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Abstract: Maintenance strategies play a crucial role in ensuring the reliability and performance of
complex systems. Imperfect inspections, characterized by the probabilities of false positives and
false negatives, significantly impact the effectiveness of maintenance decisions. This survey explores
maintenance models under imperfect inspections, characterized by constant and non-constant proba-
bilities of false positives and false negatives. This study investigates various maintenance approaches,
such as preventive and corrective maintenance, and evaluates their performance, considering the
uncertainties introduced by imperfect inspections. By analyzing the existing literature and research
findings, this survey provides valuable insights into the challenges and opportunities associated
with maintenance decision making in the presence of inspection imperfections. The comparison
between maintenance models with constant and non-constant probabilities of false positives and false
negatives sheds light on the dynamic nature of these models, enabling a deeper understanding of their
real-world applicability and effectiveness. This comprehensive overview is a valuable resource for
researchers, practitioners, and decision makers involved in maintenance planning and optimization
in diverse industrial sectors.

Keywords: imperfect inspection; decision making; false positives; false negatives; corrective
maintenance; preventive maintenance; achieved availability; inherent availability; average
maintenance cost per unit time; operational reliability

1. Introduction

In the intricate web of industries and technologies that define our modern world, the
reliable functioning of machinery and systems is paramount. Maintenance stands as the
linchpin in ensuring that these complex systems operate smoothly, efficiently, and safely.
However, the realm of maintenance is not without its challenges. Imperfect inspections
characterized by errors, uncertainties, and inaccuracies pose a significant hurdle in this
process. When inspections fail to identify existing faults or, conversely, indicate faults that
do not exist, the consequences can be far-reaching and costly. This survey delves into the
fast-developing domain of maintenance models with imperfect inspections. By exploring
the complexities, methodologies, and real-world applications of these models, we aim to
understand how industries navigate the intricate balance between system reliability, opera-
tional efficiency, and the limitations of inspection accuracy. This demands sophisticated
solutions for their estimation.

Maintenance models can be categorized based on the inspections being perfect or
imperfect. Let us explore the characteristics of these two types of maintenance models.
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In maintenance models with perfect inspections, it is assumed that inspections are
flawless and can accurately determine the health condition of the components. Here are
the key points regarding perfect inspections:

1. Perfect inspections provide completely reliable information about the condition of the
system. There are no false positives (indicating a fault when there is not one) or false
negatives (failing to detect a fault that is present).

2. Maintenance decisions based on perfect inspections are highly predictable and can be
precisely planned. There is no uncertainty associated with inspection outcomes.

3. With accurate information, maintenance actions can be optimized to address only
the components that are truly faulty, leading to minimal downtime and efficient
resource allocation.

4. Real-world scenarios may not always align with the assumption of perfect inspec-
tions. This is because inspections can have inherent limitations due to various factors
such as measurement accuracy, the reliability of inspection tools, human error, or
environmental conditions.

In maintenance models with imperfect inspections, inspections are not flawless and can
result in false positives and false negatives. Imperfect inspections introduce uncertainty into
the maintenance process. Here are the characteristics of models with imperfect inspections:

(1) Due to the possibility of false positives and false negatives, there is inherent uncer-
tainty associated with the inspection outcomes. Decision making involves managing
this uncertainty.

(2) Maintenance decisions need to account for the risk of both over-maintenance (ad-
dressing false positives) and under-maintenance (missing actual faults due to false
negatives). Balancing these risks is crucial for effective maintenance policies.

(3) Imperfect inspections are more realistic as they account for various limitations in
practical situations.

(4) Maintenance policies need to be adaptable and flexible to account for the imperfect
nature of inspections. The adjustment of maintenance plans based on inspection
outcomes is essential.

(5) Costs can be impacted by imperfect inspections. Over-maintenance may lead to
unnecessary expenses, while under-maintenance may result in costly breakdowns.
Finding the right balance is crucial for cost-effective maintenance.

In summary, maintenance models with perfect inspections offer predictability and
optimal decision making, but may not represent real-world conditions accurately. Mainte-
nance models with imperfect inspections, while introducing uncertainty and complexity,
provide a more realistic basis for decision making and risk management.

In this survey, we will analyze corrective and preventive maintenance models with
only imperfect inspections. The main criterion for including a paper in this survey is
that maintenance models must involve a quantitative estimate of decision making during
imperfect inspections.

Conducting a historical survey on maintenance models with imperfect inspections is
essential for several reasons; it provides valuable insights into real-world scenarios and
helps to improve maintenance practices. Let us consider why it is important.

First, examining the historical progression of maintenance models allows researchers
and practitioners to understand how these models have evolved over time. This knowledge
is valuable for tracing the development of techniques, technologies, and methodologies
used in dealing with imperfect inspections. By studying historical data, patterns in mainte-
nance strategies and inspection methods can be identified. This understanding helps in
recognizing what approaches have been successful and what challenges have persisted,
providing valuable insights for future developments.

Second, different industries face unique challenges in maintenance. Historical data
provide industry-specific insights into the effectiveness of imperfect inspections in various
contexts. Understanding these contexts is essential for tailoring maintenance models to
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specific industries. A historical survey allows for the analysis of how changes in technology,
instrumentation, or environmental factors have influenced maintenance practices. This
understanding is vital for adapting current maintenance models to changing circumstances.

Third, a historical survey provides a basis for making informed decisions about
which maintenance models have been effective in similar situations. This knowledge is
instrumental for organizations when choosing suitable approaches for their specific needs.
By understanding the historical challenges and successes related to maintenance models
with imperfect inspections, organizations can develop strategic plans that account for
potential pitfalls and leverage successful past approaches. This proactive planning can
enhance the efficiency of maintenance operations.

Fourth, studying the history of maintenance models with imperfect inspections high-
lights gaps in existing approaches. These gaps can be opportunities for innovation. Re-
searchers can focus on addressing these gaps to improve the accuracy and trustwor-
thiness of inspections, leading to more robust maintenance models. Past models pro-
vide a foundation of knowledge. Building upon these models with modern technolo-
gies and methodologies can lead to the development of more advanced and effective
maintenance strategies.

Fifth, this historical survey will serve as a documentation of knowledge and experi-
ences. It will preserve the lessons learned from past successes and failures, ensuring that
valuable insights are not lost over time. Moreover, in our opinion, a historical survey of
maintenance models is valuable for educational purposes, allowing students, researchers,
and practitioners to learn from the experiences of the past. This knowledge transfer is
essential for the continuous improvement of maintenance practices.

Maintenance models with imperfect inspections have been the focus of numerous
studies. We have analyzed studies published between 1961 and 2023. Our survey includes
studies published in journals (70), university collections of scientific papers (10), books and
chapters (11), dissertations (8), conference proceedings (3), and normative documents (2).
We analyzed publications from over 30 scientific journals and identified the highest number
of papers related to the topic of the survey in the following journals: Reliability Engineering
and System Safety (18 papers), European Journal of Operational Research (5 papers), Journal
of Applied Probability (4 papers), Operations Research (4 papers), Mathematical Machines and
Systems (4 papers), IEEE Transactions on Reliability (3 papers), and IMA Journal of Management
Mathematics (3 papers).

A distinctive feature of this survey is the analysis of maintenance models with im-
perfect inspections presented not only in ranking journals but also in dissertations and
collections of scientific papers from universities around the world.

Considering maintenance models with imperfect inspections presented in various
academic outlets is crucial for several reasons:

(1) Different academic outlets cater to varied audiences. Journals target a broader audi-
ence, while dissertations and university collections often provide in-depth insights.

(2) Maintenance models with imperfect inspections are multifaceted problems. Exploring
them from various angles, as seen in dissertations and university collections, provides
a holistic understanding.

(3) Maintenance models are often utilized in various real-world contexts, and the applica-
tions may differ based on factors such as geography, economy, or culture. Research
conducted and published by universities can provide valuable insights into these
diverse applications, enabling practitioners to tailor their approaches according to
specific conditions.

(4) Results published in reputable journals need validation. Dissertations and university
collections can serve as valuable resources for other researchers aiming to validate
existing models or test them in different contexts.

(5) Research results published in university collections can be more experimental, en-
couraging the exploration of innovative ideas and methodologies. These novel ap-
proaches might not fit the stringent criteria of high-impact journals but can inspire
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further research and innovative solutions in the field of maintenance models with
imperfect inspections.

In summary, the proposed historical survey of maintenance models with imperfect
inspections is essential for learning from the past, gaining contextual understanding,
making informed decisions, driving innovation, and preserving valuable knowledge. We
hope that it will provide a solid foundation upon which future maintenance strategies and
models can be built, ensuring a more efficient approach to managing imperfect inspections
in various industries.

In the past two decades, several reviews have been published covering maintenance
policies for deteriorating systems [1], the application of gamma processes in mainte-
nance [2], advances in delay-time-based maintenance modeling [3], and maintenance
optimization [4]. Surprisingly, there has been a notable absence of reviews specifically
addressing corrective and preventive maintenance models involving imperfect inspections.

In this survey, studies are analyzed in chronological order based on their first publica-
tion. If scientific results were published in multiple sources, links to these publications are
provided after the link to the first publication.

The remainder of this article is organized as follows: Section 2 reviews corrective
and preventive maintenance models with imperfect inspections. This section comprises
two subsections related to models with constant and nonconstant conditional probabilities
of correct and incorrect decisions during inspections. In Section 3, we discuss the considered
maintenance models, emphasizing the advantages and disadvantages of models with
constant and non-constant conditional probabilities of false positives and false negatives.
In Section 4, we analyze research prospects in the field of maintenance models with non-
constant probabilities of false positives and false negatives. Section 5 covers some remarks.
Abbreviations, nomenclature, and references are provided at the end of this article.

2. Corrective and Preventive Maintenance Models with Imperfect Inspections
2.1. Models with Constant Probabilities of Correct and Incorrect Decisions

In this subsection, we analyze corrective and preventive maintenance models with
constant conditional probabilities of correct and incorrect decisions during inspections.

Corrective maintenance involves fixing or replacing equipment or components after
they have failed. It is a reactive approach to maintenance, where repairs are carried out
in response to identified issues or failures during regular inspections or when equipment
breaks down.

Preventive maintenance is a proactive maintenance strategy that involves regularly
scheduled inspections, tests, and servicing of equipment to prevent potential failures before
they occur. This approach aims to identify and address issues early, minimizing the risk of
breakdowns and prolonging the lifespan of the equipment.

Given that the system inspection is presumed to be imperfect, it is possible to make
both correct and incorrect decisions. To characterize incorrect decisions during the inspec-
tion of systems, such concepts as false positive and or false negative are usually used.
It should be noted that these concepts are borrowed from classification theory. A false
positive is an event in binary classification in which a test result incorrectly indicates
the presence of a condition. A false negative is the opposite event, where the test result
incorrectly indicates the absence of a condition when it is present. With respect to the in-
spection of system health, two interpretations are possible for the terms “false positive” and
“false negative.”

1. If the condition is “system operability:”

False positive: The inspection’s decision incorrectly indicates an operable system
condition when it is not operable.

False negative: The inspection’s decision incorrectly indicates an inoperable system
condition when it is operable.

2. If the condition is “system inoperability:”
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False positive: The inspection’s decision incorrectly indicates an inoperable system
condition when it is operable.

False negative: The inspection’s decision incorrectly indicates an operable system
condition when it is inoperable.

In articles on maintenance models with imperfect inspections, the second interpreta-
tion of the concepts of false positives and false negatives is more often used. Therefore, in
the survey, we will adhere to the second interpretation.

Let us represent the conditional probability of a false positive and a false negative as α
and β, respectively.

When the system is inoperable (referred to as the “positive state”) and correctly
identified as inoperable based on the inspection results (termed a “positive decision”), this
occurrence is known as a true positive. We denote the conditional probability of this event
as 1 − β.

When the system is operable (referred to as the “negative state”) and is correctly
identified as operable based on the inspection results (termed a “negative decision”), this
occurrence is known as a true negative. We denote the conditional probability of this event
as 1 − α.

Table 1 shows the distribution of system states, inspection decisions, and correspond-
ing conditional probabilities.

Table 1. Contingency table for the case of corrective maintenance and constant probabilities of
inspection decisions.

Actual System State
Decision

Positive Negative

A priori inoperable at inspection time
(positive state)

True positive
1 − β

False negative
β

A priori operable at inspection time
(negative state)

False positive
α

True negative
1 − α

In 1961, ref. [5] addressed an inspection scheduling problem involving a system with
an operational lifespan not exceeding finite time T. Assuming no prior knowledge of
the probability density function (PDF) of the time to failure, ω(t), the author derived a
minimax inspection policy that minimized the maximum potential expected cost across
all conceivable density functions. The time of inspection, xi, depended on the inspection
cost, the penalty incurred due to the system being in a failed state per unit time, and the
conditional probability of failure detection (p = 1 − β).

In 1962, ref. [6] obtained the asymptotic availability of a system with exponential
failure distribution, assuming a false negative error in the periodic inspection model.

In 1962, ref. [7] proposed the following equation to calculate operational readiness,
under which they understood the long-run availability:

Pup =
1 − e−λT

λ(T + Tc)E−1
{

1 + e−λT [q(1 − α + αpc − pcE)− 1 − E]
}
+ λTp

[
1 − (1 − q)(1 − α)

(
1 − e−λT

)] (1)

where λ is the rate of hidden failures, T is the duration of the standby period, Tc is the
duration of the checkout period, Tp is the duration of the replacement (repair) period, q is
the probability of failure during a checkout period, pc is the probability of failure occurring
before the actual test if the failure occurs during a checkout period, and E = 1 − β.

In 1968, ref. [8] proved a theorem stating that if the following inequality is not fulfilled,
the optimal checking policy will involve one or more inspections within the interval (0, T):

max
0≤x≤T

(T − x)F(x) ≤ C1/C2P (2)
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where T is the finite time, x is the time of the first inspection, F(x) is the cumulative
distribution function, C1 is the cost of one inspection, C2 is the loss cost per unit of time
due to unrevealed failure, and P is the conditional probability of detecting failure through
one inspection. Obviously, P = 1 − β.

In 1974, ref. [9] focused on determining the most effective inspection policies for
a system in which the time spent on checking is non-negligible. The study considered
the possibility of encountering two types of inspection errors: type I (false positive) and
type II (false negative). The authors determined optimal inspection policies based on
three distinct objective functions: expected loss per cycle, per unit of time, and per unit of
productive time.

In 1979, ref. [10] proposed the following equation for the achieved availability of a
periodically inspected system with an exponential distribution of hidden failures:

Aa =
1 − e−λτ(

1 − e−λτ
)[

e−λτ + λτ/(1 − β)
]
+ λtins

[
1 +

β(1−e−λτ)
1−β

]
+ λtCR

[
1 − e−λτ(1 − α)

] (3)

where τ is the periodicity of inspection, tins is the average duration of inspection, and tCR is
the average time of a corrective repair.

In 1979, ref. [11] delved into the problem of determining optimal inspection intervals
for a technical system and analyzed how errors, such as false positives and false negatives,
influenced maintenance costs. The research established optimal inspection strategies for
various probability distributions of time to failure. Furthermore, the study explored the
impact of probabilities α and β on inspection periodicity.

In 1981, ref. [12] proposed a Markov model for calculating the average unit cost of
corrective maintenance:

M(C0) = pM1(C0) + (1 − p)M2(C0) (4)

where M1(C0) is the mathematical expectation of costs per step for the case when the
measured and actual states of the system coincide, M2(C0) is the mathematical expectation
of costs in the presence of inspection errors, and p is the probability of correctly determining
the system’s state.

As we can see, Equation (4) does not consider the event of multiple inspections of the
system during operation.

In 1981, ref. [13] examined a one-unit system that encountered two types of failures: a
type 1 failure that is immediately apparent and a type 2 failure that can only be identified
through inspections. In the event of a type 2 failure, the system malfunctions. All failures
adhere to an exponential distribution pattern. Inspections have a probability of detecting a
type 2 failure, denoted as p = 1 − β. The study aimed to ascertain the long-term average
cost per unit time.

In 1981, ref. [14] (also referenced in [15,16]) proposed the following cost function
of losses, considering the probabilities of inspection errors, for a minimax maintenance
strategy in the interval (0, T]:

A(ξ) =



q
k
∑

m=1
(1 − q)m−1(mc + S) + (1 − q)k

{
p

n
∑

m=k+1
(1 − p)m−k−1[mc + c1(tm − ξ)]+

(1 − p)n−k[nc + c1(T − ξ)]
}

, if tk < ξ ≤ tk+1, k = 0, . . . , n − 1
n
∑

k=1
q(1 − q)k−1(kc + S) + (1 − q)n[nc + c1(T − ξ)], if tn < ξ ≤ T

n
∑

k=1
q(1 − q)k−1(kc + S) + (1 − q)nnc, if ξ > T

(5)

where n is the number of inspections in the interval (0, T), c is the cost of inspection, S is the
penalty for judging the system to be inoperable when it is operable, c1 is the average loss
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per unit time due to the system being in a hidden failure state, q = α, 1 − p = β, and ξ is the
time of failure.

In 1981, ref. [17] (pp. 129–136; also referenced in [18]) examined a minimax mainte-
nance strategy πT involving imperfect inspections with a recheck of the rejected systems.
The inspection schedule is planned within the time range (0, T]. The initial inspection takes
place at time t1, where t1 > 0, and the final inspection occurs at time tN+1 = T. The minimax
inspection strategy (t1, . . . , tN∗ ) adheres to the following conditions:

(1) The quantity of checks within the interval (0, T) is determined as the maximum
positive integer N* for which the inequality still holds:

N(N + 1) ≤ 2QT
(Cins + Crecheckα)(1 − β)

(6)

(2) The inspection timings are determined through a recursive equation:

tk+1 = tk + (N∗ − 2k)
(Cins + Crecheckα)(1 − β)

2Q
+

T
N∗ + 1

, k = 0, 1, . . . , N∗ (7)

where Cins is the cost of inspection, Crecheck is the cost of recheck, and Q is the average loss
per unit time due to the system being in a hidden failure state.

Example 1. Calculation of minimax inspection policy schedule when T = 2000 h, Q = USD 60/h,
Cins = $150/h, Crecheck = $200/h, α = 0.03, and β = 0.05.

The minimax inspection policy schedule is as follows: N∗ = 19, πT = (145.4, 283.4,
414, 537.2, 653, 761.3, 862.2, 955.7, 1042, 1121, 1192, 1256, 1312, 1361, 1403, 1437, 1464,
1483, 1495).

In 1981, ref. [19] proposed the following formula for calculating achieved availability,
which considers the characteristics of current inspection and automated test equipment
(ATE) self-testing:

Aa =
DATEDCI

τ + tM

τ−tM∫
0

R(t)dt (8)

where R(t) is the reliability function, DCI is the posterior probability of operability of
the test object just after the current inspection, DATE is the posterior probability of the
ATE operability that is self-tested just before the current inspection, τ is the inspection
periodicity, and tM is the maintenance duration.

The posterior probability of the system operability is determined by the Bayes
formula [19]:

D = P(1 − α)/[P(1 − α) + (1 − P)β] (9)

where P is the prior probability of the system’s operability.
For instance, if λ = 10−41/h, τ = 500 h, tM = 10 h, DATE = 0.99, and DCI = 0.97, the

achieved availability is 0.9.
In 1982, ref. [20] addressed the challenge of determining the optimal inspection pro-

cedure for a system with an exponential random variable as its time to failure. The
study devised a straightforward optimal inspection schedule, accounting for type II (false
negative) inspection errors, with the objective function being the expected cost until
failure detection.

