From a generic point of view, a heat pipe can be simply described as a
self-contained, two-phase heat transfer device that consists of a container, a wick, and a
working fluid [17]. At first, the incoming heat is collected at the heat pipe evaporator region;
then, the heat is conducted through the container and into the wick/working-fluid matrix,
where it is absorbed thanks to the evaporation of the working fluid. The heated vapor flows
towards a slightly cooler region of the heat pipe, called a condenser, where the working
fluid condenses, rejecting the heat previously stored through the wick/working-fluid
matrix and container. The heat pipe cycle is completed when the liquid comes back to the
heated region (evaporator), taking advantage of the capillary pumping action of the wick.
During normal operation, heat pipes are characterized by a very high effective thermal
conductance, maintaining a nearly uniform temperature over the entire heat pipe length.
Types of heat pipes include constant conductance (CCHP) [23], variable conductance
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(VCHP), and oscillating (OHP), with the latest widely employed in CubeSats and space
applications [24,25]. As far as high-speed aircraft and space vehicles are concerned, ad hoc
tailored heat pipe arrays may be suitable for integration within wing and air-intake leading
edges to transport the high net heat input occurring in proximity to the stagnation point to
a cooler region, raising the temperature there above the radiation equilibrium temperature
and thus rejecting the heat by radiation.

In particular, liquid metal heat pipe technology for cooling down hypersonic vehi-
cles’ leading edges has drawn researchers’ attention for decades since the 1970s [26–32].
However, the majority of the studies focused on detailed investigations. In this context,
ref. [33] focuses on the numerical investigations of the capillary character and evaporation
in micro-structures of high-temperature liquid metal heat pipes. For this purpose, the
combined exploitation of Surface Evolver and Fluent software was demonstrated to be
convenient and helpful in capturing the flow and evaporation heat transfer computation
for different types of wick geometry and materials [34,35]. However, ref. [33] only presents
simplified geometrical case studies, i.e., sphere and rectangular grooved wicks, and does
not provide suggestions on how such results may be transferred for the design of a real heat
pipe for hypersonic leading-edge geometry. More recently, several research projects have
been adopting a more practical approach, coupling numerical investigations with extensive
experimental campaigns. Tokuda and Inoue [36] investigated the thermal performance
of an oscillating heat pipe with sodium as a working fluid, while Hu et al. [22] designed
a lithium heat pipe-based experimental facility to test the heat transfer performance of a
lithium heat pipe. The work of Hu et al. is very interesting because the description of the
experimental setup is complemented with a simplified mathematical model implemented
into a CFD approach, which is used to verify the design of the lithium heat pipe and its
experimental facility.

Even though the literature review reveals that many numerical models have been
recently developed, they are all tailored to very specific geometries and built to investigate
details of functioning. One of the criticalities of these approaches is that they easily fail in
predicting performance when applied to other aerospace configurations and/or thermal
environments. Moreover, the very high level of detail usually prevents the exploitation of
these models in the early conceptual design phases. To overcome the highlighted issues, this
paper discloses a novel numerical tool for the design and thermal performance assessment
of a generic heat pipe to be easily integrated into a conceptual design activity flow. To
achieve this goal, a numerical Ansys Parametric Design Language (APDL) code is set up to
verify the effective subtractive heat flux guaranteed by a heat pipe arrangement selected
through a trade-off supported by analytical studies. In particular, in order to verify the
versatility of the developed numerical tool, this paper reports the application in two very
different test cases:

• Heat pipes designed for the STRATOFLY (Stratospheric Flying Opportunities for
High-Speed Propulsion Concepts) MR3 hypersonic vehicle in the crotch leading-edge
area, which is subjected to convective overheating due to its very small radius (about
2 mm).

• Heat pipes designed to cool down a Printed Circuit Board (PCB) for a generic small
LEO satellite.

