
Citation: Jia, H.; Zheng, H.; Zhou, H.;

Huo, S. Optimal Selection of Active

Jet Parameters for a Ducted Tail Wing

Aimed at Improving Aerodynamic

Performance. Aerospace 2024, 11, 851.

https://doi.org/10.3390/

aerospace11100851

Academic Editor: Christian

Breitsamter

Received: 19 August 2024

Revised: 3 October 2024

Accepted: 14 October 2024

Published: 15 October 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

aerospace

Article

Optimal Selection of Active Jet Parameters for a Ducted Tail
Wing Aimed at Improving Aerodynamic Performance
Huayu Jia 1,2, Huilong Zheng 1,3,*, Hong Zhou 1,3 and Shunbo Huo 1,2

1 The Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China;
jiahuayu@iet.cn (H.J.); zhouhong@iet.cn (H.Z.); huoshunbo@iet.cn (S.H.)

2 University of Chinese Academy of Sciences, Beijing 100049, China
3 National Key Laboratory of Science and Technology on Advanced Light-Duty Gas-Turbine, Beijing 100190,

China
* Correspondence: huilongzheng_ucas@163.com

Abstract: The foldable tail of the box-type launch vehicle poses a risk of mechanical jamming during
the launch process, which is not conducive to the smooth completion of the flight mission. The
integrated nonfolding ducted tail proposed in this article can solve the problem of storing the tail in
the launch box. Moreover, traditional mechanical control surfaces have been eliminated, and active
jet control has been adopted to control the pitch direction of the flight attitude, which can improve
the structural reliability of the tail wing. By studying the effects of parameters such as momentum
coefficient, jet hole position, jet hole height, and jet angle on improving the aerodynamic performance
of ducted tail wing, relatively good jet parameters are selected. Research has found that compared
with jet hole height and jet angle, momentum coefficient and jet hole position are more effective in
improving the aerodynamic performance of ducted tail wings. Under a trailing edge jet, a relatively
good jet condition occurs when the jet hole height is equal to0.25% of the aerodynamic chord length,
and the jet angle is equal to 0◦. At this time, with the increase of the jet momentum coefficient,
the effect of increasing the lift of the ducted tail wing is the best. Finally, a comparative analysis is
conducted on the lift and drag characteristics between the ducted tail wing and traditional tail wing,
and it is found that the ducted tail wing can generate lift at a 0◦ attack angle and will not stall in the
high attack angle range of 12◦~22◦, with broad application prospects.

Keywords: ducted tail wing; flow control; active jet; aerodynamic performance

1. Introduction

The traditional mechanical control surface changes the curvature of the wing by de-
flecting the wing surface, thereby altering the pressure values on the upper and lower
surfaces of the wing, generating sufficient force and momentum to control the aircraft’s
flight attitude [1,2]. However, traditional control surface deflection destroys the aerody-
namic stealth shape of the aircraft, increases structural weight, and is prone to mechanical
jamming during the deflection process, posing certain safety hazards [3,4]. The emergence
of active jet technology has greatly improved this situation. By intervening in the airflow
distribution on the wing surface through an active jet without the need for rudder deflection,
the required aerodynamic force and momentum for flight control can be obtained.

