
Citation: Volkov, K. Interaction of a

Dense Layer of Solid Particles with a

Shock Wave Propagating in a Tube.

Aerospace 2024, 11, 850. https://

doi.org/10.3390/aerospace11100850

Academic Editor: Raffaello Mariani

Received: 19 September 2024

Revised: 9 October 2024

Accepted: 14 October 2024

Published: 15 October 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

aerospace

Article

Interaction of a Dense Layer of Solid Particles with a Shock
Wave Propagating in a Tube
Konstantin Volkov

School of Engineering, Kingston University, London SW15 3DW, UK; k.volkov@k.kingston.ac.uk

Abstract: A numerical simulation of an unsteady gas flow containing inert solid particles in a
shock tube is carried out using the interpenetrating continuum model. The gas and dispersed
phases are characterized by governing equations that express the concepts of mass, momentum,
and energy conservation as well as an equation that shows the change of the volume fraction of the
dispersed phase. Using a Godunov-type approach, the hyperbolic governing equations are solved
numerically with an increased order of accuracy. The working section of the shock tube containing
air and solid particles of various sizes is considered. The shock wave structure is discussed and
computational results provide the spatial and temporal dependencies of the particle concentration
and other flow quantities. The numerical simulation results are compared with available experimental
and computational data.
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1. Introduction

The interaction of shock waves with combustion products containing particles of a
condensed phase is an important problem in the combustion chambers of rocket engines.
The challenges of capturing high-speed processes are linked to the limitations of experimen-
tal diagnostic tools. The high cost of processor time and the imprecision of mathematical
models restrict the possibilities of the numerical modeling of high-speed flows [1,2].

Continuum or continuum–discrete models are widely used in computational practice
to describe the interaction of a dense layer of particles with a shock wave. To enhance
description of fluid flow in porous or granular media, the interaction between a supersonic
fluid flow and various shaped solids has been conducted [3]. These works generally focus
on the computational or experimental modeling of flow around stationary bodies, as well
as the study of interference effects during joint flow around solids.

Experimental and numerical studies of the interaction of a shock wave with layer of
particles are presented in [4]. The impact of the dispersed phase on air pressure distribution
and shock wave structure was investigated. The volume concentration of particles reached
0.35. The effectiveness of various numerical techniques was then assessed using the
obtained experimental data [5–8].

The work [9] investigates physical conditions and dynamics of shock wave propagat-
ing through an array of solids and the formation of a collective bow shock in front of them.
Two types of shock wave structures that experiments recorded corresponded to regular
and Mach reflections of shock waves from each sphere onto the other. Quantitative condi-
tions were established for the existence of various regimes and their transitions to a bow
shock wave.

A continuum–discrete array of laminar particle-laden flow is used in [10] to study
shock wave propagation through an array of particles. The volumetric fraction of the
dispersed phase varied from 0.1 to 3%. The results obtained showed the modification
of shock wave structure in supersonic flow with particles. Bow shocks are formed at
low particle concentrations on each particle. If the concentration of particles increases,
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neighboring shock waves interact with each other, overlap, and generate a common
bow shock.

The data presented in [11] confirm that the polydispersity of particles has a small
impact on flow pattern (eight fractions, particle diameters varied from 60 to 130 µm with a
step of 10 µm). Flow constraint effects happen in a supersonic nozzle if αp ≥ 1% while, in
low-speed flows, they happen if αp ≥ 5% [10].

The works [12,13] model, in two dimensions, the interaction of a shock wave with
a dense layer of solid particles. Particles of a dispersed phase had a volume fraction
of 0.15 and were assumed to be immobile. The configuration under investigation agreed
qualitatively with the quantities of the experimental work [14]. Two-dimensional calcula-
tions were used to obtain qualitative descriptions of multi-dimensional effects. The results
were compared with calculations using a one-dimensional formulation, demonstrating
how important it is to take into account multi-dimensional effects associated with Reynolds
stresses in turbulent wake and within a particle cloud. It was shown that there exist both
transmitted and reflected shock waves, and a fan of rarefaction waves in the layer of
particles. A contact discontinuity forms at the trailing edge of the layer as the shock wave
exits. The Reynolds stresses in momentum transport equations are comparable to static
pressure, both within and outside the particle cloud. Flow kinetic energy and turbulent
kinetic energy are equal in this region.