2. Development of the Numerical Tool

In order to predict a generic heat pipe thermal performance, a numerical Ansys Para-
metric Design Language (APDL) code [37] has been set up to verify the effective subtractive
heat flux guaranteed by the selected heat pipe arrangement. The heat pipe operations
can be described by a lumped parametric model based on the electrical analogy [38–40].
Solid components and fluid domains are subdivided into finite sub-volumes called nodes
or lumps. Thermal properties and average temperature of each sub-volume are assumed
to be concentrated in the relative node. Nodes are connected to each other by means
of resistive, capacitive, and inductive elements modelling different physical phenomena,
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namely thermal or flow resistance, thermal inertia, or fluid inertia. Therefore, through
the electrical analogy, the heat pipe physical system is reduced to an electrical network
where the current and the electric potential represent, respectively, the thermal flux and
the temperature difference between two nodes. Applying Ohm’s law and Kirchhoff’s law,
an Ordinary Differential Equation (ODE) can be written for each node, thus reducing the
overall transient problem to a simpler linear ODE system. In nominal conditions, the
overall heat transfer rate of the heat pipe (Q) can be described using Equation (1), where
∆T is the overall temperature difference between the heat source and the heat sink, and
Rtot is the idealized thermal resistance network, shown in Figure 1. The total resistance of
the heat pipe Rtot is a combination of series and parallel resistances.

Q =
∆T
Rtot

(1)
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However, considering that the thermal resistance of the vapor space is extremely small,
in the range of 10−8 K/W, the total thermal resistance of the heat pipe can be considered
strongly dependent on the conduction resistance of the heat pipe wall in the radial direction.
Following these simplifications, the total power transported by the heat pipe can be defined
as in Equation (2)

Q =
Ke f f × Ahp × ∆T

Le f f
(2)

where Keff is the effective thermal conductivity [W/m K], Leff is the effective length [m], i.e.,
the part of the pipe that effectively works as a heat exchanger, and Ahp is the cross-sectional
area [m2].

The heat pipe model, through the electrical analogy, has been implemented in a numer-
ical code, which allows for performing a transient thermal analysis using the Mechanical
APDL language that is integrated into the software ANSYS® Rel 21. The analysis has been
conducted considering the “effective” thermal conductance of the pipe system, which is
changed iteratively. The ANSYS® mathematical model considers that there are three basic
modes of heat transfer:

1. Conduction: internal energy exchange between one body in perfect contact with
another or from one part of a body to another part due to a temperature gradient.

2. Convection: energy exchange between a body and a surrounding fluid.
3. Radiation: energy transfer from a body or between two bodies by electromagnetic

waves.

In many cases, we analyze heat conduction problems with some combination of
convection, heat flux, specified temperature, and radiation boundary conditions.
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Conduction heat transfer is defined by Fourier’s Law of Conduction:

q = −Knm
∂T
∂n

(3)

where:

• q = heat flow rate per unit area in direction n.
• Knm = thermal conductivity in direction n.
• T = temperature.
• ∂T

∂n = thermal gradient in direction n.

A negative sign indicates that heat flows in the opposite direction of the gradient (i.e.,
heat flows from hot to cold).

Convection is typically applied as a surface boundary condition. The simplest form of
convection condition requires the user to prescribe a film coefficient and fluid temperature
as user inputs. In particular, convection heat transfer is defined by Newton’s Law of
Cooling:

q = h(TS − TF) (4)

where:

• h = convective film coefficient;
• TS = surface temperature;
• TF = bulk fluid temperature.

Finally, radiation heat transfer is derived from the Stefan–Boltzmann Law:

Q = σεAiFij

(
T4

i − T4
j

)
(5)

where:

• σ = Stefan–Boltzmann constant;
• ε = emissivity;
• Ai = area of surface i;
• Fij = form factor from surface i to surface j;
• Ti = absolute temperature of surface i;
• Tj = absolute temperature of surface j.

Moreover, radiation in ANSYS Mechanical is treated as a surface phenomenon where
bodies are assumed to be opaque.

Finally, the governing equation for the thermal analysis of a linear system is written in
matrix form. The inclusion of the heat storage term differentiates transient systems from
steady-state systems:

[C]
{ .

T
}
+ [K]{T} = {Q} (6)

i.e., Heat Storage Term = (Specific Heat Matrix) × (Time Derivative of Temperature).
When the response of a system over time is required (due to time-varying loads

and/or boundary conditions in conjunction with thermal mass effects), a transient analysis
is performed. In a transient thermal, loads vary with time, or in the case of a nonlinear
transient analysis, time and temperature:

[C(T)]
{ .