In 1984, ref. [21] (also referenced in [22]) applied the technique of delay time analysis
to industrial plant maintenance. A basic model of inspection maintenance was presented
where inspections are independent of each other, and a defect is identified with the constant
probability 1 − β. The downtime per unit time is also determined.

In 1984, ref. [23] (also referenced in [24]) considered a maintenance model with im-
perfect inspections. It was assumed that system failure is detected by inspection with



Aerospace 2024, 11, 92 8 of 55

conditional probability 1 − p and not detected with probability p = β. The optimal inspec-
tion policy that minimizes the total expected cost is determined.

In 1984, ref. [25] examined a maintenance model in which inspections are conducted
for a fixed duration, and the system’s failure cannot be detected with a constant probability
of p = β. The total expected cost is also given.

In 1985, ref. [26] (also referenced in [27], p. 77) presented the following equation for
the posterior reliability in the interval (kτ, t), kτ < t ≤ (k + 1)τ assuming the exponential
distribution of time to hidden failure:

PA(kτ, t) =
(1 − α)ke−λt

(1 − α)ke−kλτ + β
(
1 − e−λτ

)[
βk − (1 − α)ke−kλτ

]
/
[
β − (1 − α)e−λτ

] (10)

The term “a posteriori reliability,” as used by the author, refers to the conditional
probability of the system’s continued non-failure operation within the interval (kτ, t). This
condition holds provided that, based on the inspection results at moments τ,..., kτ, the
system was deemed operable. This metric is typically employed for non-repairable systems.

The value of the posterior reliability is changed from a maximum when t = kτ to a
minimum when t = (k + 1)τ. For example, when λ = 5 × 10−4 1/h, α = 0.05, β = 0.02, and τ
= 300 h, then PA(kτ, kτ) = 0.997 and PA[kτ, (k + 1)τ] = 0.858 for k = 1, 2, . . .

Figure 1 illustrates the dependence of posterior reliability on operating time.
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In [27] (p. 78), the steady-state value of posterior reliability was determined:

P∗
A(τ) = lim

k→∞
PA[kτ, (k + 1)τ] =

{
(1−α)e−λτ

1−α−β , if β < (1 − α)e−λτ

0, β ≥ (1 − α)e−λτ
(11)

For instance, using the data in Figure 1, one can calculate that P∗
A(τ) = 0.858.

In 1988, ref. [28] explored the optimal inspection policy for a single-unit system that
is prone to hidden failures over an infinite time horizon. In this model, the failure time
of the system follows an exponential distribution. The inspections are not perfect; hence,
there is a possibility of errors occurring with conditional probabilities a = α and b = β. The
first inspection is carried out after a time interval of x and, subsequently, inspections are
conducted periodically with a time interval of y. The overall expected cost from the start of
the system’s operation at time 0 until the detection of the failure is calculated as follows:

C(x, y) = cc

[
e−λx/

(
1 − ae−λy)+ 1/b

]
+ krae−λx

[
1/λ − x − aae−λ(x+y)y/

(
1 − ae−λy)2

]
/
(
1 − ae−λy)+

k f
[
1 − e−λx + ae−λx(1 − e−λy)/(1 − ae−λy)]{x +

[
ae−λx(1 − e−λy)/(1 − ae−λy)2

+ b/b
]
y − 1/λ

} (12)
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where cc is the inspection cost, kr is the cost due to a false positive, and kf is the cost per
unit time incurred from the moment of the system failure to its detection, a = 1 − α, and
b = 1 − β.

The optimal values of x and y are determined from the condition of minimizing the
function C(x, y).

In 1988, ref. [27] (p. 90; also referenced in [29]) found that under three met conditions,
the conditional probabilities of a false positive and a false negative at multiple inspections
are independent of time. These conditions are as follows: firstly, the system’s time-to-
failure distribution is exponential; secondly, the distribution density of the state parameter
measurement error does not vary with time; and thirdly, the operability and inoperability
states of the system correspond to only two different values of the system state parameter.

In 1988, ref. [27] (pp. 63, 100; also referenced in [30] (pp. 57, 58), [31,32]) considered a
mathematical model of corrective maintenance in the interval (0, ∞) with multiple imperfect
inspections for a system that can be in one of the following states:

S1, if, at time t the system is used for its intended purpose and is the operable state
S2, if, at time t the system is used for its intended purpose and is in an inoperable state (hidden failure)
S3, if, the system is not used for its intended purpose at the time t because of inspection
S4, if, at time t, a false positive occurs and a repair of falsely rejected system is performed
S5, if, at time t, a true positive occurs and a repair is performed

(13)

Inspections are assumed to be periodic, and the inspection times are much less than
the intervals between inspections. The average duration of the system’s stay in various
states was determined with an exponential PDF of time to failure ω(t) = λexp(−λt) [27].

The expected value of time spent by the system in state S1:

MS1 =
∞

∑
k=0

(k+1)τ∫
kτ

[
k

∑
v=1

vτα(1 − α)ν−1 + ϑ(1 − α)k

]
ω(ϑ)dϑ =

1 − e−λτ

λ
[
1 − (1 − α)e−λτ

] (14)

The expected value of time spent by the system in state S2:

MS2 =
∞
∑

k=0

(k+1)∫
kτ

[
∞
∑

j=k+1
(jτ − ϑ)(1 − α)kβj−k−1(1 − β)

]
ω(ϑ)dϑ =

1
1−(1−α)e−λτ

[
τ(1−βe−λτ)

1−β − 1−e−λτ

λ

] (15)

The expected value of time spent by the system in state S3:

MS3 = tins
∞
∑

k=0

(k+1)∫
kτ

[
k
∑

ν=1
να(1 − α)ν−1 +

∞
∑

j=k+1
j(1 − α)kβj−k−1(1 − β)

]
ω(ϑ)dϑ =

tins(1−βe−λτ)
(1−β)[1−(1−α) e−λτ]

(16)

The expected value of time spent by the system in state S4:

MS4 = tFR

∞

∑
k=1

(k+1)∫
kτ

[
k

∑
ν=1

α(1 − α)ν−1

]
ω(ϑ)dϑ =

tFRαe−λτ

1 − (1 − α)e−λτ
(17)

The expected value of time spent by the system in state S5:

MS5 = tTR

∞

∑
k=0

(k+1)τ∫
kτ

[
∞

∑
j=k+1

(1 − α)kβj−k−1(1 − β)

]
ω(ϑ)dϑ =

tTR(1 − e−λτ)

1 − (1 − α)e−λτ
(18)
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where tFR is the average time to repair of a falsely rejected system and tTR is the average
time to repair of a failed system.

Table 2 shows the limit values of MS1,..., MS5 (see [27], p. 101; [30], p. 58; and [31]).

Table 2. The limit values of MS1, . . ., MS5 over an infinite horizon.

MSi
0 < τ < ∞ 0 < λ < ∞

λ→0 λ → ∞ τ → 0 τ → ∞

MS1 τ/α 0 0 1/λ

MS2 0 τ/(1 − β) 0 ∞

MS3 tins/α tins/(1 − β) tins/α tins/(1 − β)

MS4 tFR 0 tFR 0

MS5 0 tTR 0 tTR

Table 2 indicates that as λ approaches 0, the duration of the system’s operable
state is solely based on the τ/α ratio. For example, if λ = 10−5 1/h, 1/λ = 100,000 h,
τ = 10 h, and α = 0.01, then τ/α = 1000 h, which means that the mean time between
removals is 100 times shorter than the mean time to failure.

Example 2. Calculation of MS1, . . ., MS5 for an avionic system if τ = 5 h, λ = 5 × 10−5 1/h, tFR
= 1 h, tTR = 2 h, tins = 0.25 h, and α = β = 0.0001, 0.001, and 0.01.

Table 3 shows the calculation results.

Table 3. The calculated values of MS1, . . ., MS5.

MSi
Values of α and β

α=β=0 α=β=10−4 α=β=10−3 α=β=10−2

MS1 (h) 20,000 14,290 4000 488

MS2 (h) 2.5 1.79 0.5 0.06

MS3 (h) 1000 714.4 200 24.4

MS4 (h) 0 0.29 0.8 0.98

MS5 (h) 2 1.43 0.4 0.05

As shown in Table 3, the conditional probabilities α and β significantly impact a
system’s average duration in different states. For instance, when α changes from 0 to 0.01,
the average duration of a system in an operable state decreases by more than 40 times.

The formulas used to determine achieved availability, inherent availability, and aver-
age maintenance cost per unit time are given in [27]:

Aa = MS1/MS0 (19)

Ai = MS1/(MS0 − MS3) (20)

E(CMC) =
(
CQ MS2 + Cins MS3 + CFR MS4 + CTR MS5

)
/MS0 (21)

where CQ is the average loss per unit time due to the system being in a hidden failure state,
Cins is the cost of one inspection per unit time, CFR is the cost of repairing a falsely rejected
system per unit time, CTR is the cost of repairing a failed system per unit time, and MS0 is
the average length of the regeneration cycle, which is determined as follows [27]:

MS0 =
5

∑
i=1

MSi (22)
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In deriving Equations (19)–(21), the authors utilized a well-known property of regen-
erative stochastic processes [33]: in such processes that describe the evolution of a technical
system over time, the proportion of time the system spends in any state is equal to the ratio
of the average time spent in that state during the periods between moments of regeneration
to the average duration of this period.

Example 3. Calculation of optimum periodicity to minimize average maintenance cost per unit
time E(CMC) for a system with λ = 2.5 × 10−4 1/h, CQ = USD 5000/h, CFR = USD 500/h,
CTR = USD 2000/h, Cins = USD 250/h, and α = β = 0.0001 or 0.01.

Figure 2a shows the average maintenance cost per unit time dependence versus
inspection periodicity. It shows that increasing the conditional probabilities α and β from
0.0001 to 0.01 results in an increase in the optimal inspection periodicity from 38 h to 41 h
and an increase in the minimum average maintenance cost per unit time from USD 71.2/h
to USD 85.1/h, i.e., an increase of 19.5%.
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The equations for achieved availability and inherent availability of a single unit system
are derived by substituting Equation (14) through (18) for Equations (19) and (20) ([27],
pp. 103, 104).

Aa =
(1 − β)

(
1 − e−λτ

)
λ
{
(τ + tins)

(
1 − βe−λτ

)
+ (1 − β)

[
tFRαe−λτ + tTR

(
1 − e−λτ

)]} (23)

Ai =
(1 − β)

(
1 − e−λτ

)
λ
{

τ
(
1 − βe−λτ

)
+ (1 − β)

[
tFRαe−λτ + tTR

(
1 − e−λτ

)]} (24)

Example 4. Calculation of optimum periodicity to maximize achieved availability Aafor a system
with λ = 5 × 10−4 1/h, tFR = 10 h, tTR = 50 h, tins = 5 h, and α = β = 0.0001 or 0.01.

Figure 2b shows the achieved availability dependence versus inspection periodicity.
From Figure 2b, it follows that increasing the conditional probabilities α and β from

0.0001 to 0.01 results in a decrease in the maximum achieved availability from 0.911 to
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0.899, a reduction of 1.3%. Thus, inspection trustworthiness has a relatively small impact
on achieved availability.

In 1988, ref. [27] (pp. 92, 97; also referenced in [34]) determined MS1,..., MS5 for
the finite-horizon maintenance policy with the system states in (13) and the exponential
distribution of time to failure as follows:

The expected value of time spent by the system in state S1:

MS1 =
N
∑

k=0

(k+1)τ∫
kτ

[
k
∑

v=1
vτα(1 − α)ν−1 + ϑ(1 − α)k

]
ω(ϑ)dϑ+

∞∫
T

[
N
∑

k=1
kτα(1 − α)ν−1 + T(1 − α)k

]
ω(ϑ)dϑ =

τ
α

[
1 − (1 − α)Ne−(N+1)λτ

]
+
[
(1 − e−λτ)

(
1
λ − τ

α

)
− τ e−λτ

]
×

1−(1−α)N+1e−(N+1)λτ

1−(1−α)e−λτ + τ(1 − α)Ne−(N+1)λτ

(25)

The expected value of time spent by the system in state S2:

MS2 =
N−1
∑

k=0

(k+1)τ∫
kτ

[
N
∑

j=k+1
(jτ − ϑ)(1 − α)kβj−k−1(1 − β) + (T − ϑ)(1 − α)kβN−k

]
×

ω(ϑ)dϑ +
T∫

Nτ

(T − ϑ)(1 − α)Nω(ϑ)dϑ =[
τ(1−βe−λτ)

1−β − 1−e−λτ

λ

]
×
[

1−(1−α)N e−Nλτ

1−(1−α)e−λτ

]
− βτ(1−e−λτ)

1−β ×[
βN−(1−α)N e−Nλτ

1−(1−α)e−λτ/β

]
− (1 − α)Ne−Nλτ

(
1−e−λτ

λ − τ
)

(26)

The expected value of time spent by the system in state S3:

MS3 = tins
N−1
∑

k=0

(k+1)τ∫
kτ

[
k
∑

ν=1
να(1 − α)ν+

N
∑

j=k+1
j(1 − α)kβj−k−1(1 − β)+

N(1 − α)kβN−k
]
ω(ϑ)dϑ + tins

∞∫
Nτ

[
N
∑

k=1
kα(1 − α)ν−1 + N(1 − α)N

]
ω(ϑ)dϑ =

tins

{(
1−e−λτ

α

)
·
[

1−e−Nλτ

1−e−λτ − 1−(1−α)N e−Nλτ

1−(1−α)e−λτ

]
+ (1−e−λτ)

1−β ×[
1−(1−α)N e−Nλτ

1−(1−α)e−λτ − βN−(1−α)N e−Nλτ

1−(1−α)e−λτ/β

]
+ e−Nλτ

α

[
1 − (1 − α)N

]}
(27)

The expected value of time spent by the system in state S4:

MS4 = tFR
N−1
∑

k=1

(k+1)τ∫
kτ

[
k
∑

ν=1
α(1 − α)ν−1

]
ω(ϑ)dϑ + tFR

∞∫
Nτ

[
N
∑

k=1
α(1 − α)k−1

]
ω(ϑ)dϑ =

tFR

{(
1 − e−λτ

)[ e−λτ−e−Nλτ

1−e−λτ − (1−α)e−λτ−(1−α)N e−Nλτ

1−(1−α)e−λτ

]
+
[
1 − (1 − α)N

]
e−Nλτ

} (28)

The expected value of time spent by the system in state S5:

MS5 = tTR
N
∑

k=0

(k+1)τ∫
kτ

[
N
∑

j=k+1
(1 − α)kβj−k−1(1 − β)

]
ω(ϑ)dϑ =

tTR

{(
1 − e−λτ

)[ 1−(1−α)N e−Nλτ

1−(1−α)e−λτ − βN−(1−α)N e−Nλτ

1−(1−α)e−λτ/β

]
+ (1 − α)Ne−Nλτ

} (29)

where N = T/τ − 1 is the number of inspections in the interval (0, T). Inspection is not
conducted at time T, and the system is renewed irrespective of its state.

When N → ∞, the calculation results by Equations (25)–(29) are the same as those by
Equations (14)–(18).
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The maintenance efficiency indicators are determined by Equations (19)–(21).
One more indicator of the maintenance efficiency of aviation systems is the mean time

between unscheduled removals (MTBUR). MTBUR, an operational metric, is calculated by
dividing the total flight hours of a fleet by the number of unscheduled onboard component
removals. Within the considered maintenance model, MTBUR is determined as follows [34]:

MTBUR = MS1 + MS2 (30)

Table 4 shows the limit values of MS1,..., MS5 [34].

Table 4. The limit values of MS1, . . ., MS5 over a finite horizon.

MSi
0 < τ < T 0 < λ < ∞

λ→0 λ→∞ τ→0 (N→∞) τ=T (N=0)

MS1 τ
[
1 −

(
1 − α)N]/α + τ(1 − α)N 0 0 (1 − e−λT)/λ

MS2 0 τ(1 − βN)/(1 − β) 0 T − (1 − e−λT)/λ

MS3 tins
[
1 −

(
1 − α)N]/α tins(1 − βN)/(1 − β) tins/α 0

MS4 tFR
[
1 −

(
1 − α)N] 0 tFR 0

MS5 tTR(1 − α)N tTR(1 − βN) 0 tTR

Table 4 demonstrates that as λ approaches 0, the average durations of MS1, MS3, MS4,
and MS5, are solely determined by the probability α and the number of inspections N
within the interval (0, T). Conversely, as λ approaches infinity, the average durations of
MS2, MS3, and MS5 primarily depend on the probability β and the number of inspections
N within the interval (0, T).

Figure 3 illustrates the relationship between the average duration of stay of a single-
unit avionics system in operability S1 (a) and hidden failure S2 (b) states and the number
of checks within the interval of 0 to 4000 h, with a given value of λ = 2 × 10−4 1/h.
Curves 1, 2, and 3 represent the scenarios where α = β = 0.001, α = β = 0.003, and
α = β = 0.01, respectively.
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average time the system remains in an operational state decreases significantly. Further-
more, the rate of decrease is higher when the conditional probability of a false positive 
test result is greater.  

Figure 3. (a) Mean time spent by the system in the operable state S1 versus number of inspections
in the interval (0, 4000 h): curve 1—α = 0.001; curve 2—α = 0.003; curve 3—α = 0.01. (b) Mean time
spent by the system in the inoperable state S2 versus number of inspections in the interval (0, 4000 h):
curve 1—α = β = 0.001; curve 2—α = β = 0.003; curve 3—α = β = 0.01.

As can be seen from Figure 3a, with an increase in the number of checks (N), the aver-
age time the system remains in an operational state decreases significantly. Furthermore,
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the rate of decrease is higher when the conditional probability of a false positive test result
is greater.

Figure 3b illustrates that as the number of checks increases within the interval
(0, T), the average time the system remains in state S2 decreases more rapidly, with a
higher probability α. It is important to state that with fixed values of α and N, increasing
probability β leads to a rise in MS2. However, for large N, the impact of β is notably smaller
compared to that of α.

As it follows from Figure 3, for large values of N, MTBUR is primarily determined
by MS1. Therefore, it is crucial to focus on minimizing the conditional probability of false
positives when selecting or designing inspection tools for aviation equipment.