The interaction of a shock wave with a group of particles in a horizontal cylindrical
shock tube is covered in [15]. The particles’ reflection of the shock wave causes the pressure
to increase. The intensity of the reflected shock wave increases if the particle loading
increases and the particle size decreases. The shock wave becomes less intense as it passes
through the particle layer. If the particle loading increases and particle diameter decreases,
the shock wave attenuates.

The study [16] compares data acquired using different collisional models of gas sus-
pension flow. When big (1 mm in diameter) particles collide, the impact of gas-dynamic
forces is negligible in comparison to the impact of collision forces.

Shock wave propagation through a layer of particles in the air is simulated in [17]
for Mach numbers up to 10. When a shock wave passes through the particle layer, it
becomes more powerful at each new particle. A multiscale technique for modeling the
dynamics of multiphase flows under shock waves is developed in [18]. This technique
makes it possible to examine how a cloud of particles evolves and to show how the particle
gas-dynamic interaction affects cloud motion. Calculations were conducted for various
particle sizes, volumetric concentrations of those particles, and Mach numbers. The results
of the three-dimensional simulation are presented in [19]. Particle trajectories were calcu-
lated with the Lagrangian method. The computations altered the cloud size and particle
volume concentration.

The works [20,21] construct high-order finite-difference schemes for a mixed Eulerian–
Lagrangian description of particle-laden flow. The results computed were in reasonable
agreement with experimental data. Particle dispersion was analyzed with respect to the
initial cloud geometry, and it was discovered that the layer shape plays a significant role in
calculations of the transverse direction of particle dispersion.

The works [22–24] study the propagation of particles in accelerating flow behind
the front of a normal shock wave, the impact of flow direction on particle dispersion for
clouds of elliptical and rectangular shapes, and the ratio of the cloud’s longitudinal size
to its transverse size. The area occupied by the particle cloud remained constant while
the shape changed. The volume concentration of particles was 4%. A high-order finite-
difference monotonic scheme was used for the numerical solution. In comparison to a
rectangular cloud, the elliptical cloud has less dispersion. The speed of cloud convec-
tion in the flow direction increases as the ratio of the cloud’s longitudinal to transverse
dimensions decreases.
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The work [25] uses continuum models to describe two-phase flow. The works [14,26–28]
consider the interaction of a layer of particles with a shock wave. The particle volume
concentration corresponded to a regime of dense packing of a dispersed phase (volume
concentration of particles was 0.21). Experimental studies were conducted for a dense
filling of particles (volume concentration of particles was 0.48) in [29].

Numerical methods for the simulation of shock wave interaction with both a single
particle and a layer of particles are developed in [30]. The configuration of particles at a
cubic lattice of nodes and face centers is examined. Particles were assumed to be stationary.
This led to a rarefaction of the particle array at the beginning of its movement due to
a more intense movement of the cloud’s rear edge. This phenomenon occurred for all
volume fractions for small Mach numbers of the incident shock wave, where particles’ drag
downstream was greater than that of particles at the leading edge of the array. This effect
was less noticeable for high incident shock wave Mach numbers (the particle system moved
nearly as a single unit). Only media with a low fraction of the dispersed phase are suitable
for using correlations for the drag of an individual particle to account for the motion of the
particle layer [9].

The propagation of a shock wave through a layer of regularly positioned squares
and circles is considered in [31]. The impact of various drag correlations on the outcomes
of the interaction of a shock wave with particles is assessed in [32]. Only media with
a low fraction of the dispersed phase are suitable for using correlations for the drag
coefficient of an individual sphere to account for the motion of a cloud of particles [9].
The studies [33,34] demonstrate how little the Magnus and Saffman forces affect particle
dynamics in supersonic flows.

The work [35] presents results of a simulation of the rise of particles behind a shock
wave reflected from the tube end and sliding over a layer of particles. Particles rise in a
vortex that forms in the air subsequent to the shock wave’s reflection off the wall. Due
to the inhomogeneity of air flow behind the transmitted shock wave, the reflected shock
wave forms a λ-shaped structure leading to the formation of a vortical flow. The problem
of a plane shock wave propagating over a square cavity with particles is discussed in [36].
The shock waves in a cavity become weaker and transform into compression waves if the
particle concentration increases. The flow pattern and wave structure are influenced by
particle size. The flow approaches the structure of air flow for large particle diameters
of about 250 µm. The problem of suppressing a shock wave in a layer of inert particles
is considered in [37]. Ignoring volume occupied by particles, results of simulation are
presented in [38].