T
}
+ [K(T)]{T} = {Q(T, t)} (7)

In addition to thermal conductivity (k), density (ρ), and specific heat (λ), material
properties must be specified for entities that can conduct and store thermal energy. These
material properties are used to calculate the heat storage characteristics of each element,
which are then combined in the Specific Heat Matrix [C]. Nonlinear solutions in ANSYS
Mechanical are fundamentally based on the full Newton–Raphson iteration procedure.
When performing a thermal transient analysis, a time integration procedure is also used
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to obtain solutions to the system equations at discrete points in time. The change in time
between solutions is called the Integration Time Step (ITS). Generally, the smaller the ITS,
the more accurate the solution becomes. The time integration operator is modifiable and is
based on a generalized trapezoidal rule:

{Tn+1} = {Tn}+ (1 − θ)∆t
{ .

Tn

}
+ θ∆t

{ .
Tn+1

}
(8)

with θ being the Euler parameter.
The selection of a reasonable time step size is important because of its impact on

solution accuracy and stability. Indeed, if the time step size is too small, then solution
oscillations may occur, which could result in temperatures that are not physically mean-
ingful (e.g., thermal undershoot), while if the time step is too large, then temperature
gradients will not be adequately captured. Particular attention has been paid by the author
to this issue.

The numerical code simulates the convection phenomenon as an equivalent conduc-
tion through a pipe structure, where the thermal conductivity of the overall heat pipe is
calculated by Equation (3), which is a restatement of Equation (2):

Ke f f =
Q × Le f f

Ahp ×
(
Tevaporator − Tcondenser

) (9)

When the heat pipe is active, according to the Evaporator and Condenser section
temperature, its thermal conductivity typically can range from 250 to 500 times the thermal
conductivity of solid copper or aluminum, respectively. Figure 2 shows the flowchart of
APDL code.
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During the analysis, the code retrieves the heat flux value (Q) at the interface Heat Pipe-
Internal Crotch and the temperature in the evaporator and condenser zone ( Tevaporator, Tcondenser

)
at every simulation step. A check on the temperature in the evaporator zone at each step is
performed, and if Tevaporator is higher than the boiling temperature of pipe liquid, Keff can be
estimated using Equation (1), using the Tcondenser and Q associated with the current step. Once
the Keff is evaluated, the conductivity of each material is updated accordingly.

3. Case Study No. 1: STRATOFLY MR3 Hypersonic Vehicle

The first test case is about STRATOFLY MR3 [41] highly integrated hypersonic vehicle,
where propulsion, aerothermodynamics, structures, and on-board subsystems are strictly
interrelated with one another, as highlighted in Figure 3. As already highlighted in previous
publications, the thermal and energy management for this type of vehicle is crucial [42,43].
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Designing a civil high-speed aircraft for passenger transportation means evaluating
technical, environmental, and economic viability in combination with human factors, social
acceptance, and implementation and operational aspects.

In past years, some innovative high-speed aircraft configurations have been proposed
and evaluated in depth, with the main goal of demonstrating the economic viability
of a high-speed aircraft fleet [44–48]. These concepts make use of unexploited flight
routes in the stratosphere, offering a solution to the presently congested flight paths while
ensuring minimal environmental impact in terms of emitted noise and greenhouse gasses,
particularly during the stratospheric cruise phase. Only a dedicated multidisciplinary and
highly integrated design concept could realize this, where aero-thermodynamic issues
are evaluated together with structural and propulsive issues in the frame of a highly
multidisciplinary project [49–52].

STRATOFLY MR3 is conceived to fly along long-haul routes, reaching Mach 8 during
the cruise phase at a stratospheric altitude (h > 30,000 m) and carrying 300 passengers
as payload. Figure 4a shows the reference MR2.4 flight trajectory, i.e., an antipodal route
from Brussels to Sydney, while Figure 4b reports the latest results obtained for the MR3
flight trajectory thanks to the upgraded aero-propulsive database. STRATOFLY MR3 has a
waverider configuration, with the engines and related air ducts completely embedded into
the airframe and located at the top of the vehicle (dorsal mounted configuration) (Figure 3).
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Air-intake leading edges are subjected to convective overheating due to their very
small radii (about 2 mm). Therefore, ad hoc efficient cooling systems must be designed.
Heat pipe systems have been chosen as the driving systems. First of all, design and
sizing activities consist of the definition of feasible integrated architectures and selection
of the most appropriate working fluids and compatible wick and case materials. The
analysis of the heat transfer limits (the capillary, entrainment, viscosity, chocking, and
boiling limits) is here suggested as a guideline for the identification of a suitable design
space and rational down-selection of the most promising solution. Different alternative