In 1988, ref. [27] (p. 355) developed a model for the posterior reliability of a single-unit
system subject to both revealed and unrevealed failures that were distributed exponentially:

PA(kτ, t) =
(1 − α)ke−(λ+λ0)t

e−kλ0t
{
(1 − α)ke−kλτ + β

(
1 − e−λτ

)[
βk − (1 − α)ke−kλτ

]
/
[
β − (1 − α)e−λτ

]} , tk < t ≤ tk+1 (31)

where λ0 is the rate of revealed failures.
In 1988, ref. [27] (pp. 362–364; also referenced in [35]) examined mathematical mainte-

nance models for a one-unit system with both revealed and unrevealed failures, as well as
the trustworthiness of multiple inspections. The assumption was made that at any arbitrary
time t, the system can be in one of the following states:

S1, if, at time t, the system is used for its intended purpose and is in the operable state
S2, if, at time t, the system is used for its intended purpose and is in an inoperable state (unrevealed failure)
S3, if, the system is not used for its intended purpose at the time t because of inspection
S4, if, at timet, a false positive occurs and a repair of falsely rejected system is performed
S5, if, at time t, a true positive occurs and a repair is performed
S6, if, at time t, an unscheduled repair is carried out due to revealed failure

(32)

In the case of the exponential distribution of time to both unrevealed and revealed
failure, F(t) = 1 − exp(−λt) and Φ(t) = 1 − exp(−λ0t), the mean times of the system staying
in states S1, S2, S3, S4, S5, and S6 in the interval (0, ∞), are as follows [27,35]:

The expected value of time spent by the system in state S1:

MS1 =
∞
∑

k=0

(k+1)τ∫
kτ

{
k−1
∑

j=0

(j+1)τ∫
jτ

[
j

∑
ν=1

ντα(1 − α)ν−1 + u(1 − α)j

]
dΦ(u)+

ϑ∫
kτ

[
k
∑

ν=1
ντα(1 − α)ν−1 + u(1 − α)k

]
dΦ(u) +

[
k
∑

ν=1
ντα(1 − α)ν−1+

ϑ(1 − α)k
]
[1 − Φ(ϑ)]}dF(ϑ) = 1−e−(λ+λ0)τ

(λ+λ0)[1−(1−α)e−(λ+λ0)τ]

(33)

The expected value of time spent by the system in state S2:

MS2 =
∞
∑

k=0

(k+1)τ∫
kτ

{
(k+1)τ∫

ϑ

(u − ϑ) (1 − α)kdΦ(u)+

∞
∑

n=k+1

(n+1)τ∫
nτ

[
n
∑

j=k+1
(jτ − ϑ)(1 − α)kβj−k−1(1 − β) + (u − ϑ)(1 − α)kβn−k

]
dΦ(u)

}
dF(ϑ) =

1
1−(1−α)e−(λ+λ0)τ

{
e−λ0τ

[
τ(1−βe−(λ+λ0)τ)

1−βe−λ0τ − 1−e−λτ

λ

]
+ λ

λ0(λ+λ0)
×

×
[
1 − e−(λ+λ0)τ

]
− e−λ0τ

[
τ + (λ−λ0)(1−e−λτ)

λλ0

]}
(34)

The expected value of time spent by the system in state S3:

MS3 =
tinse−λ0τ

[
1 − βe−(λ+λ0)τ

]
(1 − βe−λ0τ)

[
1 − (1 − α)e−(λ+λ0)τ

] (35)
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The expected value of time spent by the system in state S4:

MS4 =
tFRαe−(λ+λ0)τ

1 − (1 − α)e−(λ+λ0)τ
(36)

The expected value of time spent by the system in state S5:

MS5 =
tTR(1 − β)e−λ0τ(1 − e−λτ)(

1 − βe−λ0τ
)[

1 − (1 − α)e−(λ+λ0)τ
] (37)

The expected value of time spent by the system in state S6:

MS6 =
tUR(1 − e−λ0τ)

[
1 − βe−(λ+λ0)τ

]
(
1 − βe−λ0τ

)[
1 − (1 − α)e−(λ+λ0)τ

] (38)

where tUR is the average time of unscheduled repair due to a revealed failure.
When λ0 = 0, Formulas (33)–(38) are reduced to (14)–(18) and MS6 = 0.
In 1988, ref. [27] (pp. 368–370; also referenced in [36]) proposed a maintenance model

of periodically inspecting systems subjected to both revealed and unrevealed failures
to determine the operational reliability of repairable systems. Operational reliability is
defined as the probability of system operation without failure in the interval (kτ, t), where
kτ < t ≤ (k + 1)τ. This probability is calculated under the assumption that maintenance
is carried out at times kτ (where k = 1, 2, . . .), including the inspection and restoration of
both correctly and falsely rejected systems as well as the unscheduled restoration of failed
systems after the occurrence of revealed failures.

With an exponential distribution of time to revealed and unrevealed failures, opera-
tional reliability has the following form [27,36]:

PO(kτ, t) =
k
∑

j=0
PR(jτ) e−(λ+λ0)(t−jτ)(1 − α)k−j + λ0

(λ+λ0)

k−1
∑

j=0

[
e−(λ+λ0)(t−(j+1)τ) − e−(λ+λ0)(t−jτ)

]
×

(1 − α)k−j + λ0
(λ+λ0)

[
1 − e−(λ+λ0)(t−kτ)

] (39)

where PR(jτ) is the probability of system repair at time jτ.
The probability PR(jτ) is given by

PR(jτ) = PFR(jτ) + PTR(jτ) (40)

where PFR(jτ) and PTR(jτ) are the probabilities of repair for falsely rejected and failed
systems, respectively.

The probabilities PFR(jτ) and PTR(jτ) are determined as follows [27,36]:

PFR(jτ) = α
j−1

∑
ν=0

{
PR(ντ) +

λ0

λ + λ0
(1 − e−(λ+λ0)τ)

}
e−(λ+λ0)(j−ν)(1 − α)j−ν−1 (41)

PTR(jτ) = [1 − PFR(jτ)/α](1 − β) (42)

If only unrevealed failures are possible in the system, i.e., λ0 = 0, then (39) and (41) are
simplified as in [30] (p. 61) and [36].

PO(kτ, t) =
k−1

∑
j=1

PR(jτ)e−λ(t−jτ)(1 − α)k−j + PR(kτ)e−λ(t−kτ) (43)

PFR(jτ) = α
j=1

∑
ν=0

PR(ντ)e−(j−ν)λτ(1 − α)j−ν−1 (44)
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During long-term system operation, it is advisable to use the steady-state values of
probabilities (43), (44), (42), and (40), determined as follows by [27] (p. 115) and [30] (p. 62):

P∗
O(τ) = lim

k→∞
PO[kτ, (k + 1)τ] =

(1 − β)e−λτ

1 − βe−λτ
(45)

P∗
FR(τ) = lim

j→∞
PFR(jτ) =

α(1 − β)e−λτ

1 − βe−λτ
(46)

P∗
TR(τ) = lim

j→∞
PTR(jτ) =

(1 − β)
(
1 − e−λτ

)
1 − βe−λτ

(47)

P∗
R(τ) = lim

j→∞
PR(jτ) =

(1 − β)
[
1 − (1 − α)e−λτ

]
1 − βe−λτ

(48)

In 1990, ref. [37] presented a model for approximate periodic imperfect inspection
policies with an exponential distribution of time to failure. The optimal inspection period
P = τ is determined by solving the following equation:

−(C1/C2)/T0 + [1 − P/T0 − exp(−P/T0)] + [exp(P/T0) + exp(−P/T0)− 2]/w = 0 (49)

where C1 is the cost of each inspection, C2 is the cost of each unit of time of system operation
in an undetected failure state, T0 = 1/λ, and w = 1 − β.

In 1991, ref. [38] researched the delay-time distribution of faults in repairable machin-
ery. This study helped determine the probability of a sequence of events occurring, such as
an inspection with no defect found, an inspection with a defect found, a breakdown, and
the conclusion of the observation period. In this model, the inspection is assumed to be
imperfect, meaning the defect is detected with a probability r < 1, where r = 1 − β.

In 1991, ref. [39] introduced a sequential approach to minimize costs in planning
inspections for deteriorating structures. The primary goal of this method is to identify an
optimal inspection strategy that minimizes the total expected cost between the current
inspection and the next one. This optimization considers variables such as the inspection
methods used in the current examination and the time interval until the next inspection.
This optimization process is iteratively performed during each inspection. The most suitable
inspection methods are chosen from a set of five options: (1) no inspection, (2) visual
inspection, (3) mechanical inspection, (4) visual and conditional mechanical inspection,
and (5) sampling mechanical inspection. Each inspection method is associated with a cost
evaluation equation. The probabilities of detecting or not detecting a defect by different
inspection methods are introduced into the cost functions. The total expected cost for the
entire structure within an inspection interval is determined.

In 1992, ref. [40] (p. 45) determined the long-term expected cost per unit time, consid-
ering only false positives (type I errors) and false negatives (type II errors). Further, optimal
inspection policies were determined for each cost function. For example, the long-term
expected cost per unit time considering only false negatives is given by

CP2 = −c2µT +
∞

∑
k=0

[
c1k +

c1

p2
+ c2

∞

∑
i=1

p2qi−1
2 xk+i

]
[F(xk+1)− F(xk)] (50)

where c1 is the cost of inspection, c2 is the cost per unit time elapsed between system failure
and its detection, µT is the mean time to failure, p2 = 1 − β, and q2 = β.

In 1992, ref. [30] developed a mathematical maintenance model for periodically in-
spected avionics systems, considering the system’s structure in terms of reliability and
the availability of spare units in the airline’s hub spare part system. The continuous-time
Markov chain modeled the spare part system. During the model’s construction, it was
assumed that a line replaceable unit (LRU) within the system could exist in one of the
states outlined in (13), and in addition in a state linked to the wait for a rejected unit’s
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replacement at the hub airport. This waiting state arose due to an unmet request for a spare
unit from the warehouse.

Figure 4 demonstrates how the quantity of spare LRUs affects the achieved unavail-
ability of a duplicated avionics system. This is observed under specific conditions: the
number of aircraft in the airline is 10, the failure rate of an LRU is 3.07 × 10−4 1/h, it takes
0.25 h to mount and dismantle an LRU onboard, it takes 0.2 h to test an LRU onboard,
it takes 36 h for an LRU to be delivered from the manufacturer, the aircraft stops on the
ground for 1 h, and the testing periodicity (τ) equals 4 h, with α and β both set to 0.01.
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In 1993, ref. [41] examined the optimization of maintenance processes for avionics
systems with built-in test equipment, considering both false positive and false negative
scenarios and assuming an exponential distribution of time to failure. When constructing
the maintenance models, the author examined scenarios where aircraft fly from the airline’s
hub airport, make landings at transit airports, and then return to the hub airport. The
avionics systems are expected to be tested using built-in test equipment before each aircraft
takeoff. For avionics systems listed in the master minimum equipment list (MMEL) [42],
replacements of rejected LRUs are only conducted at the airline’s hub airport. It is important
to note that the MMEL includes onboard systems in an aircraft that have little to no effect
on the safety of operation. The dissertation defined indicators such as posterior reliability,
operational reliability, achieved availability, and average cost per unit time.

For instance, the following formula determines the steady-state value of the
operational reliability of a single-unit system during the operating interval
[ktn /n, (k + 1)tn/n], k = 0, 1, . . . , n − 1:

P∗
O[ktn/n, (k + 1)tn/n] = lim

j→∞
PO[jtn + ktn/n, jtn/n + (k + 1)tn/n] =

tn(1 − α)ke−(k+1)λtn/n

MS0[1 − (1 − α)ne−λtn ]
(51)

where tn = nτ represents the duration between the aircraft’s takeoff and its landing at the
airline’s hub airport, n − 1 determines the number of landings at transit airports within the
interval between takeoff and landing at the hub airport, τ is the average flight time of the
aircraft between takeoff and landing, and MS0 is the average regeneration cycle.

In 1995, ref. [43] developed a cost-effective maintenance strategy for standby systems
using an inspection–repair–replacement approach. The policy assumed that inspection
correctly identifies the system’s downstate and upstate with a probability of p = 1 − β and
p’ = 1 − α, respectively, while it can also make incorrect identifications with a probability of
q = β and q’ = α, respectively. Should the system be rejected, it is replaced with a new one.
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In 1996, ref. [44] created a method to establish an inspection schedule for a deteriorating
single-component system. The system has three states: normal, symptom, and failure.
The transition of these states is described using a delay-time model. The maintenance
model includes constant conditional probabilities of a false positive and a false negative.
The approach is designed to minimize the long-term average cost per unit time while
maintaining a constraint on inspection time.

In 1998, ref. [45] proposed a maintenance model for a system with three states: good,
faulty, and failed. The system undergoes periodic imperfect inspections, where false
positives and false negatives may occur. Simple faults can be repaired, but there is a non-
zero probability of a fault remaining after the repair. After a fixed number of inspections,
the system is overhauled. Expressions were developed to calculate the average cost per
unit time and, by minimizing the average cost, the optimal number of inspections before
overhauling the system could be determined.

In 2001, ref. [46] examined two maintenance models that involved imperfect inspec-
tions and calculated the minimax schedules. In both models, the inspections are considered
imperfect, meaning that the probability of detecting system failures is noted as 1 − p, where
p = β. In the first model, the duration of the inspection is deemed negligible, while in the
second model, the inspection duration is considered.

In 2001, ref. [47] developed a maintenance model where failures are identified solely
through inspection. The process involves periodic checks. However, these inspections
are imperfect, potentially leading to type I and type II errors (false positives and false
negatives). The model considers inspection costs, costs due to type I errors, downtime costs
from missed failures, and corrective maintenance costs. The goal was to create an objective
function measuring these costs over an infinite timeframe and then minimize them.

In 2002, ref. [48] considered a maintenance model of a single-unit system with revealed
and unrevealed failures and imperfect inspections. The model description is as follows.
Whenever a failure becomes evident, corrective maintenance is implemented. When the unit
reaches age τ and no failures have been detected, an inspection is conducted to uncover
hidden failures. If a failure is detected during the inspection, corrective maintenance
is performed; otherwise, preventive maintenance is carried out. Thus, inspection and
preventive maintenance occur periodically at Nτ (where N = 1, 2,...) only for failures that
have not been revealed. However, if a failure has been revealed, the policy involves an
inspection and preventive maintenance at the age of τ. It is essential to note that if all
failures are revealed, this maintenance strategy is equivalent to an age replacement policy.

The objective cost function Q(τ) is the cost per unit time for an infinite horizon:

Q(τ) = cd + a(τ)/b(τ) (52)

a(τ) = (c0 + cn + c1α)R(τ) + [p(c0 + cn)δ − pcn + cr]F(τ)− cd

τ∫
0

R(u)du (53)

b(τ) = pτ[R(τ) + δF(τ)] + (1 − p)
τ∫

0

R(u)du (54)

where c0 is the cost of inspection, cn is the cost of preventive maintenance, c1 is the cost of
a type I error (false positive), cr is the cost of corrective maintenance, p is the probability
of unrevealed failure, τ is the age for inspection and maintenance, R(t) is the reliability
function, F(t) is the unreliability function, cd is the cost rate because of downtime, and
δ = 1/(1 − β).

In 2003, ref. [49] investigated a model for managing a deteriorating system with
concealed failures. In this model, the system’s time to failure follows an increasing failure
rate. Minimal repairs are made upon failure detection. The imperfect inspection process has
a detection probability of pd = 1 − β and a misidentification probability of qd = β. Similarly,
the operational state is identified with pu = 1 − α probability and misidentified with
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qu = α. The study aimed to find the most effective inspection policy to minimize the average
long-term cost per unit time.

In 2005, ref. [50] introduced a corrective maintenance model to calculate the total
expected cost of one cycle. The cost equation comprises the cost of one inspection, the
cost of time elapsed between failure and its detection per unit time, and the conditional
probabilities of α and β, which are specifically associated with human errors.

In 2006, ref. [51] devised an optimal inspection policy considering three types of
inspections: partial, perfect, and imperfect. Perfect checks accurately diagnose the system,
while partial inspections identify type I failures and imperfect inspections detect type
II failures with a probability of (1 − β). Type III failures are exclusively detected by
perfect inspections. If a failure is identified, a repair is performed to restore the system
to a condition close to new. Proactive age-based maintenance is applied, with preventive
actions restoring the system to an as-good-as-new state. The authors analyzed factors in a
regeneration cycle, including expected length, number of inspections, downtime, uptime,
and cost, along with a cost rate function.

In 2007, ref. [32] (also referenced in [52]) developed a mathematical model of post-
warranty maintenance to determine the availability of redundant avionics systems, con-
sidering the reliability and maintainability of LRUs, false positives and false negatives
that occur during LRU testing, and the sufficiency of spare parts. The study explored
the run-to-failure maintenance approach for avionics systems, analyzing three different
variations of this strategy.

Figure 5 demonstrates the relationship between the optimal quantity of spare avionics
LRUs in the warehouse and the number of aircraft in an airline, focusing on one of the
variants [32]. The curves on the graph represent different values of the probability α. Key
observations from the figure are that (a) the spare LRUs increase as an integer number,
(b) higher α values significantly boost spare LRUs (notably case α = 0.01), and (c) the second
scenario (α = 0.01) is more responsive to increasing aircraft numbers in the airline compared
to the first scenario (α = 0.001).
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This finding underscores the substantial impact of the trustworthiness of the LRU
built-in test equipment (BITE) on the effectiveness of post-warranty maintenance processes.

In 2007, ref. [53] developed a maintenance model with imperfect inspections to evalu-
ate the reliability of and optimize the inspection schedule for a multi-defect component.
The model utilizes a non-homogeneous Poisson process method in combination with a
delay-time approach. The underlying assumption is that a defect can be identified only
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through inspection with a probability of 1 − β (referred to as β in the paper). When identi-
fied during an inspection, the defect will undergo minimal repairs. The research introduced
an algorithm crafted to optimize inspection intervals, with the goal of maximizing the
component’s reliability.

The following formula determines the reliability at any time x:

Rβ(x, Tm) = exp
[
−Λβ(tn, x)

] n

∏
j=1

exp
[
−Λβ

(
tj−1, tj

)]
, tn < x ≤ tn+1 (55)

where Tm is an imperfect inspection strategy and Λβ(tj−1, tj) is the expected number of

failures over the inspection interval (tj−1, tj

]
.

The quantity Λβ(tj−1, tj) is given by

Λβ

(
tj−1, tj

)
=

j

∑
k=1

βj−k
tk∫

tk−1

λ(y)
[
G
(
tj − y

)
− G

(
tj−1 − y

)]
dy

 (56)

where G(t) is the cumulative distribution function of the delay time and λ(t) is the rate of
defect occurrence at time t.

In 2009, ref. [54] proposed a theoretical framework to model the cost per unit time
associated with two categories of inspection and repair. The first category is the minor
inspections that address small flaws, while the second category is major inspections that
are necessary for significant defects that may have been missed in minor inspections.
Neglecting major defects could lead to process breakdowns, which is why it is crucial to
address them. The paper also explored the relationship between major and minor defects,
considering the imperfect nature of major inspections.

The study calculated the following expected renewal cycle cost:

E(Cc) =
∞
∑

i=1

i
∑

j=1

[
jT∫

(j−1)T

(
i(Cma + kCmi) + Cmr1 + E

(
Cijs(x1)

))
(1 − r)i−jr f1(x1)[1 − F2(iT − x1)]dx1+

iT∫
(i−1)T

jT∫
(j−1)T

(
(i − 1)(Cma + kCmi) + Cmr2 + int

[
x−(i−1)T

t

]
Cmi + E

(
Cij f (x1, x)

))
×

iT∫
(i−1)T

jT∫
(j−1)T

(1 − r)i−j f1(x1) f2(x − x1)dx1dx

] (57)

where r is the probability of a perfect major inspection (r = 1 − β), Cmi is the average cost of
a minor inspection, Cma is the average cost of a major inspection, Cmr1 is the average cost
of a major repair for a defect identified in a major inspection, Cmr2 is the average cost of a
major repair due to a major failure, T is the major inspection periodicity, f 1(x1) is the PDF of
the random time to the initial point of a major defect, and f 2(x2) and F2(x) are the PDF and
the cumulative distribution function of the random time to failure from the initial point of
a major defect, respectively. E(Cijs(x1)) is the expected minor repair cost minus the expected
profit when the major inspection repair is completed at iT and E(Cijf(x1, x)) is the expected
minor repair cost minus the expected profit.