The propagating of a shock wave through a layer of particles is solved numerically
in [39] to identify types of interactions of shock waves in front of bodies. Different flow
modes around particles are realized depending on the distance between spheres and speed
of the supersonic flow behind the shock wave. When bodies are in close proximity to each
other while a shock wave is passing through, the flow regime varies from regular reflection
to a Mach interaction of shock waves and, finally, to a common shock wave [40].

Numerous practical issues remain unresolved, even with the advancements made. The
influence of a particle on the structure of the bow shock and the transmitted, reflection of
the shock wave from a group of particles, the presence of secondary shock waves, and the
intense vortex flows behind the layer of particles are among them. The intricacy of this issue
demands the creation of theories and use of mathematical modeling techniques to explain
the dynamics of multiphase flow. It also calls for thorough investigations of scientific and
technical issues utilizing cutting-edge computational experimentation and mathematical
modeling technologies. This study examines the characteristics of the numerical solution
for the shock wave propagation problem in a mixture of inert particles and air using a
Eulerian–Eulerian approach. The results of the interaction between a shock wave and a
dense layer of particles were compared with a full-scale experiment [4]. The distribution
of the fraction of particles and shock wave structure were examined, and the results were
contrasted with available experimental and computational observations.
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The proposed approach is based on governing equations of the hyperbolic type for gas
and particles. This allows to extend the computational algorithms designed for pure gas
to the solution of gas dynamics problems with solid particles. The presence of secondary
shock waves may lead to the inefficient use of the layer of particles to protect the objects
from a destructive effect of shock waves. The proposed approach enables an optimization of
the coating process at the impingement of a supersonic gas–particle flow onto an obstacle.

2. Mathematical Model

The Lagrangian approach to the simulation of particle dynamics is too expensive from
a computational point of view. It involves the simulation of 6ND particles [41], where
N is the number of mesh cells, D is the dimension. A lower estimation of a number of
particles is about six particles per mesh cell in each coordinate direction [42,43]. These
particle number requirements become unnecessarily high for fine meshes. The Eulerian
approach requires less degrees of freedom than the Lagrangian approach [25].

A model of interpenetrating continua was applied to describe fluid flow with parti-
cles (Eulerian–Eulerian approach). This approach led to conservation equations of mass,
momentum, and energy for each phase. Semi-empirical correlations for the drag and heat
flux of individual particles were applied to close governing equations. The Baer–Nunziato
model proposed in [44] and expanded in [5,6] supposes the existence of two velocities and
two pressures of gas and solid phases. Depending on how the model is applied, different
pressures and velocities are chosen at the interface between two phases.

A mixture of two continua, each with its own pressure, velocity, and temperature, is
referred to as a two-phase medium. The continuity, momentum, and energy equations
are derived for each phase with an additional equation describing the transport of the
volumetric fraction of the dispersed phase. The viscosity and thermal conductivity of the
air are considered when the air interacts with particles.

1. Transport equations of gas

∂αgρg

∂t
+

∂αgρgug

∂x
= 0; (1)

∂αgρgug

∂t
+

∂αg(ρgu2
g + pg)

∂x
= pi

∂αg

∂x
+ fp; (2)

∂αgρgEg

∂t
+

∂αgug(ρgEg + pg)

∂x
= piui

∂αg

∂x
− fpui − qp − µp pi(pg − pp). (3)

2. Transport equations of particles

∂αpρp

∂t
+

∂αpρpup

∂x
= 0; (4)

∂αpρpup

∂t
+

∂αp(ρpu2
p + pp)

∂x
= pi

∂αp

∂x
+ fp; (5)

∂αpρpEp

∂t
+

∂αpup(ρpEp + pp)

∂x
= piui

∂αp

∂x
+ fpui + qp + µp pi(pg − pp). (6)

3. Transport equation of the volume fraction of particles

∂αp

∂t
+ ui

∂αp

∂x
= −µp(pg − pp). (7)