Aerospace 2024, 11, 85 8 of 20

solutions have been thoroughly analyzed, including two different heat pipe layouts (single
tubular and dual-channel architecture), five liquid metals as fluids (mercury, cesium,
potassium, sodium, and lithium) and relative wick and case materials (steel, titanium,
nickel, Inconel®, and tungsten) and three leading-edge materials (CMC, tungsten with low-
emissivity painting, and tungsten with high-emissivity painting) (Figure 5). Considering
the volumetric constraints imposed by the peculiar design of the embedded air intake
of the MR3, a dedicated heat pipe architecture has been developed. This architecture
has been suggested for both the lower lip as well as for the crotch air intakes. In both
cases, the proximity of the foremost cryogenic tanks suggests a longitudinal orientation
of the pipes parallel to the longitudinal axis of the vehicle. The 22 mm radius of the air-
intake leading edges allows for the adoption of a dual-channel architecture instead of a
more traditional tubular architecture. The proposed solution increases the exposed area of
the evaporator, thus potentially increasing the heat transfer capability. As schematically
reported in Figure 6, the suggested heat pipe architecture solution is completely integrated
into the air-intake structure, assuming that the heat pipe case is perfectly bonded with
the panels of the aircraft skin. Eventually, perfect bonding is also ensured between the
case and the wick. Finally, it is worth noting that the rear part of the condenser region
shall be properly interfaced with the tank’s external structure to guarantee the required
heat rejection. Figure 6 also shows that the most promising pipe for our case would be a
nickel–potassium one [37].
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The numerical APDL model has been verified numerically by comparing the results
in terms of heat pipe predicted subtractive heat flux w.r.t the results obtained by several
parametric finite element models introduced hereafter. These FEMs have been developed to
perform a parametric study aimed, on the one hand, at evaluating the pipe performance and,
on the other hand, at optimizing the air-intake layout in terms of material and geometric
thicknesses. A mesh convergence analysis led to a finite element model of about 5000 nodes
and 1000 HEXA solid elements with an average element quality of 0.95 (Figure 7).
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The following general boundary conditions have been considered (Figure 8):

1. Convective heat fluxes on external wet areas (derived by CFD calculations with a
peak value of about 1.2 MW/m2 as heat transfer coefficient on the crotch);

2. Radiation to ambient for external surfaces;
3. Adiabatic wall at cut surface locations;
4. Subtractive heat flux applied at leading-edge internal additional part/heat pipe

interface;
5. Heat pipe is modelled as a perfect contact body with the internal part of the vehicle

crotch.
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Three different leading-edge materials have been considered and analyzed: tungsten;
tungsten coated with high-emissivity paint (ε = 0.9); and full CMC. Finally, the latter has
been chosen as the best material. Indeed, different simulations have been performed,
varying the subtractive heat fluxes from the pipe. This allows for checking the effect of
maximum temperature on the crotch. Figure 9 shows the different fluxes whose peaks
range from 700 kW/m2 for the so-called run 1 to about 950 kW/m2 for the so-called run 4.
Figure 9 also shows the corresponding results in terms of maximum temperature on the
crotch. It is clear that CMC acts as a very effective thermal barrier. Indeed, an increment
in subtractive heat fluxes of 25% results in a 4.85% temperature reduction. Finally, run
4 conditions are retained because this scenario keeps the CMC temperature under the
theoretical service operative temperature fixed at 1600 ◦C. Figure 10 shows the thermal
map on the CMC leading edge at a maximum time instant. The temperature reaches, in
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this case, a peak value of 1598 ◦C at 2634 s. Figure 10 also shows the thermal behavior of
the CMC panels.
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In order to verify the effective subtractive heat flux guaranteed by the selected heat
pipe arrangement, the APDL numerical code, as described in Section 2, including the pipes
entirely (skin, container, and wick) and fluids, has been employed.