The academic community has conducted extensive research on active jet technology in
improving aircraft performance and flight control. Englar [5] summarized the experimental
progress of circulation control and aerodynamic lift systems and was the first to propose that
circulation control technology can generate forces and momentum to control aircraft motion.
A large amount of research on circulation control technology in this area has been carried
out since then. Wood [6] found through further research that changing the magnitude of the
jet momentum coefficient may cause significant changes in the lift coefficient. In 2010, BAE
Systems collaborated with several universities in the UK to develop the DEMON unmanned
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verification aircraft, which replaced traditional mechanical control surfaces with jet control
surfaces and used active jet technology for flight control verification [7]. Hoholis [8] applied
the circulation control device to the virtual control surface of unmanned aerial vehicles
and found that, compared with traditional mechanical control surfaces, the circulation
control device can generate control momentum for rolling flight at low attack angles.
However, the circulation control device will completely fail at high attack angles, posing
a serious threat to safe flight. Xu [9,10] takes wind turbine wings as the research object
and optimizes the circulation control parameters through a particle swarm optimization
algorithm to increase the performance of the wing shape. Fu [11] compared and studied
the similarities and differences between traditional flaps and blowing jet control through
numerical simulation. The results showed that different jet momentum coefficients can
represent different deflection angles of flaps. However, the momentum coefficient of the jet
is nonlinearly correlated with the deflection angle of the flaps. Visser [12] optimized the
position and parameters of the jet at the leading edge of a flying wing layout aircraft and
found that arranging tangential jet holes along the spanwise direction is most beneficial for
aircraft attitude control. Amitay [13] installed synthetic jet control devices on the wings of
a stingray layout aircraft and studied the effect of synthetic jet devices on the aerodynamic
performance of the aircraft in three directions. The results indicate that the synthetic jet
device can effectively capture the large vortex structures generated by separation and
delayed separation through pulse modulation technology. Smith [14] arranged an array of
synthetic jet devices on the wing surface of a flying wing layout aircraft and found that
by applying synthetic jet control technology, the lift of the aircraft can be increased by up
to 15% and the drag can be reduced by up to 10% at high angles of attack. The external
incentive effect is superior to the internal incentive effect. Linear control of the aircraft
can be achieved by adjusting the intensity of jet excitation and the number of jet holes.
Englar [15] installed a stable jet device on a certain wing and found that under steady jet
conditions, the wing has the advantage of generating positive lift at negative attack angles
and increasing stall angles of attack. Jones [16,17] studied the control effects of pulsed
and stable jets. The research results indicate that for the same magnitude of lift coefficient
increase, the energy required for pulsed jets is lower than that required for steady jets.
Liu [18] studied the effect of the square wave pulse jet and stable jet on lift increment.
Under constant mass flow rate and jet momentum coefficient, a high-frequency pulse jet is
more effective in improving lift than a steady jet. Feng [19] proposed a plasma circulation
control method and constructed a nonrudder jet control model for the NACA0012 wing.
The plasma circulation was used to create a stable pressure difference at the trailing edge of
the wing, resulting in a virtual flap control effect. Pititat and Rajnish [20] introduced the
large eddy simulation (LES) algorithm in numerical simulations to investigate the effect of
the circulation formed by synthetic jets on the aerodynamic performance of the NACA0015
airfoil. The study found that synthetic jets contribute to a linear increase in lift at low
momentum coefficients.

The above research indicates that active jet technology has the potential to replace
traditional mechanical control surfaces and is beneficial for increasing lift and reducing
drag of aircraft. The integrated nonfolding ducted tail proposed in this article can solve
the problem of storing the tail in the launch box. Moreover, traditional mechanical control
surfaces have been eliminated, and active jet control has been adopted to control the pitch
direction of the flight attitude, which can improve the structural reliability of the tail wing.
At present, there is limited research available on the impact of the combination of ducted tail
wings and active jet control technology on the aerodynamic performance of aircraft. This
article has made the following contributions to improving the aerodynamic performance of
active jet ducted tail wings:

(1) By studying the effects of parameters such as momentum coefficient, jet hole position,
jet hole height, and jet angle on improving the aerodynamic performance of the ducted
tail wing, we found that compared with jet hole height and jet angle, momentum
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coefficient and jet hole position are more effective on improving the aerodynamic
performance of the ducted tail wing.

(2) Under a trailing edge jet, the relatively good jet condition occurs when the jet hole
height is equal to 0.25% of the aerodynamic chord length, and the jet angle is equal
to 0◦. At this time, with the increase of the jet momentum coefficient, the effect of
increasing lift of the ducted tail wing is the best.

(3) Finally, a comparative analysis is conducted on the lift and drag characteristics be-
tween the ducted tail wing and traditional tail wing, and it is found that the ducted
tail wing can generate lift at 0◦ attack angle and will not stall in the high attack angle
range of 12◦~22◦.

The main content of the remaining sections of this article is as follows. In Section 2,
the research object and content of this article are elaborated. Section 3 elaborates on the
selection of jet parameters and numerical simulation methods. Section 4 studies the effects
of parameters such as momentum coefficient, jet hole position, jet hole height, and jet
angle on improving the aerodynamic performance of ducted tail wings and analyzes
the advantages of ducted tail wings compared with traditional ones. Finally, Section 5
summarizes the research work of this article and provides some conclusions.

2. Research Object

Box-type launch aircraft can be flexibly deployed in different scenarios and have broad
military application prospects. In order to load the aircraft into the launch box, the main
and tail wings of the box-type launch aircraft need to be folded, and after launch, the main
and tail wings of the aircraft need to be unfolded, which can easily cause mechanical failure.

In order to reduce the adverse effects of folding the tail wing of a box-type launch
aircraft, as shown in Figure 1, this paper proposes a ducted tail wing aircraft with the
advantage of a compact structure that does not require folding in the launch box. Compared
with the tail wing of traditional box-type launch aircraft, as shown in Figure 1a, the ducted
tail wing proposed in this paper adopts a circular structure. The ducted tail wing does
not need to be folded in the launch box and does not need to be unfolded after being
launched from the box, which can improve the structural reliability of the tail wing. In
addition, as shown in Figure 1b, the ducted tail wing eliminates the traditional mechanical
deflection control surface and adds active jet devices to the ducted tail wing. By changing
the jet parameters, the velocity and direction of the airflow passing through the tail wing
are altered, thereby changing the lift coefficient of the tail wing and generating different
control momentums.