Here, t is time, x is the Cartesian coordinate, αi is the ith phase volume fraction and
αg + αp = 1, ρi is the ith phase density, ui is the ith phase velocity, pi is the ith phase
pressure, Ei is the ith phase-specific total energy, and µi is the ith phase dynamic viscosity.
The subscripts g and p correspond to air and particles. The dynamic viscosity of the
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dispersed phase characterizes pressure relaxation on the interface. The total energies of the
air and particles are found as

Eg = pg[(γg − 1)ρg]
−1 +

u2
g

2
, Ep = (pp + γp pp0)[(γp − 1)ρp]

−1 +
u2

p

2
,

where γ is the ratio of the specific heat capacities at a constant pressure and constant volume.
The equation of the state of the ideal gas, pg = ρgRTg, where R is gas constant, yields gas
pressure. Assuming that solid particles are weakly compressible, the dispersed phase is
described by a two-term equation of state containing quantities γp and Pp0 (γp = 2.48,
Pp0 = 4.85× 108 Pa).

The source terms in governing Equations (1)–(7) take into account processes on the
interphase. The interphase pressure and velocity, pi and ui, are averaged over the control
volume of two-phase flow. The closing relations used in order to calculate these quantities
are represented as

pi = αg pg + αp pp, ui =
αgρgug + αpρpup

αgρg + αpρp
.

On the interface, the phase pressures are equal (pg = pp). This condition is imposed in the
presence of an interphase boundary, rather than assuming the equality of phase pressures,
which would violate the hyperbolicity of the governing equations.

The particle Equations (4)–(6) and gas Equations (1)–(3) are inter-related with source
terms. The relationship yields the drag force applied per unit volume

fp =
3
4

CD
ρg

dp

∣∣ug − up
∣∣(ug − up

)
(1− αg),

where dp is particle diameter. The drag coefficient is found as

CD = CD0 fD(Rep, Mp),

where CD0 = 24/Rep corresponds to the Stokes law. The correction function depends on the
relative Reynolds and Mach numbers and accounts for compressibility and
inertia effects

fD =
(

1 + 0.15Re0.687
p

)[
1 + exp

(
− 0.427

M4.63
p
− 3

Re0.88
p

)]
.

The heat flux between the gas and particles is

qp = πd2
p

λg

dp
(1− αg)Nup

(
Tg − Tp

)
,

where λg is the thermal conductivity. The Nusselt number depends on the Reynolds and
Prandtl numbers. It is calculated as

Nup = Nup0 + 0.459Re0.55
p Pr0.33,

where Nup0 = 2. The relative velocities of gas and particles are used to compute the
Reynolds and Mach numbers

Rep =
ρg
∣∣ug − up

∣∣dp

µ
, Mp =

∣∣ug − up
∣∣

a
,

where a is the speed of sound.
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3. Numerical Method

The convective terms are found in the left-hand sides of the mass and momentum
equations. The terms associated with the non-conservative parts of the governing equations,
pi∂αg/∂x and piui∂αg/∂x, are moved to the right-hand sides. The equations of state are
applied to determine pressures of the gas and particles. The governing equations are
composed of a hyperbolic part and, in order to account for the interfacial interaction,
pressure and velocity relaxation terms are added.

The unsteady one-dimensional particle-laden flow is described by equation

∂U
∂t

+
∂F(U)

∂x
= H(U)

∂αp

∂x
+ P(U) + S(U). (8)

The vector of flow quantities and flux vector have the form

U =



αgρg
αgρgug
αgρgEg

αpρp
αpρpup
αpρpEp

αp


, F =



αgρgug
αg(ρgu2

g + pg)

αgug(ρgEg + pg)
αpρpup

αp(ρpu2
p + pp)

αpup(ρpEp + pp)
0


.

The source terms on the right-hand side are

H =



0
−pi
−piui

0
pi

piui
−ui


, P =



0
0

−µp pi(pg − pp)
0
0

µp pi(pg − pp)
µp(pp − pg)


, S =



0
fp

fpui
0
− fp
− fpui

0


.

The splitting into physical processes is applied to discretize the transport equations of
gas and the dispersed phase. In the first step, the transport is integrated if S = 0 (hyperbolic
step, indicated by the operator Lh). In the second step, the pressure relaxation process
(represented by the operator Lr) is accounted. The third step involves accounting for
non-differential source terms (represented by the operator Ls) that are responsible for the
interphase interaction.