Simulation without heat pipe activation has also been performed in order to discrimi-
nate the contribution due to heat pipe physical installation conduction from the contribution
due to heat pipe working fluid convection. Indeed, when the heat pipe is not activated,
the subtracted heat flux is only due to conduction through the solid interface between
the crotch and the pipe itself. On the other hand, when the pipe is activated, the overall
subtractive heat flux takes into account both solid conduction and convection through the
working fluid. Figure 11 shows the effective subtractive heat flux (in red) as evaluated in
APDL. The average effective subtractive heat flux is about 0.72 MW/m2, and it includes
both the conductive and convective heat fluxes subtracted by the heat pipe. The conductive
heat flux (in black) considers only the conduction contribution guaranteed by the presence
of the heat pipe itself. Complementary, in blue, is the convective subtractive heat flux due
to pipe activation, which is about 0.4 MW/m2.
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Finally, the value of the effective subtractive heat flux derived by pipe activation
(0.72 MW/m2) is in line with the most conservative value (0.7 MW/m2) hypothesized
during the thermal design step (run 1 in Figure 9) (Figure 12). This result shows the APDL
numerical tool is numerically validated by the comparison.
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4. Case Study No. 2: LEO Small Satellite

The evolution of the nanosatellite market in the last decade finds its origin in the
introduction of the CubeSat standard. This standard, being proposed as a platform for
educational and low-cost space experimentation for the industry, was quickly adopted,
and its growing popularity is reflected in the increasingly yearly launch rates since its
introduction. Currently, the CubeSat platform has surpassed its original purpose and
is slowly winning ground over larger satellites by providing similar functionalities. Its
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potential has been recognized by the industry, and the demand for more high-performance
missions is increasing. These forecasts predict an increase in CubeSats to be launched
over the next few years, an increase in CubeSat form factor size, and a shift in the primary
mission objective from education and technology demonstration towards Earth Observation
(EO). The interest of the industry and the shift in mission objectives run parallel with the
advances in the ongoing miniaturization trend and the development of deployable solar
panels, which have paved the way for the employment of more powerful instruments,
systems, and components. An extensive literature review has revealed that the power
level of CubeSats is increasing rapidly and that this trend does not adhere to the mass
versus power trend lines established in the past, which is shown in Figure 13, where the
blue dispersed line with black dots represents the trendline that was established in the
past between power consumptions and satellite masses, while some recent CubeSats are
explicitly plotted [53–55]. The figure shows the peak power values for different CubeSat
form factors. From these and other examined missions, it has been derived that peak
power levels will rise to values of approximately 20 to 40 W. While a shift is visible towards
larger CubeSats, such as 6 U and 12 U, the 3 U will remain popular in the next few years,
especially for constellations. With these power levels, it means that power density will
increase significantly, i.e., a real thermal challenge arises, and performant thermal control
systems are required. The thermal challenges of CubeSats have three main causes, each
leading to a different thermal problem: low thermal mass, limited surface area, and high
density. The first makes the satellite rapidly responsive to thermal fluctuations, as the heat
capacity is limited. This leads to thermal cyclic loading, which can be destructive for many
components.
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The second cause, a limited surface area, leads to problems when heat loads increase
beyond the radiating capability of the outer panels. In that case, the satellite will not be
able to remove all its excess heat and will continue to heat up.

The third and last property of the CubeSat platform can result in local hot-spots when
heat load levels increase on, for example, electronic chips. With high heat loads on a small
area and insufficient conduction paths, the local temperature will quickly rise to levels
beyond the limit.

A well-designed integrated heat pipe again represents a valid thermal control solution.
The analysis of the heat transfer limits (the capillary, entrainment, viscosity, chocking,