In 2011, ref. [55] considered a production process for a single item. Initially stable,
it may shift to an unstable state during the cycle, producing non-conforming items. The
transition time follows a random variable with an increasing hazard rate. Inspections at
specific times trigger preventive maintenance. The cycle ends if (1) the system shifts to the
second type of unstable state, (2) an error during maintenance causes a shift to an unstable
state, or (3) after the m-th inspection, whichever occurs first. To start a new cycle, additional
work may be needed to return the system to a stable state. Preventive maintenance is not
required during the last inspection if the system is already identified as being in the second
type of unstable state.



Aerospace 2024, 11, 92 21 of 55

The expected cost of maintenance for a regular production cycle is provided by

E(M) = Cpm

{
m−1
∑

j=1
δ(1 − δ)j−1[1 − ((1 − pj

)
α + pj(1 − β)

)
θ
] j−1

∏
i=1

[1 − ((1 − pi)α + pi(1 − β))θ]+

m−1
∑

j=1
(1 − δ)j−1

j
∏
i=1

[1 − ((1 − pi)α + pi(1 − β))θ]

}
+ Cmr

{
m−1
∑

j=1
(1 − θ)(1 − δ)j−1[(1 − pj

)
α + pj(1 − β)

]j−1
∏
i=1

[1 − ((1 − pi)α + pi(1 − β))θ]

} (58)

where δ is the probability of preventive maintenance activity causing the system to shift
to the out-of-control state, pj is the conditional probability of the process transitioning to
the out-of-control state within the time interval (tj−1, tj) (given that it was initially in the
in-control state at time tj−1), θ is the probability of the system being in the second type
of out-of-control state when it is judged to be out of control, Cpm is the cost of the actual
preventive maintenance activities, and Cmr represents the cost incurred for implementing
minimal repair per unit.

In 2012, ref. [56] examined the mission availability. The authors defined the
non-stationary mission availability as the probability that the interval of trouble-free system
operation θ entirely falls within one of the intervals between inspections
[kτ, (k + 1)τ], k = 0, . . ., N. The study showed that if the system has an exponential
distribution of time to a hidden failure, then the following relation holds [56]:

P(kτ, θ) =
e−λθ

(
1 − e−λ(τ−θ)

)
λ(τ − θ)

k

∑
j=0

PR(jτ)(1 − α)k−je−(k−j)λτ (59)

where P(kτ, θ) is the non-stationary mission availability and PR(jτ) is determined by
Equations (40), (42) and (44).

The average value of the non-stationary mission availability is given by [56]

Am(T, θ) =
1

(N + 1)

N

∑
k=0

P(kτ, θ) (60)

where T = (N + 1)τ is the finite horizon of maintenance planning.
In the given example for an avionics system, T = 5000 h, λ = 0.0001 1/h, α = β = 0.005,

τ = 10 h, and θ = 1 h. The calculated value is Am(T, θ) = 0.9994.
The stationary mission availability is given by the following limit [56]:

Am(θ) = lim
T→∞

AOR(T, θ) =
τ e−λθ

(
1 − e−λ(τ−θ)

)
λ(τ − θ)

[
1 − (1 − α)e−λτ

] 5
∑

i = 1
i ̸= 3

MSi

(61)

It should be noted that stationary mission availability is also referred to as mission
availability [57].

When θ << τ, from Equation (61), it follows that [27] (p. 125)

AOR(θ) ≈
e−λθ

(
1 − e−λτ

)
λ
[
1 − (1 − α)e−λτ

] 5
∑

i = 1
i ̸= 3

MSi

=
e−λθ MS1

5
∑

i = 1
i ̸= 3

MSi

= Aie−λθ (62)

where MS1, MS2, MS4, and MS5 are determined by Equations (14), (15), (17) and (18).
In 2012, ref. [58] considered an inspection and replacement strategy for a protection

system in which the inspection procedure is subject to errors, with conditional proba-
bilities of α and β. The authors developed two models for a single-component system
with unrevealed failures and perfect repair. In the first model, a false positive does not
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imply the renewal of the protection system; in the second, it does imply it. The authors
considered two phases of inspections. In the first phase, the checks are carried out at times
jT1 (j = 1,..., M1) and, in the second, checks are carried out at times jT2 + M1T1 (j = 1,..., M2). The
corrective maintenance policy’s decision variables are M1, T1, M2, and T2. The measures
for maintenance effectiveness are the long-term cost per unit time and average availability.

In the second model, average availability is determined as follows. The expected
uptime is given by

U(M1, T1, M2, T2) =
M1

∑
i=1

(1 − α)i−1
iT1∫

(i−1)T1

R(t)dt +
M2

∑
i=1

(1 − α)M1+i−1
M1T1+iT2∫

M1T1+(i−1)T2

R(t)dt (63)

where R(t) is the reliability function.
The expected downtime is

D(M1, T1, M2, T2) = E(T)− U(M1, T1, M2, T2) (64)

where E(T) is the expected renewal cycle length.
The average availability is the ratio of the expected uptime to the average renewal cycle.
In 2013, ref. [59] examined a system that can be in one of three states: good, defective,

or failed. Failures are immediately detected when they happen. The defective state,
however, can only be identified through inspections, and it does not hinder the system
from performing its intended function. The maintenance model proposed involves periodic
inspections to assess a system’s state, but these inspections are susceptible to errors. A
false positive event would result in the system being replaced unnecessarily, while a false
negative inspection result would fail to identify a defect that could impact reliability in
the future. Using the delay time concept, the authors determined the average cost per unit
time and the reliability function of a single-component system under three possible states,
subject to periodic checking. For instance, the expected number of inspections during the
regeneration cycle is determined as follows:

E(K∗) =
M−1
∑

i=1
qi−1

iτ∫
(i−1)τ

{
M−1
∑
j=i

jβj−i(1 − β)FD(jτ − x) +
M−1
∑
j=i

jβj−i+1
(j+1)τ−x∫

jτ−x
dFD

}
dFX+

(M − 1)
M−1
∑

i=1
qi−1

iτ∫
(i−1)τ

βM−iFD(Mτ − x)dFX +
M−2
∑

i=1
iqi

(i+1)τ∫
iτ

dFX

(i+1)τ−x∫
0

dFD+

M−2
∑

i=1
iqi−1αFX(iτ) + (M − 1)qM−2FX((M − 1)τ)

(65)

where X is the duration between the replacement of the system and the occurrence of the
defective state (assuming no inspection or replacement takes place during that period),
M − 1 is the number of inspections inside interval (0, T), K* is the number of inspections
in a cycle when there is no inspection at Mτ, q = 1 − α, FX(x) is the unreliability function,
FX(x) is the reliability function, D is the time delay between the arrival of a defect and the
occurrence of a subsequent failure, FD(x) is the cumulative distribution function of random
variable D, and FD(x) = 1 − FD(x).

In 2013, ref. [60] investigated two types of imperfect maintenance policies for a single-
component system with regular and irregular inspection intervals. In this model, the first
policy prompts a validity check at an additional cost when an alarm is triggered, while the
second policy restores the system after a false alarm. A comprehensive cost analysis was
established to evaluate these policies, including penalties incurred due to unavailability.

Let us consider the second case as more general. The expected maintenance cost
during the regeneration cycle is given by
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C(T1, N1) =
N1−1

∑
k=0

(k+1)T1∫
kT1

(1 − α)k
{

c0

(
k + 1 + β−βN1−k

1−β

)
+ cd

[
(k + 1)T1 +

β−βN1−k

1−β T1 − t
]}

dF(t)+

c0
N1−1

∑
k=0

k(1 − α)k−1αR(kT1) + c0N1(1 − α)N1−1R(N1T1) + cr

(66)

where c0 is the cost of inspection, cd is the cost of a single unmet demand, and cr is the cost
of renewal of a failed system.

The expected length of the regeneration cycle is

E(L) =
N1−1

∑
k=0

(k+1)T1∫
kT1

T1(1 − α)k
(

k + 1 + β−βN1−k

1−β

)
dF(t)+

N1T1(1 − α)N1−1R(N1T1) + T1
N1−1

∑
k=1

k(1 − α)k−1αR(kT1)

(67)

The average cost per unit time is the ratio of C(T1, N1) to E(L). The research also
considered a fluctuating inspection frequency, involving N1 inspections with intervals of
T1, followed by N2 inspections separated by intervals of T2.

In 2013, ref. [61] proposed an inspection–repair policy for corroded pipelines, consider-
ing errors in inspection results. The procedure enables a comparison of different strategies,
including inspection techniques and frequencies, while determining expected costs for
different situations.

The mathematical expectation of the total cost is as follows:

E[CT ] = ∑ CiP(Si), i = 1, . . . , 6 (68)

where P(Si) is the conditional probability of correct or incorrect decisions in terms of the
pipe condition and inspection result (i = 1, . . ., 6) and Ci is the total cost of the i-th scenario.

The conditional probabilities P(S1), . . ., P(S1) are determined as follows:
P(S1) =

(1−PoD)γ
(1−PoD)γ+(1−PFA)(1−γ)

, P(S2) =
PoDγ

PoDγ+PFA(1−γ)

P(S3) =
PoDγ

PoDγ+PFA(1−γ)
, P(S4) =

PFA(1−γ)
PoDγ+PFA(1−γ)

P(S5) =
PFA(1−γ)

PoDγ+PFA(1−γ)
, P(S6) =

(1−PFA)(1−γ)
(1−PoD)γ+(1−PFA)(1−γ)

(69)

where γ is the probability of defect existence at the inspection time, PoD = 1 − β, and
PFA = α.

In 2014, ref. [62] examined an inspection-based maintenance optimization model
involving imperfect inspections and potential failure scenarios. The model adopts the
fundamental delay-time approach, suggesting that a system can exist in three states: fully
functional, defective, and failed. As the system degrades through these states, regular
inspections are conducted. The inspection procedure involves a fixed, state-dependent prob-
ability of system failure. Alternatively, an inspection may incorrectly identify a functioning
system as defective (false positive) or a defective system as functioning (false negative),
with fixed probabilities. The system is replaced reactively upon failure or proactively at
the n-th inspection time or when an inspection reveals a defect, depending on which event
occurs first. The objective is to determine an optimal preventive age replacement threshold
and inspection interval that minimizes the long-term expected cost per unit time.

The following formula applies to calculate the expected long-term cost per unit time:

B(n, τ) =

an,τ +
τ∫
0

k̂n,τ (x)dx + b1
(

Hn,τ (0)− 1
)
+ b2

τ∫
0

ln,τ (x, 0)dx

τ∫
0

Hn,τ (x)dx +
τ∫
0

(
τ−x∫
0

G(y)dy

)
dHn,τ(x) +

τ∫
0

(
τ∫
0

ln,τ (x, y)dy

)
dx

(70)
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where

an,τ = cPR(1 − p − r1)
n−1F(nτ), k̂n,τ (x) = cPRkn,τ (x) + cDF

(
q+r2

1−q−r2
ln,τ(x, 0) + kn,τ(x)

)
b1 = pcFP+r1cIF+cI

1−p−r1
, b2 = qcPR+r2cIF+cI

1−q−r2

kn,τ (x) =
n−1
∑

i=0
(1 − p − r1)

i f (iτ + x)(1 − q − r2)
n−i−1G((n − i)τ − x)

Hn,τ (x) =
n−1
∑

i=1
(1 − p − r1)

iF(iτ + x), Hn,τ(x) =
n−1
∑

i=1
(1 − p − r1)

iF(iτ + x)

ln,τ (x, y) =
n−2
∑

i=0
(1 − p − r1)

i f (iτ + x)
n−1
∑

j=i+1
(1 − q − r2)

j−iG((j − i)τ − x + y)

(71)

r1 and r2 are the probabilities of system failure during an inspection and the occurrence of
a false positive and false negative, respectively, p = α, q = 1 − β, cI is the inspection cost,
cPR is the preventive replacement cost, cFP is the penalty cost due to a false alarm, cIF is the
inspection-induced failure cost, cDF is the internal/demand failure cost, F(x) and f (x) are
the distribution function and density of the defect arrival time, F(x) = 1 − F(x), G(y) is the
distribution function of the internal failure (which occurs when the system is in a defective
state), and G(y) = 1 − G(y).

In 2014, ref. [63] looked at how to inspect a single-component system with a two-level
inspection policy. This policy includes minor and major inspections and is based on a
three-stage failure process. The minor inspection can only identify the minor defective
stage with a limited probability γ = 1 − β but can always identify the severe defective
stage. On the other hand, a major inspection can always identify any defective stage,
regardless of its severity. If the component is found to be in the minor defective stage
during an inspection, a shortened inspection interval is introduced to increase the chances
of identifying the severe defective stage before failure. In the event of failure, immediate
repair or replacement is necessary to restore production. The research examined three
distinct renewal scenarios occurring at the end of a renewal cycle: a failure renewal, an
inspection renewal resulting from the identification of major defects during minor or major
inspections, and a planned preventive maintenance renewal. The probabilities of possible
renewals are also determined. The expected renewal cycle cost and expected renewal cycle
length are determined based on different renewal probabilities.

In 2015, ref. [64] investigated a comprehensive approach for jointly optimizing in-
spection and age-based replacement policies within a three-stage failure process: normal,
minor defective, and severe defective. This analysis encompassed both perfect and im-
perfect inspection scenarios. Detection of the minor defective stage involved conducting
inspections with a conditional probability r = 1 − β. System replacement occurred either
upon failure or after reaching a predetermined age threshold. Once the severe defective
stage was identified, repair actions were initiated. However, in the event of detecting the
minor defective stage, two alternatives were explored for comparative analysis: either
reducing the subsequent inspection interval by half or immediately conducting repairs.
The long-term system availability was utilized as the fundamental criterion for jointly
optimizing both inspection and replacement intervals.

In 2015, ref. [65] explored a model involving regular inspections and periodic preven-
tive maintenance to identify and fix hidden failures. The periodic checks take place and
hidden failures are detected with a probability of p = 1 − β. The failed system is restored to
an as-good-as-new level. The main goal of this study was to minimize the expected cost
per unit time over an infinite period.

In 2015, ref. [66] considered an inspection and preventive replacement policy for a one-
component protection system. In this model, inspections are imperfect and susceptible to
both false positives and false negatives, with constant conditional probabilities. The study
primarily examined the quality of maintenance, particularly focusing on the inspection
process’s quality. The indicators of maintenance effectiveness are the long-term cost per
unit time and the operational reliability.
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In 2016, ref. [67] investigated an imperfect inspection policy applicable to systems ex-
posed to numerous interconnected degradation processes. In this model, these degradation
processes are defined by a multivariate Wiener process, and their interdependencies are out-
lined using a covariance matrix. Failure arises when any of the degradation levels surpass
a defined threshold. The inspection process itself is imperfect, meaning that failures might
not always be detected upon inspection. The optimal inspection interval is determined
through the minimization of the long-term cost rate. Furthermore, the characteristics of
this optimal inspection interval are analyzed, and the upper and lower limits of its optimal
value are determined.

In 2017, ref. [68] analyzed a system that undergoes periodic inspection. A delay-
time-based maintenance model for a single-unit system with imperfect inspections was
investigated. In this model, the maintenance policy involves regularly checking the system’s
working status at fixed intervals of time. These inspections are not 100% perfect as the
system defect may only be identified with a conditional probability of pw = 1 − β. The
decision variable in this scenario is the duration of time between inspections. The objective
function aims to determine the expected maintenance costs for the system during a single
renewal period.

In 2018, ref. [69] investigated a dual-component system where the breakdown of
the initial component is initially concealed. The second component has three potential
states: functioning properly, defective, and failed. The system transitions to a failed state
only when a failure is revealed. Each revealed failure triggers a disturbance in the first
component, increasing its failure rate. Periodic inspections are conducted to detect defects
and hidden failures. The first component undergoes checks whenever the failure of the
second component is revealed, recognizing that these inspections might be imperfect. The
primary objective is to determine the optimal interval for periodic inspections, minimizing
the overall cost over a finite period. The study explored how probabilities α and β impact
the total maintenance costs.

In 2018, ref. [70] examined a three-state component failure model, one of which
states is a defective state that comes before actual failure. The inspection process is not
perfect and can result in false positives or false negatives and may even create defects. To
model the quality of replacement components, it was assumed that the components come
from a population including both weak and strong items, with a mixing parameter that
determines quality. The authors explored seven different scenarios of system replacement
and calculated the associated maintenance costs for each one. Ultimately, they determined
the total cost rate.

In 2018, ref. [71] investigated the impact of a quality inspection strategy on an im-
perfect production system. This inspection approach allows for both type I and type II
errors. Products are shipped for sale with a complimentary minimal repair warranty policy.
After each production cycle, preventative maintenance is conducted. A minimal repair is
conducted in the case of a breakdown in the production process before the cycle’s comple-
tion. A reserve inventory is established to meet demand during preventative maintenance.
Additionally, defective items identified during inspection are directed for reworking. The
model minimizes the expected total cost per item while adhering to an average outgoing
quality restriction.

In 2019, ref. [72] developed a maintenance framework for manufacturing systems
that deals with defects. The system goes through a defective state before it ultimately
fails. During the imperfect maintenance phase, a limited number of imperfect inspections
are conducted to identify defects, and the system undergoes imperfect repairs once a
defect is detected. These inspections are imperfect because they may not always detect a
defective state (q = β > 0). In the second phase, preventive replacement occurs during a
scheduled maintenance window. If a defect is discovered during this phase, preventive
replacement is performed during the next scheduled maintenance window. The study
calculated steady-state availability, expected maintenance costs in a renewal cycle, and
expected net revenue.
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In 2019, ref. [73] investigated a model for the periodic inspection of protection systems.
The objective was to determine the system state and assess if replacement is necessary,
employing a delay-time approach. The accuracy of the inspection is gauged by the proba-
bility of a false positive and two distinct probabilities of a false negative, linking the system
states to outcomes. The analysis explored how these probabilities influence inspection
effectiveness, cost rate, and system availability.

In 2019, ref. [74] developed a model to determine the optimal inspection intervals for
a one-shot system with n components that undergo periodic inspections. It was assumed
that the failure times of all components in a series structure are independent and follow an
exponential distribution. The inspection is imperfect, with a probability of not detecting
a failure denoted as α, which is β in terms of Table 1. If failures go undetected, they can
be identified at subsequent inspection times. The optimization criteria considered in this
study were interval availability and life cycle cost, which were derived analytically.

In 2020, ref. [75] introduced a model designed for the inspection and maintenance of a
single-unit system that can experience two types of failures: minor failures that are revealed
(R) and catastrophic failures that remain unrevealed (U). The probability of these failures
occurring depends on the age of the system. If a failure occurs at time t, it has a proba-
bility p(t) (where 0 ≤ p(t) ≤ 1) of being a type R-failure and a complementary probability
q(t) = 1 − p(t) of being a type U-failure. Periodic inspections are conducted at times kT,
where k ranges from 1 to M − 1, to detect U-failures. In the event of an R-failure, a minimal
repair is executed to restore the system to its previous state, often referred to as “as-bad-as-
old.” The maximum allowable number of minimal repairs is N − 1. If a U-failure is detected
during inspection, if the Nth R-failure occurs, or if it is time for preventive maintenance at
MT, the system is replaced with a new one. The values of T, M, and N are decision variables
that require optimization. It is important to note that inspections may not be perfect, with a
probability of α for false positives and a probability of β for false negatives. The objective
function is to minimize the long-term cost per unit time.