A series of operators act to produce the solution to Equation (8), in accordance with
the splitting into physical processes procedure

Qn+1
j = LsLrLhQn

j . (9)

Subscript j is related to the mesh cell, and superscript n is related to the time layer. Three
steps are involved in finding a solution on a new time layer: (i) calculation of the gas-
dynamic process, (ii) calculation of the velocity relaxation, and (iii) calculation of the
pressure relaxation.

Step 1. Calculation of the gas-dynamic component. Without accounting for pres-
sure and velocity relaxations, the model describing two-phase flow is hyperbolic. A
Godunov-type scheme proposed in [45] was applied to discretize it. However, the hyper-
bolic equations have one non-conservative equation for the volume fraction of particles
and non-conservative terms.

The equation describing the flow is

∂U
∂t

+
∂F(U)

∂x
= H(U)

∂αp

∂x
. (10)
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A mathematical analysis of the hyperbolic part of the governing equations written in one-
dimensional form is performed in [46]. The Jacobian eigenvalues are λi = ui, λ0

g = ug,
λ±g = |ug ± cg|, λ0

p = up, and λ±p = |up ± cp|. The relation yields the sound speed

c2 =

(
∂ε

∂p

)−1

ρ

[
p
ρ2 −

(
∂ε

∂ρ

)
p

]
.

Here, ε is a specific internal energy. Equation (10) is hyperbolic, and the Jacobian eigenval-
ues are real and distinct.

A higher order of accuracy Godunov-type method is applied to make the hyperbolic
step with the HLLC (Harten–Lax–van Leer–Contact) method to solve the Riemann problem
and the minmod limiter.

The finite-volume scheme scheme for Equation (10) is

Un+1
j = Un

j −
∆t
∆x

(
Fn

j+1/2 − Fn
j−1/2

)
+ ∆tH(Un

j )∆,

where Un
j is the vector of flow quantities in cell j at time later n, and Fj±1/2 is the numerical

flux on the cell face. The flux of conservative variables through face j + 1/2 is

Fj+1/2 =
A+

j+1/2Fj − A−j+1/2Fj+1 + A+
j+1/2 A−j+1/2(Uj+1 −Uj)

A+
j+1/2 − A−j+1/2

,

where A+ = max{0, λ+
g , λ+

g }, and A− = min{0, λ−g , λ−g }. The additional factor is

∆ =
1

∆x

(
A+

j+1/2αn
j − A−j+1/2αn

j+1

A+
j+1/2 − A−j+1/2

−
A+

j−1/2αn
j−1 − A−j−1/2αn

j

A+
j−1/2 − A−j−1/2

)
.

Step 2. Calculation of the velocity relaxation. To find the flow quantities at the velocity
relaxation step, the following equation is used:

dU
dt

= S(U). (11)

Various techniques of integration of ordinary differential equations including Euler or
Runge–Kutta methods are applied to solve (11).

Step 3. Pressure relaxation computation. The equation used to determine the flow
quantities is as follows:

dU
dt

= P(U). (12)

Various techniques of integration of ordinary differential equations including Euler or
Runge–Kutta methods are applied to solve (12).

The fluxes are discretized with a 2nd-order numerical scheme, and integration over
time is conducted with a 3rd-order Runge–Kutta scheme. The employed Runge–Kutta
scheme is positive (if the numerical solution is positive on time layer n, it remains positive
on time layer n + 1). The numerical scheme on hyperbolic step satisfies the TVD condition.

4. Results and Discussion

A vertical shock tube with a cross-section area of 13× 13 cm2 and a length of 6 m
was considered. Under normal circumstances, the shock tube contained pure air (γ = 1.4)
at normal atmospheric conditions. Air density was ρ = 1.2 kg/m3, and air pressure
was p = 105 Pa. The air was in a stationary state (u = 0) at the initial time. The tube
inlet section was situated one meter away from the dividing partition. A 2 cm thick
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layer of particles was situated 3.055 m away from the dividing wall. The particles had a
diameter of 1.5–2 mm and were solids made of either nylon (ρp = 1050 kg/m3) or glass
(ρp = 2500 kg/m3). The particles were packed, and the volume fraction of air was 0.36. At
the initial time, the particles were not moving.