and boiling limits) has to be followed again as a guideline for the identification of a suitable
design. Several parameters have to be taken into account, like the working fluids as well
as the wick material and shapes (Figures 14 and 15). In particular, vapor pressure and
merit number are two parameters used to screen potential working fluids. Merit number
is a means of ranking the heat pipe fluids. For example, the merit numbers of water
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and methanol are 1.63 × 1011 and 1.61 × 1010. Water has a higher merit number than
methanol, indicating higher surface tension and latent heat of vaporization, which are the
prior requirements for high heat transfer. According to the merit number rating, water is a
more effective working fluid than ethanol on the basis of heat transfer.
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Working fluids used in heat pipes range from helium at 4 K up to lithium at 2300 K. For
temperatures below 450 K, water is superior over the range from 300 K to 400 K, where the
alternative organic fluids tend to have considerably lower merit numbers. At slightly lower
temperatures, between 200 K and 300 K, ammonia is a desirable fluid, although it requires
careful handling to avoid contamination, whereas acetone and alcohols are alternatives
that have lower vapor pressures. These fluids are commonly used in heat pipes for space
applications. Water and methanol, both compatible with copper, are often used for cooling
electronic equipment [53].

For LEO satellites, the most common commercial heat pipes are either aluminum-
ammonia or copper-water.

Since the paper’s main objective is to verify that the APDL internally developed
numerical code can be used to predict the behavior of a generic designed pipe, we decided
to numerically reproduce a literature experimental test [53]. The test is started by setting
the thermal chamber to a temperature of 40 ◦C. The setup is left until the outer panels
reach a steady-state temperature of 40 ◦C. Once this situation has been reached, a heat
load is applied, and time is given to the test object to reach a steady state again. The heat
load was incremented in steps dependent on the thermal response of the PCB (mainly to
prevent overheating and destroying the test object). As it is expected that the satellite’s
outer panels will see a rise in temperature due to the internal heat load, the chamber is
actively controlled to maintain the panel boundary temperature at 40 ◦C.

In particular, a copper-water heat pipe has been integrated into a 2 U CubeSat structure
and tested in a thermally controlled environment with a heat source capable of generating
heat load. The limited room available within the CubeSat limits the freedom of integrating
a heat pipe into the platform; therefore, the structural frame ribs are usually used as a heat
sink (Figure 16). To ensure a high heat-transfer coefficient, the contacting area between the
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frame rib and the heat pipe is maximized by employing a simple rectangular element in
which the heat pipe is slit. This piece is then clamped by using an aluminum strip that uses
the present screw holes, which are normally occupied by the screws, which in turn attach
the outer panels to the frame structure. The heat generated by the heat source (the Printed
Circuit Board—PCB) needs to be transferred to the heat pipe as efficiently as possible to
prevent the occurrence of a large thermal gradient. For this reason, a copper plate fitting
the dimensions of the heat source and heat pipe is designed to act as an efficient interface
(Figure 17). The theoretical analyses and experimental performance characterization of
the different heat pipes have shown that a heat pipe is required with an outer diameter
of at least 6 mm. Moreover, a 300 mm sintered heat pipe length has been considered and
integrated into the test article [53].
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Several finite element models have been developed, starting from a pipe schematic
geometry (Figure 18).
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Figure 18. Heat pipe geometry.

The geometry reproduces the experimental scheme in a simplified way, with a 6 mm
diameter heat pipe housed on a heat-dissipating chip with an area of 20 × 20 mm.

A mesh convergence analysis led to a finite element model of about 50,000 nodes and
1000 HEXA solid elements with an average element quality of about 0.95 (Figure 19).
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Figure 19. Heat pipe test mesh.

The following general boundary conditions have been considered (Figure 20):

1. Stepwise heat fluxes applied from PCB center (heat fluxes corresponding to the PCB
dissipated energy, i.e., 3 W and 10 W at peak);

2. Constant conservative temperature applied at the pipe edges.
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The following Table 1 summarizes the material properties considered in the FEM for
the different components/parts.

Table 1. Material properties for the different components/parts.

Component K (W m−1 C−1) Cp (J kg−1 C−1) Density (Kg m−3)

Pipe copper
(case and wick) 385 385 8930

Copper plate 385 385 8930
Water liquid 0.6 4182 998.2

PCB 35 385 2700

Results in terms of temperature measured at the center and along the PCB are com-
pared with respect to those predicted numerically. Figure 21a shows measured temper-
atures along the PCB without and with a heat pipe, while Figure 21b shows maximum
temperatures predicted numerically without and with a heat pipe for two different inputs
(3 W and 10 W).
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Figure 21. Temperature measured at the center of the PCB (a) w.r.t those predicted numerically (b).