Therefore, studying the influence of jet parameters on the aerodynamic performance
of ducted tail fins is of great significance, and jet parameter modeling is a key step in this
process. As shown in Figure 1c, due to the large aspect ratio flat fuselage of the ducted tail
aircraft studied in this paper, and in order to simplify the problem, the aircraft’s symmetrical
plane was selected for parametric modeling in the modeling process of the ducted tail
jet parameters. The NACA0012 airfoil is selected for the ducted tail wing, and the jet
methods include leading edge jet and trailing edge jet. The influence of parameters such as
momentum coefficient, jet hole position, jet hole height, and jet angle on the aerodynamic
performance of the ducted tail wing are analyzed.
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the traditional tail, the ducted tail in the launch box does not need to be folded; (b) during flight, 
the aircraft controls its flight attitude through an active jet ducted tail fin; (c) modeling jet parame-
ters for ducted tail fins. 
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Among them, Cμ  is the momentum coefficient, H1 and H2 are the heights of the jet 
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Figure 1. The advantages and parametric modeling of active jet ducted tail fins. (a) Compared with
the traditional tail, the ducted tail in the launch box does not need to be folded; (b) during flight, the
aircraft controls its flight attitude through an active jet ducted tail fin; (c) modeling jet parameters for
ducted tail fins.

3. Jet Parameters and Numerical Simulation Methods
3.1. Selection of Active Jet Parameters

According to Figure 1c, the list of jet parameters is shown in Table 1.

Table 1. Jet parameter list.

Serial Number Parameter Values

1 Cµ 0.00/0.01/0.02/0.03/0.04
2 H1 0.25%c
3 H2 0.25%c/0.35%c/0.45%c
4 L1 20%c/40%c/60%c/80%c/100%c
5 θ1 0◦/10◦/20◦/30◦

6 θ2 0◦

Among them, Cµ is the momentum coefficient, H1 and H2 are the heights of the jet
holes, L1 is the relative position of the jet hole (measured based on the leading edge of the
tail wing), θ1 and θ2 are the jet angles, and the heights and lengths mentioned in this article
are expressed as a percentage of the tail wing chord length c. Calculate the momentum
coefficient using the following formula:

Cµ =
mjvj

1
2 ρv2

∞s
, (1)

mj = ρvj Aj, (2)

In the formula, mj is the mass flow rate, ρ and v∞ are the density and velocity of
air at local atmospheric pressure, vj is the jet velocity, Aj is the jet area, s is the wing
area, respectively.
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3.2. Simulation Method and Computational Grid Independence
3.2.1. Simulation Method

This article uses commercial numerical simulation software Fluent 2022R1 for CFD cal-
culations, using a rectangular computational domain, with the external flow field boundary
condition being the far-field pressure, the jet inlet boundary condition being the velocity
inlet, and the wall boundary condition being the nonslip boundary condition. The method
of solving the Reynolds-averaged Navier–Stokes (RANS) equation is used for fluid com-
putational analysis, and the second-order upwind and implicit approximate factorization
methods are used for spatial and temporal two-dimensional discretization calculations.
The turbulence model selected is the coupled shear stress transport (SST) turbulence model.

3.2.2. Grid Independence Verification

Due to the selection of the NACA0012 airfoil for the ducted tail wing and the large
aspect ratio flat fuselage, the model formed by the combination of the tail fins and fuselage
is very complex. In order to study the influence of jet parameters on the aerodynamic
performance of the ducted tail wing, both computational efficiency and accuracy need to
be considered during grid partitioning. Therefore, the research object is simplified to the
symmetry plane of the fuselage and ducted tail. In order to compare with traditional tail
fins, a horizontal tail fin composed of NACA0012 airfoil was selected as the research object,
simplified as solving the aerodynamic performance of NACA0012 airfoil.

As shown in Figure 2, the computational efficiency and accuracy of numerical simu-
lation are taken into account, as well as the aerodynamic performance comparison with
the traditional horizontal tail formed by the NACA0012 airfoil. Therefore, two validation
models, namely the ordinary NACA0012 tail and the jet ducted tail, are selected to construct
unstructured grids with different densities. Grid independence verification and numerical
simulation accuracy evaluation are carried out. In order to better capture flow details, the
mesh has been locally densified in the tail area, nozzle, and front and rear edges of the
wing. Due to differences in the encryption area and grid size settings, the number of grids
varies. The number of grids in this article is shown in Table 2.
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Table 2. Number of grids with different accuracies.