The shock wave with a Mach number of 1.29 was created when a diaphragm was
destroyed. A shock wave traveled from the bottom to the top of the tube, and there was
a rarefaction wave that propagated in the opposite direction. The air quantities behind
the shock wave front were as follows: the pressure was p = 18,289 Pa, density was
ρ = 1.81883 kg/m3, and velocity was u = 152.0744 m/s. The tube end walls reflected
both the shock and rarefaction waves at different points in time. There were two pressure
sensors in the tube. The pressure sensor 1 was positioned 11 cm below the particle layer.
The pressure sensor 2 was positioned 4.3 cm above the particle layer.

Figure 1 provides an explanation of the computational domain and the experimental
setup from the work [4] (lengths are given in meters, and scale is not observed). The
initial coordinate of the shock wave front at time t = 0 is x = 0. There are two pressure
sensors inside the shock tube. Pressure sensors 1 and 2 are situated 4.3 cm above the
particle layer (x = 0.233 m) and 11 cm below it (x = 0.08 m). The reflected shock wave is
detected by sensor 1. Sensor 2 captures the transmitted shock wave. The layer of particles
is two centimeters thick. It is considered that a two-phase medium fills the computational
domain. Particles in the layer have an initial concentration of 0.65, while those outside
the layer have an initial concentration of 10−8. No penetration boundary conditions
are specified on the upper boundary, and the flow quantities are specified on the lower
boundary. On a mesh with 1000 cells, calculations are conducted up until 4.6 ms (before
the rarefaction wave arrives).

Diaphragm

(a) (b)
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3
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of particle layer
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of shock wave front

0.3 Wall

C
am

er
a

Figure 1. Experimental test rig used in [4] (a), and computational domain with position of particle
layer (b).

Figure 2 illustrates pressure distribution in pure air. The pressure sensor 2 is situated
4.3 cm above the particle layer. Solid lines represent the computation results, and symbols
• represent the experimental data from [4]. The computational and experimental data
agree well with each other. Sections 2 and 4 correspond to rarefaction waves, while
Sections 1 and 3 correspond to incident and reflected shock waves.
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t, s

p, MPa

0.004 0.008

0.22

0 0.012
0.10

0.28

1

3

2

4

0.16

Figure 2. Pressure distribution in pure gas at M = 1.3.

Figure 3 shows the (x, t) diagram of propagation of gas-dynamic discontinuities. With
an initial velocity of zero, the incident shock wave interacts with contact discontinuity,
which separates the region of pure air from the region occupied by particles. The interaction
creates two shock waves: (i) a transmitted wave that travels along the two-phase region
before exiting into the pure air region, and (ii) a reflected shock wave that travels towards
the inlet section.

t

xSensor 1 Sensor 2

Rarefaction wave

Contact surface

Incident shock wave

Reflected shock wave
Particle layer

Transmitted shock wave

Figure 3. Propagation of gas-dynamic discontinuities.

Simulations of trajectories of individual particles were also performed with a La-
grangian approach to verify the accuracy of the sub-model describing the interphase
momentum exchange. Figure 4 displays the trajectory of a single particle (solid lines)
in comparison to the data obtained from the physical experiment [4] (symbols • and
symbols ◦). Line 1 and symbols • denote particles of nylon measuring 2 mm in diameter,
while line 2 and the symbols ◦ denote particles of glass measuring the same diameter.
Times t = 0 and t = 4 ms correspond to the start of the interaction of the incident shock
wave with particles and the appearance of a rarefaction wave.

Figure 5 displays concentration profiles of the dispersed phase at various times. Verti-
cal dotted lines represent the particle layer position [4]. Transmitted and reflected waves are
created when the incident shock wave interacts with the layer of particles. The array then
starts to move as a result of the pressure difference to its left and right and the interfacial
interaction force.
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t, s

2

5

8

0 0.002 0.004 0.006
−1

11

0.008

x, cm

2

1

Figure 4. Particle trajectories in comparison with data from [4].

x, m

α

0.1 0.15

0.25

0.5

0.05 0.2
0

0.75

1

2

p

3

4

Figure 5. Distributions of dispersed phase concentration at times t = 0 (1), 1.6 (2), and 4 ms (3).
Line (4) corresponds to the calculated data [4] for t = 4 ms.