In particular, it can be noticed from the results in Figure 21 how the trends of the
numerical curves fit quite well with the 3 W experimental ones up to the peak values.
Moreover, these peaks differ by about 8% in absolute values (Table 2). Finally, it can be
considered that results show a very good accordance in validating the APDL numerical
tool that was developed.

Table 2. Comparison of numerical data and experimental temperatures in ◦C of the PCB.

Component 3 W EXP 3 W + Pipe
EXP

3 W
Numerical

3 W + Pipe
Numerical

10 W + Pipe
EXP

10 W
Numerical

10 W + Pipe
Numerical

PCB 103.10 57.46 99 62 95.75 139 92

5. Conclusions

Even though the most recent literature works reveal that many numerical models have
been developed, they are all tailored to very specific geometries and built to investigate
details of functioning. One of the criticalities of these approaches is that they easily fail in
predicting performance when applied to other aerospace configurations and/or thermal
environments. Moreover, the very high level of detail usually prevents the exploitation of
these models in the early conceptual design phases. To overcome the highlighted issues,
this paper has disclosed a novel numerical tool for the design and thermal performance
assessment of generic heat pipes to be easily integrated into a conceptual design activity
flow. To achieve this goal, a numerical Ansys Parametric Design Language (APDL) code
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was set up to verify the effective subtractive heat flux guaranteed by a heat pipe arrange-
ment selected through a trade-off supported by analytical studies. In particular, in order to
verify the versatility of the developed numerical tool, the paper reports the application in
two very different case studies.

The first test case is about the STRATOFLY MR3 highly integrated hypersonic vehicle,
where propulsion, aerothermodynamics, structures, and on-board subsystems are strictly
interrelated with each other. In this case, air-intake leading edges are subjected to convective
overheating due to their very small radii (about 2 mm). Therefore, ad hoc efficient cooling
systems must be designed. Heat pipe systems have been chosen as the driving systems.
The heat pipe design process, as well as the material layout choice supporting FEM analysis
for the vehicle crotch, were highlighted, and finally, thermal performance was evaluated
numerically using the developed APDL tool.

The second test case deals with a standard LEO satellite. A standard copper-water
heat pipe was considered, and a numerical experimental validation was carried out. In
particular, a literature experimental test was reproduced [53]. In particular, a heat pipe was
integrated into a 2U CubeSat structure and tested in a thermally controlled environment
with a heat source capable of generating heat load. Numerical results show a very good
accordance, validating the numerical tool. Indeed, peaks differ by only about 8% w.r.t
maximum temperature values predicted on the PCB at the evaporator section interface.

The main results show the developed numerical tool is extremely versatile. Indeed,
the chosen test cases are very different from each other in terms of aerothermal environ-
ment, test-article sizing, and geometrical shape. Moreover, the employed heat pipes were
designed with different wick and case materials, as well as different working fluids. In
both cases, the tool correctly predicts the thermal performance.

However, the code requires some expertise to be used. Further development will lead
to a global simplification with the aim of making it user-friendly.
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Abbreviations

Ahp Cross − sec tional area of the overall heat pipe m2

Ai Area of surface i
∆T Overall temperature difference between the heat source and the heat sink [K]
ε Emissivity [−]
Fij Form factor from surface i to surface j
h Convective film coefficient
Keff Effective liquid/wick conductivity [W/m K]
Knm Thermal conductivity in direction n
Leff Effective heat pipe length [m]
Q Overall heat transfer rate [W]
Rtot Overall thermal resistance [K/W]
σ Stefan–Boltzmann constant
θ Euler parameter
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Tcondencer Temperature of the working fluid in the condenser section [K]
Tevporator Temperature of the working fluid in the evaporator section [K]
TS Surface temperature
TF Bulk fluid temperature
TI Absolute temperature of surface i
Tj Absolute temperature of surface j
Acronyms
APDL Ansys Parametric Design Language
CCHP Constant Conductance Heat Pipe
CFD Computational Fluid Dynamics
CMC Ceramic Matrix Composite
FEM Finite Element Method
MLI Multi-Layer Insulation
NASP National Aerospace Plane program
NePCM Nano-enhanced phase change material
OHP Oscillating Heat Pipe
PCM Phase Change Material
PCB Printed Circuit Board
TCS Thermal control system
VCHP Variable Conductance Heat Pipe
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