In 2021, ref. [76] developed a maintenance model for systems with multiple correlated
degradation processes. The authors used a multivariate stochastic process and a covariance
matrix to describe these processes’ interactions. System failure occurs when any degra-
dation feature exceeds a set threshold. The inspections are imperfect concerning failure
detection. The study’s goal was to calculate the expected long-term cost rate and determine
theoretical boundaries for cost-optimal inspection intervals.

In 2021, ref. [77] proposed a two-stage inspection policy model aimed at integrating
inspection methods that vary in terms of accuracy and cost. Unlike traditional two-stage
inspection policy models where the second stage is assumed to be perfect, this study de-
veloped a mathematical model in which the second stage can be imperfect. The study
calculated the cost per unit time for the two-stage policy with imperfect inspections. Ad-
ditionally, the study formulated a set of rules to aid decision making when searching
for cost-effective parameters for the two-stage policy. The study introduced the condi-
tional probabilities of a false positive diagnosis and a false negative diagnosis of either the
one-stage or two-stage inspection policy into the cost function.

In 2021, ref. [78] explored a delay-time maintenance model for a system undergoing
three states: normal, defective, and failed. The authors examined a two-phase imperfect
inspection policy, incorporating a hybrid preventive maintenance approach. This strategy
involved both inspection-based replacement, triggered by true positives or false positives,
and age-based replacement, scheduled after multiple imperfect inspections. The researchers
jointly determined the inspection interval length and the number of inspections for each
phase, aiming to minimize the cost rate over an infinite time horizon under this policy.
Depending on various renewal points, the system maintenance can be classified into three
scenarios: completing a renewal cycle through (1) replacement due to failure, (2) replace-
ment based on inspection, or (3) replacement based on age. The corresponding average
maintenance costs for these scenarios are calculated and analyzed. As an example, consider
Scenario 2, where the renewal cycle concludes with an inspection-based replacement trig-
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gered by a false positive or a true positive event. In these instances, the system is renewed
through replacement. There are five distinct types of sample paths possible in such cases.
Let us focus on type 2 sample paths and their associated probabilities for illustration.

Psce2,2(i, j) =

jT1∫
(j−1)T1

∞∫
iT1−x

(1 − α)j−1βi−j(1 − β)dFY(y)dFX(x) (72)

where T1 is the inspection interval in phase 1 and FX(x) and FY(y) are the cumulative
distribution function of the time to defect X and to delay time Y, respectively.

In 2022, ref. [79] developed a two-phase inspection and maintenance policy specifically
designed for safety-critical systems. The aim of this policy is to prevent failures that may
result in serious consequences. The two phases comprise constant-frequency inspections
in the first phase and varying time intervals in the second phase. The authors presented
two delay-time-based mathematical models in their study. Model 1 assumes an in-house
inspection team with the autonomy to replace components, while Model 2 assumes a
specialized team, often outsourced, responsible for replacements. The inspections are
assumed to be imperfect, with false-positive and false-negative occurrences considered.
The study determined the expected cost per unit time and the unavailability rate.

In 2022, ref. [80] proposed a maintenance and statistical process control model for a
production process with three states: in-control, out-of-control, and failure. The process
operates in both in-control and out-of-control states but completely stops in the failure state.
A control chart is used to judge the states based on the quality of the produced items, with
the failure state being observable. When the process shifts to an out-of-control state and the
control chart identifies this transition, minor repairs are conducted to restore the process to
an in-control state and continue the production cycle. After each minor repair, the life of
the production machine decreases stochastically. The model determines the optimal sample
size, sampling interval, control chart limits, and maximum number of minor repairs during
a process cycle. The maintenance model includes the control chart’s probabilities of type II
error (β) and type I error (α).

In 2022, ref. [81] created a preventive maintenance model combining condition moni-
toring and manual inspections. The model, employing a delay-time approach, uses white
noise for normal state monitoring and drifted Brownian motion for the delay-time stage.
The maintenance policy includes failure and preventive thresholds, initiating corrective or
preventive actions. Imperfect manual inspections are described by a conditional probability
r = β. The optimization goal is to minimize the expected cost per unit time by determining
optimal condition monitoring intervals and preventive thresholds.

In 2023, ref. [82] introduced a new approach for managing maintenance that optimizes
both preventive maintenance and spare parts ordering strategies. This was achieved using a
dynamic early warning period model that considers different equipment states. The model
includes two maintenance approaches: normal ordering and emergency ordering, which
are applied based on the equipment’s state. The model also accounts for the possibility
of the imperfect detection of equipment states due to inaccurate monitoring. Imperfect
inspections can result in a false negative event with a probability denoted as p, which is β.
A two-phase inspection and spare parts ordering strategy minimize the expected cost per
unit time.

2.2. Models with Non-Constant Probabilities of Correct and Incorrect Decisions

In 1981, ref. [83] (pp. 4–12; also referenced in [84]), explored one of the earliest
maintenance models featuring non-constant probabilities of correct and incorrect decisions,
denoted as 1 − α(t), 1 − β(t), α(t), and β(t). The authors investigated two maintenance
models involving periodic imperfect inspections. In the first model, the system is rechecked
after it is declared inoperable, which practically eliminates the occurrence of a repeated
false positive. Therefore, after additional verification, the system is allowed to be used with
almost unity probability. In the second model, after a false positive, the system is restored
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and becomes as-good-as-new. The total average costs over the interval (0, T) during the
regeneration cycle are determined for each model.

Probabilities α(t) and β(t) were determined for a one-parameter system for the follow-
ing stochastic degradation process [83]:

X(t) = A0 − A1tγ (73)

where A0 and A1 are independent random variables with normal distribution and γ
is a constant.

The mathematical expectation and standard deviation of the random process X(t) have
the form [83] {

mx(t) = m0 − m1tγ

σx(t) =
√

σ2
0 + σ2

1 t2γ
(74)

where m0, m1, σ0, and σ1 are mathematical expectations and standard deviations of random
variables A0 and A1.

The studies [83,84] proposed approximating the cumulative distribution function of
the random process (73) using the gamma distribution function, which effectively describes
aging processes [85]:

F(t) = 1 −
ns−1

∑
i=1

(ηt)i

i!
e−ηt (75)

where ns and η are the shape and rate parameters of the Gamma distribution.
The parameters η and ns are determined based on the condition that the mathematical

expectation E[Ξ] of the random time to failure Ξ and variance Var[Ξ] of the actual and
approximated processes coincide [83]. Therefore,

η = E[Ξ]/Var[Ξ] (76)

ns = E[Ξ]2/Var[Ξ] (77)

where
E[Ξ] = [(m0 − Lx)/m1]

1/γ (78)

Var[Ξ] =
(

E[Ξ]
γ

)2
[(

σ0

m0 − Lx

)2
+

(
σ1

m1

)2
]

(79)

In Equation (79), Lx represents the functional failure threshold.
The probabilities α(t) and β(t) were calculated assuming an additive relationship,

with no correlation between the system’s state parameter and the measurement error. The
measurement error is a stationary random process with an expected value of zero and a
standard deviation of σn.

The unconditional probabilities of a false positive and a false negative are computed
using the following formulas by [83] (p. 11) and [84]:

Pα(t) =
1√
2π

∞∫
[Lx−mx(t)]/σx(t)

e
−x2

2 dx − 1
2π

∞∫
[Lx−mx(t)]/σx(t)

e
−x2

2

∞∫
[Lx−mx(t)−xσx(t)]/σn

e
−y2

2 dydx (80)

Pβ(t) =
1√
2π

∞∫
[Lx−mx(t)]/

√
σ2

x (t)+σ2
n

e
−z2

2 dz − 1
2π

∞∫
[Lx−mx(t)]/σx(t)

e
−x2

2

∞∫
[Lx−mx(t)−xσx(t)]/σn

e
−y2

2 dydx (81)

The conditional probabilities of a false positive and a false negative are calculated
using straightforward formulas [83]:

α(t) = Pα(t)/R(t) (82)
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β(t) = Pβ(t)/[1 − R(t)] = Pβ(t)/F(t) (83)

where R(t) and F(t) are the reliability and unreliability functions, respectively.
The reliability function is determined by the following equation [83]:

R(t) =
1√
2π

∞∫
[Lx−mx(t)]/σx(t)

e
−x2

2 dx (84)

Figure 6a shows the dependencies of the unconditional probabilities of a false positive
(FP) and a false negative (FN) on the operating time of the test object at m0 = 30 W,
m1 = 0.316 W, σ0 = 1 W, σ1 = 0.051 W/

√
h, γ = 0.5, Lx = 20 W, and σn = 0.75 W [83]

(p. 12).
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Figure 6b shows the dependencies of the conditional probabilities of a true negative
(TN), true positive (TP), false positive (FP), and false negative (FN) on the operating time
for the same data.

The conditional probabilities of true negatives, true positives, false positives, and false
negatives are heavily influenced by time, as shown in Figure 6b. Thus, maintenance models
that assume a constant probability of these inspection errors regarding degrading systems
are not accurate representations of reality.

In 1982, ref. [86] considered a corrective maintenance model with periodic inspections.
The following expression for inherent availability was obtained:

Ai =
∞

∑
n=1

Pn

n−1

∏
m=0

(1 − αm)/

{
1 +

∞

∑
n=1

[
Pn + (Pn−1 − Pn)

βn

1 − αn

n

∏
m=0

(1 − αn)

]}
(85)

where αn and βn are the conditional probabilities of a false positive and a false negative at
the n-th inspection, respectively. Pn is the reliability function during time nτ and τ is the
inspection periodicity.

Equation (85) does not consider the system’s maintainability characteristics. Addition-
ally, this mathematical model does not account for the extent of system restoration, which is
essential for determining the reliability properties acquired by the system after restoration.
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In 1983, ref. [87] (also referenced in [88]) developed mathematical models for cal-
culating the operational reliability of redundant aviation systems with gradual failures,
continuously monitored by built-in test equipment (BITE). These models account for false
positives and false negatives in the BITE. Both cold and hot redundancy modes are con-
sidered. The state of a functional unit is determined by a vector of state parameters, each
component of which represents a non-stationary monotonic stochastic process. The be-
havior of each random process is approximated by a Gamma process using the method
of degradation level quantization [89]. It is represented as a Markov process with a finite
number of states and continuous time. The number of quantization levels for each random
process and the intensity of the intersection of these levels, i.e., shape and rate parameters
ns and η of the Gamma distribution, are determined based on the condition that the mathe-
matical expectation and variance of the actual and approximated processes coincide. It is
assumed that the BITE can be in an operational state, where errors such as false positives
and false negatives result from the measuring path’s accuracy, or in inoperative states,
where errors stem from hidden failures of the BITE.

The probabilities of the states of a functional unit are described by a system of differen-
tial equations with variable coefficients, solved using numerical methods. The formulas for
false positive and false negative rates, when the state parameter crosses the i-th quantization
level, are as follows [87,88]:

ai(t) = ηαq,i(t), i = 1, . . . , ns − 1 (86)

bi(t) = ηβq,i(t) (87)

where αq,i(t) and βq,i(t) are the conditional probabilities of a false positive and a false
negative occurring in the BITE measuring channel when the state parameter crosses the
i-th quantization level, respectively. Formulas for calculating αq,i(t) and βq,i(t) are given.

Figure 7 shows the dependence of operational reliability on the operational time for
a duplicated system with cold redundancy (curves 1 and 2). Curve 3 corresponds to a
non-redundant functional unit without BITE.
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Figure 7. The dependence of operational reliability on the operational time for a duplicated system
with cold redundancy: curve 1 corresponds to an error-free BITE; curve 2 corresponds to a real BITE;
curve 3 corresponds to a non-redundant functional unit without BITE [88].

The parameters of the Gamma distribution are ns = 6 and η = 0.593 × 10−21/h. The
values of the quantization levels are L1 = 25.9 W, L2 = 24.2 W, L3 = 22.9 W, L4 = 21.8 W,
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L5 = 20.83 W, and L6 = Lx = 20 W. The measurement error is a stationary random process
with zero mathematical expectation and a standard deviation of 0.5 W.

As can be seen from Figure 7, the measurement error of the state parameter signifi-
cantly reduces operational reliability.

In 1984, ref. [90] (pp. 1–7; also referenced in [91]) considered a maintenance strategy
involving sequential imperfect inspections and the perfect repair of a multi-unit system
within a finite time horizon. Each unit within the system can exist in one of several given
states. Mathematical equations for the mean times spent by units in different states are
derived, accounting for non-constant probabilities of false positives and false negatives. It
is assumed that the unit failure occurred at time tk < ξ ≤ tk+1 (k = 0, . . . , N) and, at time
T, the system is renewed. In this strategy, a single-unit system or a unit within a multi-unit
system can be in one of the states described in (13).

The expected value of time spent by the system in state S1 [90,91]:

MS1 =
t1∫
0

ξdF(ξ) +
N
∑

k=1

tk+1∫
tk

{
k
∑

ν=1
tνα(tν)

ν−1
∏
i=1

[1 − α(ti)] + ξ
k

∏
ν=1

[1 − α(tν)]

}
dF(ξ)+{

N
∑

ν=1
tνα(tν)

ν−1
∏
i=1

[1 − α(ti)] + T
N
∏

ν=1
[1 − α(tν)]

}
[1 − F(T)]

(88)

The expected value of time spent by the system in state S2:

MS2 =
N−1
∑

k=0

tk+1∫
tk

k
∏

ν=1
[1 − α(tν)]

{
N
∑

j=k+1

(
tj − ξ

)[
1 − β

(
tj
)] j−1

∏
i=k+1

β(ti)+

(T − ξ)
N
∏

i=k+1
β(ti)

}
dF(ξ) +

N
∏
i=1

[1 − α(ti)]
T∫

tN

(T − ξ)dF(ξ)
(89)

The expected value of time spent by the system in state S3:

MS3 = tins
N−1
∑

k=0

tk+1∫
tk

{
k
∑

ν=1
να(tν)

ν−1
∏
i=1

[1 − α(ti)] +
k

∏
ν=1

[1 − α(tν)]

{
N
∑

j=k+1
j
[
1 − β

(
tj

)] j−1
∏

i=k+1
β(ti) + N

N
∏

i=k+1
β(ti)

}}
dF(ξ)+

tins

{
N
∑

ν=1
να(tν)

ν−1
∏
i=1

[1 − α(ti)] + N
N
∏

ν=1
[1 − α(tν)]

}
[1 − F(tN)]

(90)

The expected value of time spent by the system in state S4:

MS4 = tFR

N−1

∑
k=0

tk+1∫
tk

{
1 −

k

∏
ν=1

[1 − α(tν)]

}
dF(ξ) + tFR

{
1 −

N

∏
i=1

[1 − α(ti)]

}
[1 − F(tN)] (91)

The expected value of time spent by the system in state S5:

MS5 = tTR

N

∑
k=0

tk+1∫
tk

{
k

∏
ν=1

[1 − α(tν)]

}
dF(ξ) (92)

Equation (92) requires some explanation because it does not include failure detection
probabilities. The system is restored at time tj (j = k + 1,..., N) if, during the j-th inspection,
a failure is detected (true positive) or at time T if a false negative event occurs during the
inspection at time tN. Therefore, if ξ < T, the system will be restored with a probability of 1.
However, the system can only enter state S5 if a true negative event occurred at time tk, the
probability of which is ∏k

ν=1[1 − α(tν)].
For a single-unit system, achieved availability, inherent availability, and average

maintenance cost per unit time are determined by Equations (19)–(21).
In [90] (p. 7), the following equation was presented for posterior reliability in the

interval (tk, t), where tk < t, assuming an arbitrary distribution of time to hidden failure:
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PA(tk, t) =
P1(t1, . . . , tk)

P1(t1, . . . , tk) + P2(t1, . . . , tk)
× R(t)

R(tk)
(93)

P1(t1, . . . , tk) = R(tk)
k

∏
i=1

[1 − α(ti)] (94)

P2(t1, . . . , tk) =
k−1

∑
j=0

[
R
(
tj
)
− R

(
tj+1

)] j

∏
i=1

[1 − α(ti)]
k

∏
l=j+1

β(tl) (95)

When α(t) = β(t) = 0, Equation (91) is converted to the following form:

PA(tk, t) = R(t)/R(tk) (96)

It should be especially noted that Equations (19)–(21) and (88)–(95) were included in
the state regulatory document on determining the criteria and periodicity of diagnosing
technical systems [92].

In 1984, ref. [93] (also referenced in [88], pp. 63, 64) addressed the challenge of deter-
mining optimal inspection intervals for recoverable systems based on the “reliability-cost”
criterion, particularly for systems impacting safety. This criterion utilizes two indicators of
maintenance efficiency: one characterizes operational reliability, while the other assesses
the unit costs associated with inspecting and restoring both correctly and falsely rejected
systems. The study calculated maintenance efficiency indicators for cases involving both
perfect and minimal repair.

In the case of perfect repair, operational reliability in the interval (ti, ti+1) and average
cost per unit time are determined using the following formulas [93]:

PO(ti, ti+1) =
i

∑
j=0

PR
(
tj
)

P
(
ti+1 − tj

) i

∏
µ=j+1

[
1 − α

(
tµ − tj

)]
(97)

C(t1, . . . , ti) =

{
iCins +

i

∑
j=1

[
CFR

(
tj
)

PFR
(
tj
)
+ CTR

(
tj
)

PTR
(
tj
)]}

/ti (98)

where PR(tj) is the probability of the system repair at time tj and PFR(tj) and PTR(tj) are
the probabilities of repair for falsely rejected and failed systems at time tj, respectively.

Probabilities PFR(tj) and PTR(tj) are determined by the method of mathematical induction.

PFR
(
tj
)
=

j−1

∑
ε=0

PR(tε)P
(
tj − tε

) j−1

∏
µ=ε+1

[
1 − α

(
tµ − tε

)]
α
(
tj − tε

)
(99)

PTR
(
tj
)
=

j−1

∑
ε=0

PR(tε)
j

∑
k=ε+1

[P(tk−1 − tε)− P(tk − tε)]
k−1

∏
µ=ε+1

[
1 − α

(
tµ − tε

)] j−1

∏
ν=k

β(tν − tε)
[
1 − β

(
tj − tε

)]
(100)

The optimal inspection moments according to the “reliability-cost” criterion are deter-
mined by solving the following problem [93]:

min
t1,...,ti

C(t1, . . . , ti)

with a constraint
PO(ti, ti+1) ≥ P∗

O, i = 1, 2, . . .

(101)

where P∗
O is the minimum permissible value of operational reliability.

In 1987, ref. [94] (also referenced in [27]) proposed a maintenance model featuring a
sequential inspection schedule. The inspection policies are considered for both finite and
infinite time horizons. In this model, the conditional probabilities of making correct or
incorrect decisions depend not only on the timing of the inspections but also on the timing
of hidden failures. This model is considered general because it provides mathematical
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formulas applicable to any distribution of failures and any arbitrary degradation process.
The developed model is an extension of the model presented in [90–92], wherein the
conditional probabilities of correct and incorrect decisions depend on inspection times but
not on the moment of failure.