The difference between the current solution and computational results from [4] is
explained by physical and numerical effects. Physical effects include the impact of viscosity
and thin boundary layers on wall tubes. The simulation of particle motion requires the use
of semi-empirical correlations for the drag of individual particles. These correlations are
usually available for a sphere in uniform flow. One of the unresolved issues is how finite
particle volume concentration can affect drag and heat transfer of each particle in the cloud.
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The air pressure behind the transmitted shock wave and above the upper boundary
of the backfill area is roughly 1.2 a.m., while the air pressure behind the reflected shock
wave and in front of the lower boundary is about 3 a.m. A pressure differential of roughly
1.8 a.m. is felt by the layer of particles, which causes it to start moving upward. Due to
the force of viscous friction, the air that has been displaced by the transmitted shock wave
moves in relation to initially stationary particles and displaces them. A two-phase flow
toward the second pressure sensor appears as a result of both effects. In this instance, the
particle layer is smeared, meaning that the area it occupies is shifting and getting larger.

Figure 6 (solid lines) illustrates how the lower and upper boundaries of the particle
layer change over time (blurring of the layer boundaries) in comparison to data from the
physical experiment from [4] (symbols • and symbols ◦). A one-millimeter diameter glass
particle is used in the calculations. The lower boundary of the layer is represented by line 2
and symbols ◦, while the upper boundary is represented by line 1 and symbols •. The
boundaries of the particle layer are significantly blurred, with the upper boundary of the
layer being more so than the lower.

t, s

2

4

6

0 0.001 0.002 0.003 0.004
0

8
x, cm

2

1

Figure 6. Trajectories of lower and upper boundaries of particle layer in comparison with data
from [4] (symbols • and ◦).

Figure 7 displays pressure distributions (solid lines) compared to data from the phys-
ical experiment [4] (symbols • and ◦). Pressure sensors 1 and 2 are represented by line 1
and • and ◦ icons, respectively. As compared to the experiment, the pressure behind the
transmitted shock wave is higher and the pressure behind the reflected shock wave is
lower [4]. The figure displays average values of pressure. The experimental curve reported
in the work [4] has pulsations that are not present in the computed curve.

For the entire time range, the pressure distribution over time at the first sensor agrees
well with experimental measurements. Sensor 1 records the incident shock wave traveling
through it at time t = 0.183 ms, and the reflected shock wave traveling through it at time
t = 0.787 ms. As the sensor passes through, the air pressure behind the reflected wave
reaches 2.964 a.m. As the shock tube is being unloaded, a two-phase flow occurs, causing
the air pressure to gradually drop. A total of 3.149 a.m. of pressure is behind the shock
wave that is reflected off the solid wall.
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Figure 7. Pressure distributions (solid lines) in comparison with experimental data from [4]
(symbols • and symbols ◦).

On sensor 2, there is a little less agreement between computational and experimental
data. At the beginning of the process, there is a qualitative coincidence in the results. A
weak transmitted shock wave enters the second pressure sensor at t = 0.58 ms. The pressure
behind the shock wave front is about 1.18 a.m., and it gradually rises to 1.25 a.m. over
time. A flow of air and particles arrives at the second sensor location at time t = 2.19 ms.
The pressure rises in 1.5 ms to 2.4 a.m. Then, as a result of unloading, the pressure in the
vicinity of the second sensor starts to gradually drop.

The observed discrepancy between computational and experimental data is explained
by presence of a boundary layer near the tube walls, which leads to the distortion of the
particle layer near the walls in the experimental photographs presented in [4,29].

5. Conclusions

This study involves the interaction of dense layer of solid particles with supersonic air
flow in a shock tube. A two-velocity and two-temperature model is applied to simulate
an unsteady one-dimensional flow of air with particles. In the working section of the
shock tube, a shock wave structure of flow as well as spatial and temporal dependencies of
particle concentration and other flow quantities are presented. The available experimental
and computational data agree well with numerical modeling results. The obtained results
allow one to assess how much a shock wave is attenuated by filling a granular medium.
The observed discrepancy between computational and experimental data is explained by
the presence of a boundary layer near the tube walls, which leads to the distortion of the
particle layer near the walls.
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