In this model, a single-unit system can be in one of the states described in (13).
The expected value of time spent by the system in state S1 [27,94]:

MS1 =
N
∑

k=0

tk+1∫
tk

{
k
∑

ν=1
tνPFP(t1, . . . , tν−1; tν|ξ ) + ξPTN(t1, . . . , tk−1; tk|ξ )}dF(ξ)+

∞∫
T

[
N
∑

k=1
tkPFP(t1, . . . , tk−1; tk|ξ ) + TPTN(t1, . . . , tN−1; tN |ξ )

]
dF(ξ)

(102)

The expected value of time spent by the system in state S2:

MS2 =
N−1
∑

k=0

tk+1∫
tk

{
N
∑

j=k+1

(
tj − ξ

)
PTP

(
t1, . . . , tj−1; tj|ξ

)
+ (T − ξ)PFN(t1, . . . , tN−1; tN |ξ )

}
dF(ξ)+

T∫
tN

(T − ξ)PTN(t1, . . . , tN−1; tN |ξ )dF(ξ)
(103)

The expected value of time spent by the system in state S3:

MS3 = tins
N−1
∑

k=0

tk+1∫
tk

{
k
∑

ν=1
νPFP(t1, . . . , tν−1; tν|ξ ) +

N
∑

j=k+1
jPTP

(
t1, . . . , tj−1; tj|ξ

)
+ NPFN(t1, . . . , tN−1; tN |ξ )

}
dF(ξ)+

tins

∞∫
tN

[
N
∑

k=1
kPFP(t1, . . . , tk−1; tk|ξ ) + NPTN(t1, . . . , tN−1; tN |ξ )

]
dF(ξ)

(104)

The expected value of time spent by the system in state S4.

MS4 = tFR

N−1

∑
k=0

tk+1∫
tk

[
k

∑
ν=1

PFP(t1, . . . , tν−1; tν|ξ )
]

dF(ξ) +
∞∫

tN

[
N

∑
k=1

PFP(t1, . . . , tk−1; tk|ξ )
]

dF(ξ)

 (105)

The expected value of time spent by the system in state S5:

MS5 = tTR

N

∑
k=0

tk+1∫
tk

[
N

∑
j=k+1

PTP
(
t1, . . . , tj−1; tj|ξ

)]
dF(ξ) (106)

The following notations are used in Equations (102)–(106):
PFP(t1, . . . , tν−1; tν|ξ) is the conditional probability of the following events: the sys-

tem being operable at time tν, the system being judged as operable at inspection times t1 to
tν-1, and the system being judged as inoperable at inspection time tν, given that a failure
occurred at time ξ.

PTN(t1, . . . , tk−1; tk|ξ) is the conditional probability of the following events: the sys-
tem being operable at time tk and being judged as operable at inspection times t1 to tk,
given that a failure occurred at time ξ.

PTP(t1, . . . , tj−1; tj
∣∣ξ) is the conditional probability of the following events: the system

has failed until inspection time tj, the system has been judged as operable at inspection
times t1,..., tj−1, and the system is judged as inoperable at inspection time tj, given that a
failure occurred at time ξ.

PFN(t1, . . . , tj−1; tj
∣∣ξ) is the conditional probability of the following events: the system

has failed until inspection time tj and has been judged as operable at inspection times t1,...,
tj, given that a failure occurred at time ξ.

For the infinite time horizon, the equations for MS1 through MS5 are as follows.
The expected value of time spent by the system in state S1 [27]:
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MS1 =
∞

∑
k=0

tk+1∫
tk

{
k

∑
ν=1

tνPFP(t1, . . . , tν−1; tν|ξ ) + ξPTN(t1, . . . , tk−1; tk|ξ )}dF(ξ) (107)

The expected value of time spent by the system in state S2:

MS2 =
∞

∑
k=0

tk+1∫
tk

{
∞

∑
j=k+1

(
tj − ξ

)
PTP

(
t1, . . . , tj−1; tj|ξ

)}
dF(ξ) (108)

The expected value of time spent by the system in state S3:

MS3 = tins

∞

∑
k=0

tk+1∫
tk

{
k

∑
ν=1

νPFP(t1, . . . , tν−1; tν|ξ ) +
∞

∑
j=k+1

jPTP
(
t1, . . . , tj−1; tj|ξ

)}
dF(ξ) (109)

The expected value of time spent by the system in state S4:

MS4 = tFR

∞

∑
k=0

tk+1∫
tk

[
k

∑
ν=1

PFP(t1, . . . , tν−1; tν|ξ )
]

dF(ξ) (110)

The expected value of time spent by the system in state S5:

MS5 = tTR

∞

∑
k=0

tk+1∫
tk

[
∞

∑
j=k+1

PTN
(
t1, . . . , tj−1; tj|ξ

)]
dF(ξ) (111)

Probabilities PFP(t1, . . . , tk−1; tk|ξ) , PTN(t1, . . . , tk−1; tk|ξ) , PTP(t1, . . . , tj−1; tj
∣∣ξ) , and

PFN(t1, . . . , tj−1; tj
∣∣ξ) are called by the name of the event at the last moment under consid-

eration, i.e., “false positive”, “true negative”, “true positive”, and “false negative”, and are
determined by the following formulas given by [94], [27] (p. 89), and [29] (p. 17):

PFP(t1, . . . , tν−1; tν|ξ ) =
tν−ξ∫
−∞

∞∫
tν−1−ξ

. . .
∞∫

t1−ξ

ψ0(u1, . . . , uν|ξ )du1 . . . duν, ν = 1, . . . , k (112)

PTN(t1, . . . , tk−1; tk|ξ ) =
∞∫

tk−ξ

∞∫
tk−1−ξ

. . .
∞∫

t1−ξ

ψ0(u1, . . . , uk|ξ )du1 . . . duk, k = 1, . . . , N (113)

PFN
(
t1, . . . , tj−1; tj|ξ

)
=

∞∫
tj−ξ

∞∫
tj−1−ξ

. . .
∞∫

t1−ξ

ψ0
(
u1, . . . , uj|ξ

)
du1 . . . duj, j = k + 1, . . . , N (114)

PTP
(
t1, . . . , tj−1; tj|ξ

)
=

tj−ξ∫
−∞

∞∫
tj−1−ξ

. . .
∞∫

t1−ξ

ψ0
(
u1, . . . , uj|ξ

)
du1 . . . duj, j = k + 1, . . . , N (115)

where ψ0(δ1, . . . , δk|ξ) is the conditional PDF of the set of random variables ∆1, . . . , ∆k,
given that a failure occurred at time ξ and tk < ξ ≤ tk+1 (k = 0, . . . , N).

The random variable ∆i (i = 1, . . . , k) is the error in estimating the time to failure at
inspection time ti [27,29,94]:

∆i = Ξi − Ξ (116)

where Ξ represents the random time to system failure, while Ξi represents the random
assessment of Ξ based on the results of the inspection at time ti.
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Random variables Ξ and Ξi are the smallest roots of the following stochastic
equations [27,29]:

→
X(t)−

→
Lx = 0 (117)

→
Φxy

[ →
X(t),

→
Y(ti)

]
−

→
Lx = 0 (118)

where
→

X(t) is the vector of the system state parameters,
→
Lx represents the allowable range of

variation for vector
→

X(t),
→

Y(ti) is the vector of errors in measuring system state parameters,

and
→

Φxy is the function of vectors
→

X(t) and
→

Y(ti).

In [29], a theorem was proven concerning the PDF of ψ0(δ1, . . . , δk|ξ) . If
→

Y(t1),...,
→

Y(tk)
are independent random vectors, then the following relationship holds:

ψ0(δ1, . . . , δk|ξ ) =
k

∏
i=1

ψ

(
δi

∣∣∣∣ξ,
→

x(t)
)

(119)

where
→

x(t) is a realization of the vector
→

X(t) and ψ(δi

∣∣∣∣ξ,
→

x(t)) is the conditional PDF of

the error in estimating the time to failure at inspection time ti, provided that Ξ = ξ and
→

X(t) =
→

x(t).
If for a fixed time to failure (Ξ = ξ) there is only one realization of the random process

→
X(t), then Equation (119) takes the form [27,29]

ψ0(δ1, . . . , δk|ξ ) =
k

∏
i=1

ψ(δi|ξ ) (120)

Examples of such processes are random degradation processes with monotonic real-
izations. For example, for the process (73) with A0 = a0 and γ = 1, as described in [29], we
have [27,29]

ψ0(δ1, . . . , δk|ξ ) =
(

a0 − Lx

ξ

)k k

∏
i=1

Ω
[
(a0 − Lx)δi

ξ

]
(121)

where Ω(yi) represents the PDF of a measurement error at time ti, i.e., Y(ti).
Considering Equation (120), the equations for conditional probabilities—

Equations (112)–(115)—are significantly simplified in [94] and [27] (p. 89):

PFP(t1, . . . , tν−1; tν|ξ ) =
tν−ξ∫
−∞

ψ(δν|ξ )dδν

[
ν−1
∏
i=1

∞∫
ti−ξ

ψ(δi|ξ )dδi

]
=

α(tν|ξ )
ν−1
∏
i=1

[1 − α(ti|ξ )], ν = 1, . . . , k
(122)

PTN(t1, . . . , tk−1; tk|ξ ) =
k

∏
ν=1

∞∫
tν−ξ

ψ(δν|ξ )dδν =
k

∏
i=1

[1 − α(ti|ξ )], k = 1, . . . , N (123)

PFN
(
t1, . . . , tj−1; tj|ξ

)
=

j

∏
i=1

∞∫
ti−ξ

ψ(δi|ξ )dδi =
k

∏
i=1

[1 − α(ti|ξ )]
j

∏
i=k+1

β(ti|ξ ), j = k + 1, . . . , N (124)

PTP
(
t1, . . . , tj−1; tj|ξ

)
=

tj−ξ∫
−∞

ψ
(
δj|ξ

)
dδj

[
j−1
∏

i=k+1

∞∫
ti−ξ

ψ(δi|ξ )dδi

]
=

k
∏
i=1

[1 − α(ti|ξ )]
[
1 − β

(
tj|ξ

)] j−1
∏

i=k+1
β(ti|ξ ), j = k + 1, . . . , N

(125)
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where α(tν|ξ) represents the conditional probability of a false positive at time tν given that
the failure occurs at a time ξ > tν, and β(tj

∣∣ξ) represents the conditional probability of a
false negative at time tj given that the failure occurs at a time ξ < tj.

Figure 8 illustrates the dependencies of probabilities α(kτ|ξ) and 1 − α(kτ|ξ) on the
current inspection number, with a periodicity of 100 h and using the same initial data
(except σn) as in Figure 6. In Figure 8a, the curves are plotted at ξ = 1001 h, while in
Figure 8b, they are plotted at ξ = 1090 h. Curves 1 and 2 are plotted when σn = 1 W, while
curves 3 and 4 are plotted when σn = 3 W.
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where 𝛼(𝑡ఔ|𝜉) represents the conditional probability of a false positive at time 𝑡ఔ given 
that the failure occurs at a time 𝜉  𝑡ఔ, and 𝛽(𝑡|𝜉) represents the conditional probability 
of a false negative at time 𝑡 given that the failure occurs at a time 𝜉 < 𝑡. 
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(except 𝜎) as in Figure 6. In Figure 8a, the curves are plotted at ξ = 1001 h, while in Figure 
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Figure 8. The dependencies of the conditional probabilities of a true negative (curves 1 and 3) and a 
false positive (curves 2 and 4) on the current inspection number when ξ = 1001 h (a) and ξ = 1090 h 
(b). 

As Figure 8 illustrates, the conditional probabilities of a true negative and a false 
positive depend not only on measurement accuracy and the inspection time but also on 
the timing of the system failure. Specifically, when the system failure occurs only 1 h after 
the last inspection, the probability of a false positive is higher, while the probability of a 
true negative is lower compared to the situation where the failure occurs 90 h after the last 
inspection.  

Figure 8. The dependencies of the conditional probabilities of a true negative (curves 1 and 3) and a
false positive (curves 2 and 4) on the current inspection number when ξ = 1001 h (a) and ξ = 1090 h (b).

As Figure 8 illustrates, the conditional probabilities of a true negative and a false
positive depend not only on measurement accuracy and the inspection time but also on
the timing of the system failure. Specifically, when the system failure occurs only 1 h after
the last inspection, the probability of a false positive is higher, while the probability of a
true negative is lower compared to the situation where the failure occurs 90 h after the
last inspection.

It should be noted that if the system fails immediately after the inspection moment
tk = kτ, each of the conditional probabilities of a true negative, 1 − α(kτ|ξ) , and a false
positive, α(kτ|ξ) , at the time of the last inspection equals 0.5 when using a symmetric PDF
ψ(δk|ξ) . The latter is illustrated in Figure 9a.
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Figure 9. Graphic illustration of the determination of the conditional probabilities of a true negative
and a false positive at time kτ before a failure at time ξ (a) and a true positive and a false negative at
time (k + 1)τ after a failure at time ξ (b).

Figure 10 demonstrates how the probabilities β(jτ|ξ) and 1 − β(jτ|ξ) depend on the
current inspection number, with a 100 h periodicity, utilizing the identical initial data as
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in Figure 8. In Figure 10a, the graphs are plotted when ξ = 1099 h, whereas, in Figure 10b,
they are plotted at ξ = 1010 h. Curves 1 and 2 correspond to σn = 1 W while curves 3 and 4
correspond to σn = 3 W.

Aerospace 2024, 11, x FOR PEER REVIEW 39 of 58 
 

 

It should be noted that if the system fails immediately after the inspection moment 𝑡 = 𝑘𝜏, each of the conditional probabilities of a true negative, 1 − 𝛼(𝑘𝜏|𝜉), and a false 
positive, 𝛼(𝑘𝜏|𝜉), at the time of the last inspection equals 0.5 when using a symmetric PDF 𝜓(𝛿|𝜉). The latter is illustrated in Figure 9a. 

  
(a) (b) 

Figure 9. Graphic illustration of the determination of the conditional probabilities of a true negative 
and a false positive at time kτ before a failure at time ξ (a) and a true positive and a false negative at 
time (k + 1)τ after a failure at time ξ (b). 

Figure 10 demonstrates how the probabilities 𝛽(𝑗𝜏|𝜉)  and 1 − 𝛽(𝑗𝜏|𝜉)  depend on 
the current inspection number, with a 100 h periodicity, utilizing the identical initial data 
as in Figure 8. In Figure 10a, the graphs are plotted when ξ = 1099 h, whereas, in Figure 
10b, they are plotted at ξ = 1010 h. Curves 1 and 2 correspond to 𝜎 = 1 W while curves 3 
and 4 correspond to 𝜎 = 3 W. 

Figure 10 illustrates that the conditional probabilities of a true positive and a false 
negative depend on measurement accuracy, inspection time, and the timing of the system 
failure. Specifically, when the system failure occurs only 1 h before the last inspection, as 
shown in Figure 10a, the probability of a false negative is higher, and the probability of a 
true positive is lower compared to the situation where the failure occurs 90 h before the 
last inspection, as depicted in Figure 10b. It is important to note that if the system fails just 
before the inspection moment 𝑡ାଵ = (𝑘  1)𝜏, each of the conditional probabilities of a 
true positive, 1 − 𝛽[(𝑘  1)𝜏|𝜉], and a false negative, 𝛽[(𝑘  1)𝜏|𝜉], at the time of the first 
inspection after failure equals 0.5 when using a symmetric PDF 𝜓(𝛿ାଵ|𝜉) , which is 
illustrated in Figure 9b.  

  
(a) (b) 

Figure 10. The dependencies of the conditional probabilities of a true positive (curves 1 and 3) and 
a false negative (curves 2 and 4) on the current inspection number when ξ = 1099 h (a) and ξ = 1010 
h (b). 

Figure 10. The dependencies of the conditional probabilities of a true positive (curves 1 and 3) and a
false negative (curves 2 and 4) on the current inspection number when ξ = 1099 h (a) and ξ = 1010 h (b).

Figure 10 illustrates that the conditional probabilities of a true positive and a false
negative depend on measurement accuracy, inspection time, and the timing of the system
failure. Specifically, when the system failure occurs only 1 h before the last inspection, as
shown in Figure 10a, the probability of a false negative is higher, and the probability of a
true positive is lower compared to the situation where the failure occurs 90 h before the
last inspection, as depicted in Figure 10b. It is important to note that if the system fails
just before the inspection moment tk+1 = (k + 1)τ, each of the conditional probabilities
of a true positive, 1 − β[(k + 1)τ|ξ], and a false negative, β[(k + 1)τ|ξ], at the time of the
first inspection after failure equals 0.5 when using a symmetric PDF ψ(δk+1|ξ) , which is
illustrated in Figure 9b.

In [27] (p. 76; also referenced in [29]), it was demonstrated that for an exponential
distribution of time to failure, the simplest representation of the system state parameter
X(t) is as follows:

X(t) = x11(Ξ − t) + x2[1 − 1(Ξ − t)] (126)

where x1 is the value of the system state parameter corresponding to its operable condition
and x2 is the value of the system state parameter corresponding to its inoperable condition.
Ξ is the random time to system failure and 1(Ξ − t) is the unit step function taking
two values, 1 and 0.

1(Ξ − t) =


1, if Ξ − t > 0
0.5, if Ξ − t = 0
0, if Ξ − t < 0

(127)

It should be noted that the probability that 1(Ξ − t) = 0.5 is zero.
If X(t) can be presented in the form of Equation (126), then the PDF ψ(δi|ξ) is deter-

mined by the following formula by [27] (p. 76) and [29]:

ψ(δi|ξ ) =
{

[1 − α(ti)]d f (δi − 0) + α(ti)d f (δi − ti + ξ), i f ξ > ti
[1 − β(ti)]d f (δi − 0) + β(ti)d f (δi − ti + ξ), i f ξ ≤ ti

(128)

where df is the delta function.
Substituting Equation (128) in Equations (122)–(125) and considering the property of

the integral of the delta function gives [27] (pp. 89, 90)
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PFP(t1, . . . , tν−1; tν|ξ ) = α(tν)
ν−1

∏
i=1

[1 − α(ti)], ν = 1, . . . , k (129)

PTN(t1, . . . , tk−1; tk|ξ ) =
k

∏
i=1

[1 − α(ti)], k = 1, . . . , N (130)

PFN
(
t1, . . . , tj−1; tj|ξ

)
=

k

∏
i=1

[1 − α(ti)]
j

∏
i=k+1

β(ti), j = k + 1, . . . , N (131)

PTP
(
t1, . . . , tj−1; tj|ξ

)
=

k

∏
i=1

[1 − α(ti)]
j−1

∏
i=k+1

β(ti)
[
1 − β

(
tj
)]

, j = k + 1, . . . , N (132)

In this case, the conditional probabilities α(ti) and β(ti) are determined by the follow-
ing formulas in [27] (p. 75) and [29]:

α(ti) =

LL−x1∫
−∞

φ(ui|x1 )dui+

∞∫
LH−x1

φ(ui|x1 )dui (133)

β(ti) =

LH−x2∫
LL−x2

φ(ui|x2 )dui (134)

where LL and LH are the lower and higher tolerance limits of the system state parameter
and φ(yi|x1) and φ(yi|x2) are the PDFs of the measurement error of the system state
parameter at time ti under the condition that X(ti) = x1 and X(ti) = x2, respectively.

As demonstrated in [27] (pp. 77, 90), if the PDFs of the measurement errors do not
depend on time, i.e.,

φ(yi|x1 ) = φ(y|x1 ) and φ(yi|x2 ) = φ(y|x2 ), i = 1, . . . , k (135)

and ti = iτ, the conditional probabilities (129) through (132) can be expressed in the
following manner [27,31,32,34,35]:

PFP(τ, . . . , (ν − 1)τ; ντ|ξ ) = α(1 − α)ν−1, ν = 1, . . . , k (136)

PTN(τ, . . . , (k − 1)τ; kτ|ξ ) = (1 − α)k, k = 1, . . . , N (137)

PFN(τ, . . . , (j − 1)τ; jτ|ξ ) = (1 − α)kβj−k, j = k + 1, . . . , N, N = 1, 2, . . . (138)

PTP(τ, . . . , (j − 1)τ; jτ |ξ ) = (1 − α)kβj−k−1(1 − β), j = k + 1, . . . , N (139)

It should be noted that Equations (14)–(18) and (25)–(29) are obtained by putting
(136)–(139) into (107)–(111) and (102)–(109).

If X1 and X2 are random variables, i.e., the system state parameter X(t) is represented
in the form [29]

X(t) = X11(Ξ − t) + X2[1 − 1(Ξ − t)], (140)

then Equations (129)–(132) are not valid.
In [29], a theorem was proven that establishes the conditional probabilities of correct

and incorrect decisions in the context of multiple imperfect inspections with consideration
of Equation (140). For instance, the conditional probabilities of a false positive and a true
negative are described by the following formulas:

PFP(t1, . . . , tν−1; tν|ξ ) =
LH∫

LL

q1(u1)α(tν|u1 )
ν−1

∏
i=1

[1 − α(ti|u1 )]du1, ν = 1, . . . , k (141)
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PTN(t1, . . . , tk−1; tk|ξ ) =
LH∫

LL

q1(u1)
k

∏
i=1

[1 − α(ti|u1 )]du1, k = 1, . . . , N (142)

where q1(x1) represents the PDF of the random variable X1 and α(ti|x1) denotes the
conditional probability of a false positive at time ti provided that X1 = x1.

Since the system is operational at any value of X1, it follows that
LH∫

LL

q1(u1)du1 = 1 (143)

Figure 11 illustrates the dependence of the conditional probabilities of a false positive
(curves 1 and 3) and a true negative (curves 2 and 4) on the number of inspections when
using Equations (136) and (137) (curves 1 and 2) and (141) and (142) (curves 3 and 4),
provided that the random process X(t) is represented by Equation (140). The used data are
as follows: the mathematical expectation and standard deviation of random variable X1
are 20 W and 3 W, respectively; the standard deviation of measurement error is 1 W; and
the lower tolerance limit of the system state parameter is 16 W. The random variable X1
has a truncated normal distribution.
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Figure 11. The dependencies of the conditional probabilities of a false positive and a true negative on
the number of inspections when using Equations (136) and (137) (curves 1 and 2) and (141) and (142)
(curves 3 and 4).

Figure 11 illustrates that using simplified versions of Equations (136) and (137) in
this context leads to significantly higher probabilities of false positives and reduces the
probabilities of true negatives.

Indeed, assuming the number of inspections k = 100, we obtain the following:{
PFP(τ, . . . , 99τ; 100τ|ξ ) = 1.37 × 10−3

PTN(τ, . . . , 99τ; 100τ|ξ ) = 4.3 × 10−2 when using Equations (136) and (137) (144){
PFP(τ, . . . , 99τ; 100τ|ξ ) = 4.6 × 10−4

PTN(τ, . . . , 99τ; 100τ|ξ ) = 0.758
when using Equations (141) and (142) (145)

As can be seen in Equations (144) and (145), even with the exponential distribution
of time to failure, Equations (136)–(137), in which the conditional probabilities of correct
and incorrect decisions during multiple inspections are obtained by simply multiplying
corresponding probabilities during single checks, can be used only in the case when the
operable and inoperable states of the system correspond to two values of the system state
parameter x1 and x2, as per Equation (126).
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In 1987, ref. [95] (also referenced in [27], p. 68) presented the following equation for
posterior reliability in the interval (kτ, t), kτ < t ≤ (k + 1)τ for an arbitrary distribution of
time to hidden failure:

PA(tk, t) =

∞∫
t

ω(ξ)PTN(t1, . . . , tk−1; tk|ξ )dξ

∞∫
0

ω(ξ)
∞∫

tk−ξ

∞∫
tk−1−ξ

. . .
∞∫

t1−ξ

ψ0(u1, . . . , uk|ξ )du1 . . . dukdξ

, tk < t ≤ tk+1 (146)

If Equation (120) is satisfied, Equation (146) transforms as follows:

PA(tk, t) =

∞∫
t

ω(ξ)
k

∏
ν=1

∞∫
tν−ξ

ψ(δν|ξ )dδνdξ

∞∫
0

ω(ξ)
k

∏
ν=1

∞∫
tν−ξ

ψ(δν|ξ )dδνdξ

(147)

If the state of the system is described by a random process (126), then [27] (p. 77)

PA(tk, t) =
e−λt

k
∏
i=1

[1 − α(ti)]

e−λtk
k

∏
i=1

[1 − α(ti)] +
k−1
∑

j=0

(
e−λtj − e−λtj+1

) j
∏
i=1

[1 − α(ti)]
k

∏
l=j+1

β(tl)

(148)

If Equation (135) is satisfied, Equation (148) changes to become Equation (10).
In 1987, ref. [95] (also referenced in [27], p. 106) considered a mathematical model

for determining operational reliability for a single-unit system with perfect repair on an
infinite time horizon. The following formulas apply:

PO(tk, t) =
k−1
∑

j=0
PR
(
tj
) ∞∫
t−tj

PTN
(
tj+1 − tj, . . . , tk−1 − tj; tk − tj|ξ

)
ω(ξ)dξ+

PR(tk)[1 − F(t − tk)], tk < t ≤ tk+1

(149)

PR
(
tj
)
= PFR

(
tj
)
+ PTR

(
tj
)

(150)

PFR
(
tj
)
=

j−1

∑
ν=0

PR(tν)

∞∫
tj−tν

PFP
(
tν+1 − tν, . . . , tj−1 − tν; tj − tν|ξ

)
ω(ξ)dξ (151)

PTR
(
tj
)
= 1 − PFR

(
tj
)
−

j−1
∑

ν=0
PR(tν)

[ tj−tν∫
0

PFN
(
tν+1 − tν, . . . , tj−1 − tν; tj − tν|ξ

)
ω(ξ)dξ +

∞∫
tj−tν

PTN
(
tν+1 − tν, . . . , tj−1 − tν; tj − tν|ξ

)
ω(ξ)dξ

 (152)

where PR(tj), PFR(tj), and PTR(tj) share the same meanings as those described in
Equations (39)–(42).

Note that Equations (42)–(44) are obtained by substituting Equations (136), (137) and (139)
for Equations (152), (149) and (151).

In 1988, ref. [27] (pp. 123–125; also referenced in [56]) derived a general expression for
mission availability, which refers to the probability that the system will be operational at
moment t and will function without failure for a specified time θ, starting from moment t.

Am(θ) =
τ/(τ − θ)

MS1 + MS2 + MS4 + MS5

∞

∑
k=0

τ−θ∫
0

∞∫
kτ+x+θ

PTN(τ, . . . , (k − 1)τ; kτ|ϑ )ω(ϑ)dϑdx (153)
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It is important to mention that given an exponential distribution of time to failure and
the satisfaction of Equations (126) and (137), Equation (153) is transformed into Equation (61).

In 1988, ref. [27] (also referenced in [96,97]) developed maintenance models for various
reliability structures of a multi-unit system, including series, parallel, “h-out-of-m,” series-
parallel, and parallel-series configurations. The findings revealed that in a multi-unit
system with a series reliability structure, the maintenance efficiency indicators can be
determined as indicated below [27]:

Aa =
m

∏
i=1

MS(i)
1 /MS(i)

0 (154)

Ai =
m

∏
i=1

MS(i)
1 /

[
MS(i)

1 + MS(i)
2 + MS(i)

4 + MS(i)
5

]
(155)

PA(tk, t) =
m

∏
i=1

P(i)
A (tk, t) (156)

PO(tk, t) =
m

∏
i=1

P(i)
O (tk, t) (157)

where m is the number of units in the multi-unit system, MS(i)
0 is the average regeneration

cycle of the i-th unit (i = 1,. . ., m), MS(i)
j (j = 1, . . . , 5) is the expected value of time spent

by the i-th unit in state S(i)
j , and P(i)

A (tk, t) and P(i)
O (tk, t) are the posterior reliability and

operational reliability of the i-th unit in the interval (tk, t), respectively.
The average regeneration cycle for the i-th unit is given by [27]

MS(i)
0 =

5

∑
j=1

MS(i)
j (158)

It should be noted that MS(i)
j (j = 1, . . . , 5) are calculated by Equations (102)–(106)

or (107)–(111). Equations (146) and (149) calculate the probabilities of P(i)
A (tk, t) and

P(i)
O (tk, t), respectively.

For aircraft systems, the replacement of rejected units is possible while the aircraft is
parked. Therefore, Equation (155) is simplified if the duration of replacing a rejected unit is
shorter than the aircraft’s ground time; the repair of dismantled units can be conducted
later in a repair shop [27].

Ai =
m

∏
i=1

MS(i)
1 /

[
MS(i)

1 + MS(i)
2

]
(159)

If a multi-unit system has a parallel reliability structure comprising m identical items,
the indicators of maintenance efficiency are expressed as follows [27]:

Aa = 1 − (1 − MS1/MS0)
m (160)

Ai = 1 − [1 − MS1/(MS1 + MS2 + MS4 + MS5)]
m (161)

PA(tk, t) = 1 −
[
1 − P(1)

A (tk, t)
]m

(162)

PO(tk, t) = 1 −
[
1 − P(1)

O (tk, t)
]m

(163)

where P(1)
A (tk, t) and P(1)

O (tk, t) are the posterior and operational reliability of one
unit, respectively.

For aircraft systems, Equation (161) can be simplified analogously to Equation (159) [27].

Ai = 1 − [1 − MS1/(MS1 + MS2)]
m (164)
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In 1988, ref. [27] (pp. 355–360; also referenced in [35]) proposed a mathematical model
for a single-unit system that is subject to both revealed and unrevealed failures in addition
to multiple imperfect inspections. The model presupposes that inspections can only identify
hidden system failures. The revealed failures are followed by subsequent recovery. The
assumption is also made that revealed and unrevealed failures are statistically independent.
The repair is perfect.

The posterior probability is given by [27]

PA(tk, t) =
[1 − Φ(t)]

∞∫
t

ω(ξ)PTN(t1, . . . , tk−1; tk|ξ )dξ

[1 − Φ(tk)]
∞∫
0

ω(ξ)
∞∫

tk−ξ

∞∫
tk−1−ξ

. . .
∞∫

t1−ξ

ψ0(u1, . . . , uk|ξ )du1 . . . dukdξ

, tk < t ≤ tk+1 (165)

where Φ(t) is the distribution function of time until revealed failure.
If the state of the system is described by a random process (126), then [27]

PA(tk, t) =
e−(λ+λ0)t

k
∏
i=1

[1 − α(ti)]

e−kλ0t

{
e−λtk

k
∏
i=1

[1 − α(ti)] +
k−1
∑

j=0

(
e−λtj − e−λtj+1

) j
∏
i=1

[1 − α(ti)]
k

∏
l=j+1

β(tl)

} (166)

If Equation (135) is satisfied, Equation (166) changes to become Equation (31).
As supposed by [27,35], the system can exist in one of the states described in Equation

(32). The mean duration of the system staying in states S1, S2, S3, S4, S5, and S6 were
determined for both finite (0, T) and infinite (0, ∞) horizons. Below are the formulas for an
infinite maintenance scheduling interval [27,35].

The expected value of time spent by the system in state S1:

MS1 =
∞
∑

k=0

tk+1∫
tk

k−1
∑

j=0

tj+1∫
tj

{
j

∑
ν=1

tνPFP(t1, . . . , tν−1; tν|ϑ ) + uPTN
(
t1, . . . , tj−1; tj|ϑ

)}
dΦ(u)+

ϑ∫
tk

{
k
∑

ν=1
tνPFP(t1, . . . , tν−1; tν|ϑ ) + uPTN(t1, . . . , tk−1; tk|ϑ )

}
dΦ(u)+{

k
∑

ν=1
tνPFP(t1, . . . , tν−1; tν|ϑ ) + ϑPTN(t1, . . . , tk−1; tk|ϑ )

}
[1 − Φ(ϑ)]

}
dF(ϑ)

(167)

The expected value of time spent by the system in state S2:

MS2 =
∞
∑

k=0

tk+1∫
tk

{
tk+1∫
ϑ

(u − ϑ)PTN(t1, . . . , tk−1; tk|ϑ )dΦ(u)+

+
∞
∑

n=k+1

tn+1∫
tn

[
n
∑

j=k+1
(tj − ϑ)PTP

(
t1, . . . , tj−1; tj|ϑ

)
+ (u − ϑ)PFN(t1, . . . , tn−1; tn|ϑ )

]
dΦ(u)

} (168)

The expected value of time spent by the system in state S3:

MS3 = tins
∞
∑

k=0

tk+1∫
tk

{
k−1
∑

j=0

[
j−1
∑

ν=1
νPFP(t1, . . . , tν−1; tν|ϑ ) + jPTN

(
t1, . . . , tj−2; tj−1|ϑ

)][
Φ(tj+1)− Φ(tj)

]
+

+
k
∑

j=k−1

[
j

∑
ν=1

νPFP(t1, . . . , tν−1; tν|ϑ ) + (j + 1)PTN

(
t1, . . . , tj−1; tj|ϑ

)][
Φ(tj+2)− Φ(tj+1)

]
+

+
∞
∑

i=k+2

[
k
∑

ν=1
νPFP(t1, . . . , tν−1; tν|ϑ ) +

i−1
∑

j=k+1
jPTP

(
t1, . . . , tj−1; tj|ϑ

)
+iPFN(t1, . . . , ti−2; ti−1|ϑ )

]
[Φ(ti+1)− Φ(ti)]

}
dF(ϑ)

(169)

The expected value of time spent by the system in state S4:

MS4 = tFR

∞

∑
k=1

tk+1∫
tk

k−1

∑
j=1

[
j

∑
ν=1

PFP(t1, . . . , tν−1; tν|ϑ )
][

Φ(tj+1)− Φ(tj)
]
+

k

∑
ν=1

PFP(t1, . . . , tν−1; tν|ϑ )[1 − Φ(tk)]

dF(ϑ) (170)
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The expected value of time spent by the system in state S5:

MS5 = tTR

∞

∑
k=0

tk+1∫
tk

{
∞

∑
j=k+1

[
Φ(tj+1)− Φ(tj)

] j

∑
i=k+1

PTP(t1, . . . , ti−1; ti|ϑ )
}

dF(ϑ) (171)

The expected value of time spent by the system in state S6:

MS6 = tUR

∞

∑
k=0

tk+1∫
tk

 k

∑
j=0

PTN

(
t1, . . . , tj−1; tj|ϑ

)[
Φ(tj+1)− Φ(tj)

]
+

∞

∑
i=k+1

PFN(t1, . . . , ti−1; ti|ϑ )[Φ(ti+1)− Φ(ti)]

dF(ϑ) (172)

It should be noted that Equations (33)–(38) are obtained by putting (136)–(139) into
(167)–(172) when tk = kτ, F(t) = 1 − exp(−λt), and Φ(t) = 1 − exp(−λ0t).

In 1997, ref. [98] introduced a technique for determining specific inspection time points
for a deteriorating single-unit system. This system can exist in one of three states: normal
(s0), symptomatic (s1), or failed (s2). The transition between these states is described using
a delay-time model. The system’s state, whether s0 or s1, is ascertainable only through
inspection. When the system is in state s0, the probability of correctly diagnosing it as s0 is
p00(t) = 1 − α(t). Conversely, if it is incorrectly diagnosed as s1, the probability becomes
p01(t) = α(t). Alternatively, if the system is in state s1, the probability of accurately
diagnosing it as s1 is p11(t) = 1 − β(t). However, if misdiagnosed as s0, the probability
is p10(t) = β(t). The method objective is to minimize the long-term average cost per
unit time.

In 2010, ref. [99] presented a time-delay maintenance model. This study made
two important advancements. Firstly, the occurrence rate of hidden defects depends
on the duration since the last preventive maintenance. Secondly, the probability of iden-
tifying defects, represented as r(h) = 1 − β(h) during an inspection, is influenced by the
delay time h. This design enables a higher probability of defect detection as the delay time
approaches its end. The efficiency of maintenance is evaluated by measuring the expected
downtime and associated costs, which are dependent on the estimated number of failures
and defects.

For instance, the following formula estimates the expected number of failures over the
interval [t i−1, ti):

E
[

N f (ti−1, ti)
]
=

ti∫
ti−1

 i−1

∑
n=1

tn∫
tn−1

λ(u − tn−1)
i−1

∏
k=n

[1 − r(tk − u)] f (t − u)du +

t∫
ti−1

λ(u − ti−1) f (t − u)du

dt (173)

where u is the initial point of a random defect, λ(u − tn−1) is the defect arrival rate, and
f (h) is the delay time PDF of defects.

In 2017, ref. [100] examined a single-component system that undergoes regular im-
perfect inspections. The authors conducted a detailed cost analysis for a maintenance
policy that includes periodic imperfect inspections and preventive system maintenance.
This approach was applied to the delay time maintenance model of a single-unit system,
considering varying probabilities of false positives and false negatives. Additionally, the
authors introduced a technique that enables a comparison between the model considering
non-constant probabilities of correct and incorrect decisions and the approximate model,
which assumes constant decision probabilities. The study objective was to minimize the
average cost per unit time over an infinite time horizon.

To estimate expected cycle costs and durations between renewal cycles, six different
event paths are analyzed. For instance, in the fifth scenario, the system enters a defective
state at time x within a specific time interval [(i − 1)T, iT), where i ranges from 1 to M − 1.
Here, M − 1 represents the maximum number of inspections conducted before preventive
maintenance is required. No false positives are generated before the defect’s arrival within
this timeframe. The system’s defect becomes evident during inspection j, where j ranges
from i to M − 1. This implies that the system’s delay time must exceed jT − x for the defect
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to be detected at time jT. Notably, during inspections from i to j − 1, false negatives occur
with varying probabilities. The probability expression for event path type 5 is formulated
as follows:

π5,i,j =

iT∫
(i−1)T

i−1

∏
n=1

[1 − α(nT)]
∞∫

jT−x

j−1

∏
k=i

β

(
kT − x

h

)[
1 − β

(
jT − x

h

)]
fH(h)dh fX(x)dx (174)

where fX(x) is the PDF for the random time X to defect arrival and fH(h) is the PDF of the
system’s delay time H.

By analyzing the expressions for the probabilities of the event paths, one can determine
the expected cycle cost and renewal cycle length.

In 2018, ref. [101] introduced a model for corrective maintenance that aims to identify
optimal intervals for operability inspections in safety-critical systems. The main objec-
tive of this model is to ensure a specific level of operational reliability while minimizing
maintenance costs over a finite time interval (0, T). The criterion proposed for corrective
maintenance efficiency considers the probabilities of correct and incorrect decisions, which
depend on the inspection time and the degradation process parameters. Overall, this
maintenance model offers an effective solution for safety-critical systems in terms of cost
and reliability.

Operational reliability over the interval (tk, t) with a sequential inspection schedule is
determined by the following formula [101]:

PO(tk, t) =
k

∑
j=0

PR
(
tj
)

T−tj∫
0

ω(ξ)dξ

T∫
t−tj

PTN
(
tj+1 − tj, . . . , tk−1 − tj; tk − tj|ξ

)
ω(ξ)dξ, tk < t ≤ tk+1 (175)

where PR(tj) is determined by Equation (150).
Figure 12 illustrates the relationship between operational reliability and operational

time for a degrading system in the interval (0, 5000) hours, where the state parameter is
represented by the following stochastic equation [101]:

X(t) = a0 + A1t (176)

where a0 = 20 kV, Lx = 25 kV, and A1 is the random degradation rate of the system
state parameter (defined in the interval from 0 to ∞) with mathematical expectation
m1 = 0.002 kV/h and standard deviation σ1 = 0.00085 kV/h. The random measure-
ment error of the system state parameter has normal distribution, with zero mathematical
expectation and standard deviation σy = 0.25 kV. The minimum permissible value of
operational reliability is 0.95.
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Figure 12. The dependence of the operational reliability PO(tk, t) on the operational time in the
interval (0, 5000) hours [101].

The PDF of random errors in estimating time to failure ψ0(δ1, . . . , δk|ξ) is given
by [101]



Aerospace 2024, 11, 92 45 of 55

ψ(δ1, . . . , δk|ξ ) =
(

1
σy
√

2π

)k(
Lx − a0

ξ

)k k

∏
i=1

exp

{
− 1

2σ2
y

[
(a0 − Lx)δi

ξ

]2
}

(177)

The PDF of the stochastic process (176) is [83]

ω(t) =
m1σ2

1 t2 + σ2
1 t(Lx − a0 − m1t)√
2πσ3

1 t3
exp

{
− (Lx − a0 − m1t)2

2σ2
1 t2

}
(178)

Figure 12 shows that operational reliability begins at a maximum value close to 1 after
inspection and possibly restoration and gradually decreases to a minimum of 0.95 just
before the next inspection.

Table 5 shows the optimal inspection times in the interval (0, 5000) hours.

Table 5. Optimal inspection times.

Inspection time (h)
t1 t2 t3 t4 t5 . . . t43

1165 1285 1380 1470 1555 . . . 4920

As shown in Table 5, the interval between operability inspections decreases and
approaches approximately 80 h. It takes 43 operability checks to ensure the minimum
permissible value of 0.95 in the interval (0, 5000) hours.

In 2019, ref. [102] proposed a mathematical framework for the preventive maintenance
of wind turbine components with imperfect continuous condition monitoring in the interval
(0, τ). The decision to perform maintenance on the wind turbine component relies on
data obtained from the sensors. The article introduced general equations to compute the
probabilities of false positives, true positives, false negatives, and true negatives during
the continuous monitoring of a wind turbine component’s condition. The authors derived
mathematical equations for determining the expected maintenance cost per unit time
and the average lifetime maintenance cost, accommodating any distribution of time to
degradation failure.

The average maintenance cost for one regeneration cycle is determined as follows [102]:

E[Ca(τ)] = CCMPTP(0, τ) + CUF

τ∫
0

(τ − ξ)PFN(ξ, τ|Ξ = ξ )ω(ξ)dξ+CFP
PMPFP(0, τ) + CTN

PMPTN(0, τ) (179)

where CFP
PM and CTN

PM represent the cost of preventive maintenance due to false positive and
true negative events, respectively. CCM is the cost of corrective maintenance, CUF is the loss
cost per unit time due to unrevealed failure, PFN(ξ, τ|Ξ = ξ) is the conditional probability
of a false negative in the interval (ξ, τ) provided that Ξ = ξ, and PTP(0, τ), PFP(0, τ), and
PTN(0, τ) are the probabilities of true positive, false positive, and true negative in the
interval (0, τ), respectively.

The mean time of the regeneration cycle is given by [102]

E[TRC(τ)] =
τ∫
0

PTP(ξ, τ|Ξ = ξ )ω(ξ)dξ +
τ∫
0
(τ − ξ)PFN(ξ, τ|Ξ = ξ )ω(ξ)dξ+

∞∫
τ

τ∫
0

f (z − ξ|ξ )ω(ξ)dzdξ + τ
∞∫
τ

PTN(0, τ|Ξ = ξ )ω(ξ)dξ

(180)

where PTP(ξ, τ|Ξ = ξ) and PTN(ξ, τ|Ξ = ξ) are the conditional probabilities of true positive
and true negative in the interval (ξ, τ) provided that Ξ = ξ and f (z − ξ|ξ) is a derivative
of the cumulative distribution function of the time to a false positive under the condition
that Ξ = ξ.
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The expected maintenance cost per unit time is calculated by dividing the average
maintenance cost for the regeneration cycle by its average duration [102].

E[Cu(τ)] = E[Ca(τ)]/E[TRC(τ)] (181)

In 2020, ref. [103] presented a delay-time model for examining a three-state system
that progresses from a defective state to a failed state. Within this framework, inspections
are not perfect, and the probabilities of false positives and false negatives change with
time. To tackle this issue, the authors introduced a hybrid preventive maintenance strategy
that integrates imperfect repair and preventive replacement. Within this approach, the
inspection interval and the number of inspections between two successive preventive
replacements represent the variables for decision making. These variables are utilized to
formulate the optimal policy by minimizing the cost rate over an infinite time.

The calculations for the expected cost per renewal cycle and the expected length
of the renewal period are derived from all conceivable scenarios that transpire within a
single cycle.

Consider, for instance, type 3 sample paths within the first scenario. A defect occurs at
time x within the time interval [(j − 1)T, jT], where j =1, 2,. . ., M, and a failure takes place
after MT. From the moment the defect appears until time MT, the system remains faulty,
ensuring that there are no false positive detections in this trajectory. Furthermore, any
inspection conducted between the intervals [jT, (M − 1)T] either results in a false negative
or detects the faulty state, leading to a “minimal repair.” The probability for type 3 sample
paths can be expressed as follows:

P(M,3)
sce1 =

M

∑
j=1

jT∫
(j−1)T

∞∫
MT−x

j−1

∏
n=1

[1 − α(nT)]
M−1

∏
k=j

{
β

(
kT − x

y

)
+ q
[

1 − β

(
kT − x

y

)]}
dFY(y)dFX(x) (182)

where FX(x) is the cumulative distribution function of the time to defect X and FY(y) is the
cumulative distribution function of the delay time Y.

In 2021, ref. [104] presented a mathematical model designed to assess the trustworthi-
ness indicators associated with operability checks for a system undergoing deterioration.
An examination of mutually exclusive events during operability checks is carried out,
with correct and incorrect decisions corresponding to events such as false positives, true
negatives, false negatives, and true positives. The probabilities of decisions depend on the
inspection time and failure time. The paper introduced general formulas for calculating the
probabilities of different decisions during discrete-time operability checks. Additionally,
the study introduced efficiency indicators for corrective maintenance, including average
operating costs, total error probability, and the posterior probability of failure-free opera-
tion. To illustrate the developed approach, the study computed the probabilities of correct
and incorrect decisions for a specific stochastic deterioration process.

3. Discussion

As outlined in Section 2, corrective and preventive maintenance models can be sys-
tematically classified into two categories contingent upon the conditional probabilities of
false positives, true negatives, false negatives, and true positives: those characterized by
constant probabilities and those marked by non-constant probabilities. When analyzing
maintenance models with fixed and variable probabilities of correct and incorrect judg-
ments, it is crucial to delve into the profound impact these probabilities exert on decision
making processes. It is also essential to consider the validity of models to accurately predict
system behavior and optimize maintenance strategies. Models with constant and non-
constant conditional probabilities of false positives and false negatives represent different
approaches to capturing the uncertainties associated with maintenance decisions. Let us
compare the validity of these models.

1. Constant conditional probabilities of false positives and false negatives.
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1.1. Advantages.

• Models with constant probabilities are often simpler to implement and
analyze. They assume that the conditional probabilities of false positives
and false negatives remain constant over time. Such maintenance models
were analyzed in Section 2.1.

• Constant probabilities of correct and incorrect decisions are relatively easy
to estimate by simple Equations (136)–(139). It should be noted that these
equations are utilized in most of the maintenance models with constant
probabilities considered in Section 2.1.

• Once the probabilities of errors are estimated, models remain stable and
predictable, making it easier to plan maintenance activities.

1.2. Disadvantages.

• Constant error probabilities might not accurately reflect the complex
nature of maintenance processes. In real-world scenarios, error rates
can change due to various factors such as aging, usage patterns, and
environmental conditions.

• If error probabilities vary significantly over time (for instance, see
Figures 6 and 9–11), models with constant error probabilities can lead to
inaccurate predictions and suboptimal maintenance decisions.

• Constant probability models may result in either over-maintenance or
under-maintenance, leading to inefficient resource utilization.

2. Non-constant probabilities of false positives and false negatives.

2.1. Advantages.

• Non-constant error probabilities allow for a more realistic representation
of maintenance processes. They can capture variations in error rates over
time (see Figures 6 and 9–11), accounting for factors like wear and tear,
environmental changes, and operational conditions. Maintenance mod-
els with non-constant conditional probabilities of correct and incorrect
decisions were considered in Section 2.2.

• By incorporating changing error probabilities, these models can provide more
accurate predictions, leading to better-informed maintenance decisions.

• Non-constant error probabilities can adapt to different operating conditions,
making models more versatile and applicable across diverse situations.

• Non-constant probability models optimize resources by ensuring that
maintenance activities are performed when needed, minimizing down-
time, and reducing unnecessary maintenance costs.

2.2. Disadvantage.

• Models with non-constant error probabilities are generally more complex
to develop and analyze. Estimating time-varying error probabilities might
require appropriate modeling, statistical methods, and extensive data.

Let us now compare maintenance models where probabilities of false positives, true
negatives, false negatives, and true positives are influenced solely by inspection timing
versus models where these probabilities depend on both inspection timing and the moment
of system failure.

1. Maintenance models with probabilities of correct and incorrect decisions linked to
inspection timing.

1.1. Advantages.

• Models based solely on inspection timing are often simpler to develop and
implement. They rely on a straightforward relationship between inspec-
tion intervals and error probabilities. This class includes the maintenance
models considered in [83,84,86–88,90–93,98].
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• Since error probabilities are primarily tied to inspection schedules, these
models offer a degree of predictability, making it easier to plan
maintenance activities.

• Calculating error probabilities based on the time of inspections (periodic
or sequential) is typically more straightforward and requires less complex
data analysis.

1.2. Disadvantages.

• Ignoring the impact of system failures might lead to less accurate predic-
tions of error probabilities. Real-world maintenance is influenced by both
scheduled inspections and unexpected failures.

• These maintenance models reveal that the probabilities of false positives,
true negatives, false negatives, and true positives during multiple in-
spections are determined by multiplying the conditional probabilities of
correct (1 − α(ti)) and incorrect (α(tν)) decisions at different inspection
times, as well as correct (1 − β

(
tj
)
) and incorrect (β(tn)) decisions at

other inspection times. Studies [27,29] have demonstrated that this multi-
plication approach is valid when the degradation stochastic process X(t)
exhibits the property that, for a specific time to failure, there exists only
one realization, denoted as x(t), of the random process X(t) that intersects
with the failure threshold. Therefore, this class of maintenance models
applies to a limited range of random degradation processes.

2. Maintenance models with probabilities of correct and incorrect decisions that consider
the time of inspections and the moment of system failure.

2.1. Advantages.

• These models offer a more realistic representation of maintenance scenar-
ios, considering the impact of scheduled inspections and unscheduled
failures on the probability of errors. This class of maintenance models
was considered in the studies [27,29,31,32,34–36,56,94,95,99–104].

• By considering a broader range of factors, these models can provide more
accurate predictions, leading to better-informed maintenance strategies.
Indeed, as illustrated in Figures 8 and 10, the conditional probabilities of a
true negative, false positive, true positive, and false negative depend not
only on measurement accuracy and inspection time but also on the timing
of the system failure. It is important to note that if the system fails imme-
diately after the inspection time, each of the conditional probabilities of a
true negative and a false positive at the time of the last inspection equals
0.5, assuming a symmetric PDF of error in estimating time to failure (refer
to Figure 9a). Similarly, if the system fails just before the inspection time,
each of the conditional probabilities of a true positive and a false negative
at the time of the first inspection after failure equals 0.5 when using a
symmetric PDF of error in estimating time to failure, as illustrated in
Figure 9b. We also note that with a symmetric PDF of error in estimating
time to failure, the maximum values of the conditional probabilities of
a false positive and a false negative for a single inspection are equal to
0.5. It should also be noted that in the maintenance models considered
in [27,29,31,32,34–36,56,101,102,104], the conditional probabilities of cor-
rect and incorrect decisions during multiple inspections consider both
the moments of inspections and the moment of failure. Moreover, these
probabilities also depend on the parameters of the degradation process.

2.2. Disadvantages.

• Maintenance models incorporating multiple variables tend to be more
complex. Estimating and analyzing the probabilities of correct and incor-
rect decisions considering inspection schedules, time of failure occurrence,



Aerospace 2024, 11, 92 49 of 55

and parameters of degradation processes in these models can be challeng-
ing, requiring sophisticated techniques and robust data.

• The accurate estimation of probabilities in these models may demand
comprehensive data, both on the modeling of the degradation process
and on historical failure patterns.

The choice between these maintenance models depends on the specific requirements
applied to the maintenance planning and the available data. While models considering only
inspection schedules in calculating error probabilities are simpler and more predictable,
they may lack accuracy in capturing the complexities of real-world maintenance scenar-
ios. Models considering both inspection timing and system failures in estimating error
probabilities offer a more accurate and flexible approach, providing a closer representation
of the actual maintenance process. However, these benefits come at the cost of increased
complexity and data requirements. It is crucial to balance the trade-offs between simplicity
and accuracy when selecting a maintenance model for a particular system.

4. Research Prospects in the Field of Maintenance Models with Non-Constant
Probabilities of False Positives and False Negatives

The domain of maintenance models incorporating non-constant probabilities of false
positives and false negatives encompasses probabilistic factors essential for predicting and
overseeing the maintenance requirements of systems.

Future research can center on the advancement of dynamic modeling techniques
capable of capturing variations in false positive and false negative probabilities over time.
This could entail the integration of machine learning algorithms, Bayesian approaches,
or other advanced statistical methods. Harnessing real-time or historical data to guide
maintenance models holds significant promise. Through the analysis of large datasets by
machine learning algorithms, patterns and trends in the probabilities of false positives
and negatives can be identified, resulting in more adaptive and responsive maintenance
strategies. The growing prevalence of Internet-of-Things devices and sensor technologies
presents an opportunity to gather real-time data on system health. Research can concentrate
on integrating such data into maintenance models, thereby enhancing the accuracy of
probability estimates. Investigating the impact of human factors on maintenance decisions
is another avenue of research. Understanding how human judgment and decision making
interact with models that account for variable probabilities can lead to more effective
implementation in real-world scenarios. The application of these models can extend beyond
specific industries. Researchers may explore how maintenance models with non-constant
probabilities can be adapted to various sectors such as manufacturing, transportation,
nuclear stations, military equipment, and others.

5. Remarks

This survey aimed for a comprehensive scope. Nonetheless, any studies excluded were
either deemed unrelated to the survey’s focus or unintentionally overlooked. We extend
our apologies to both researchers and readers for any potential omission of
relevant studies.
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Abbreviations
The following abbreviations exist in the manuscript:
ATE Automated test equipment
BITE Built-in test equipment
FN False negative
FP False positive
LRU Line-replaceable unit
MMEL Master minimum equipment list
MTBUR Mean time between unscheduled removals
PDF Probability density function
TN True negative
TP True positive

Nomenclature
α conditional probability of a false positive
β conditional probability of a false negative
ω(t) probability density function of the time to hidden failure
λ rate of unrevealed (hidden) failures
λ0 rate of revealed failures
τ periodicity of inspection
Ξ random time to failure
Ξi random assessment of time to failure based on the results of the

inspection at time ti
ξ time of failure occurrence
R(t) reliability
PA(kτ, t) a posteriori reliability in the interval (kτ, t)
Aa achieved availability
Ai inherent availability
Am(θ) mission availability
F(t) cumulative distribution function of time until unrevealed failure
Φ(t) cumulative distribution function of time until revealed failure
MS1 expected value of time spent by the system in the operable state
MS2 expected value of time spent by the system in an inoperable state due to

hidden failure
MS3 expected value of time spent on inspections during a regeneration cycle
MS4 expected value of time spent on the repair of a falsely rejected system

due to a false positive
MS5 expected value of time spent on the repair of a correctly rejected system

due to a true positive
MS6 expected value of time spent on an unscheduled repair due to revealed

failure
MS0 average length of the regeneration cycle
Cins cost of inspection
tins duration of inspection
tFR average time to repair of a falsely rejected system
tTR average time to repair of a failed system
tUR average time of unscheduled repair due to a revealed failure
E(CMC) average maintenance cost per unit time
PO(kτ, t) operational reliability in the interval (kτ, t)
PO(tk, t) operational reliability in the interval (tk, t)
PR(jτ) probability of the system repair at time jτ
PR(tj) probability of the system repair at time tj
PFR(jτ) probability of repair of a falsely rejected system at time jτ
PFR(tj) probability of repair of a falsely rejected system at time tj
PTR(jτ) probability of repair of a failed system at time jτ
PTR(tj) probability of repair of a failed system at time tj
α(t) conditional probability of a false positive at time t
β(t) conditional probability of a false negative at time t
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α(kτ|ξ) conditional probability of a false positive at time kτ, given that failure
occurred at time ξ after kτ

β(jτ|ξ) conditional probability of a false negative at time jτ, given that failure
occurred at time ξ before jτ

ns shape parameter of the Gamma distribution
η rate parameter of the Gamma distribution
PFP(t1, . . . , tν−1; tν|ξ) conditional probability of a false positive at inspection time tν,

considering that at inspection times t1,..., tν−1, the system was judged as
operable, and that a failure occurred at time ξ after tν

PTN(t1, . . . , tk−1; tk|ξ) conditional probability of a true negative at time tk, given that the system
was judged as operable at inspection times t1 to tk−1 and assuming a
failure occurred at time ξ after tk

PFN(t1, . . . , tj−1; tj

∣∣∣ξ) conditional probability of a false negative at inspection time tj,

considering that the system was judged as operable at inspection times
t1 to tj−1 and assuming a failure occurred at time ξ before tj

PTP(t1, . . . , tj−1; tj

∣∣∣ξ) conditional probability of a true positive at inspection time tj, considering

that the system was judged as operable at inspection times t1 to tj−1 and
assuming a failure occurred at time ξ before tj

∆i random error in estimating time to failure at inspection time ti
N number of inspections in the interval (0, T)
ψ0(δ1, . . . , δk|ξ) conditional PDF of the set of random variables ∆1, . . . , ∆k, given that a

failure occurred at time ξ and tk < ξ ≤ tk+1 (k = 0, . . . , N)

Lx functional failure threshold
LL lower tolerance limit of the system state parameter
LH higher tolerance limit of the system state parameter
σn standard deviation of a measurement error of the system state parameter
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