Model The Number of
Sparse Grids

The Number of
Medium Grids

The Number of
Fine Grids

NACA0012 tail wing 1.40 × 105/2.10 × 105 3.50 × 105/4.70 × 105 6.80 × 105

Jet ducted tail wing 3.56 × 106 7.06 × 106 1.50 × 107

Verify that the numerical simulation method presented in this article is independent
of the mesh division of the model. As shown in Figure 3, first verify the stability of the
numerical simulation results of the ordinary NACA0012 tail wing under different grid
numbers. It can be seen that the selected calculation conditions are height H = 0 m, reference
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chord length cre f = 0.1 m, Reynolds number Re = 107, and attack angle α = 10◦. As the
number of calculation grids increases, especially when the number of grids is greater than
or equal to 2.10 × 105, the lift coefficient of the ordinary tail wing stabilizes at 1.0034. In
order to accurately evaluate the accuracy of the CFD calculation method in this article,
the numerical simulation results of the traditional NACA0012 tail are compared with the
wind tunnel experimental results in reference [21]. As shown in Figure 4, the maximum
error between the simulated and wind tunnel experimental values of the traditional tail lift
coefficient is less than 15%, and the direction of the lift curve is consistent. After evaluation,
it can meet the calculation accuracy requirements of numerical simulation.
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Based on the above, the grid independence of the jet ducted tail is further verified. The
selected operating conditions are jet momentum coefficient Cµ = 0, altitude H = 0 m, inflow
velocity 0.15 Ma, attack angle α = 18◦, reference area of ducted tail wing Sd = 0.01 m2,
aerodynamic chord length of ducted tail wing cre f = 0.1 m, and reference span length
0.1 m. From Table 3, it can be seen that with the lift coefficient calculated under refined grid
conditions as a reference, the calculation error of the lift coefficient for the other two sets
of grids is less than 1.92%. Similarly, due to the difference in the number and density of
boundary layer grids, the calculation error of the drag coefficient can reach up to 19.5%,
but it can still meet the requirements of calculation accuracy. Therefore, this article chooses
a model with a medium number of grids for subsequent numerical simulations.

Table 3. Grid independence of the jet ducted tail.

Aerodynamic
Parameters

The Number of
Sparse Grids

The Number of
Medium Grids

The Number of
Fine Grids

Lift coefficient 0.8791 0.8945 0.8963
Drag coefficient 0.1548 0.1887 0.1924
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4. Result Analysis
4.1. The Improvement Effect of Momentum Coefficient on Aerodynamic Performance

Firstly, the improvement effect of the momentum coefficient on the aerodynamic
performance of ducted tail wing is studied. The calculation state is selected as Reynolds
number Re = 8.43 × 105, flow velocity Ma = 0.15, jet hole height H1 = H2 = 0.25%c, jet
angle θ1 = θ2= 0

◦
, jet hole position L1 = 20% or 100%, and jet momentum coefficient

Cµ = 0.00/0.01/0.02/0.03/0.04.
As shown in Figure 5a, when the jet hole position L1 = 100% c, the momentum

coefficient of the jet gradually increases from Cµ = 0.00 to Cµ = 0.04. Due to the increased
circulation intensity at the trailing edge of the ducted tail, the lift coefficient of the ducted
tail is improved. As shown in Figure 5b, ∆CL represents the increase in lift coefficient,
within the angle of attack range of 0◦~22◦, with Cµ = 0.00 as the reference for the no jet
state, the increase in lift coefficient CL remains stable. At Cµ = 0.04, the average of ∆CL is
0.403; When Cµ = 0.03, the average of ∆CL is 0.329; When Cµ = 0.02, the average of ∆CL is
0.262; When Cµ = 0.01, the average of ∆CL is 0.191. When Cµ increases from 0.01 to 0.04, the
average growth value of ∆CL can reach 110%, indicating that the increase in momentum
coefficient has a significant effect on the lift coefficient of the tail wing under the condition
of a trailing edge jet. As shown in Figure 5c, when the jet hole position L1 = 100%c, as
the momentum coefficient increases, the energy disturbance injected into the trailing edge
flow field per unit of time increases, increasing the drag coefficient CD of the ducted tail
wing. However, as shown in Figure 5d, the increase in drag coefficient is not significant
within the range of 0◦–8◦. As the angle of attack continues to increase, the increase in drag
coefficient gradually increases.

As shown in Figure 6a, when the jet hole position L1 = 20%c, with the increase of
momentum coefficient, the lift coefficient CL of the ducted tail wing is also improved, but
the improvement effect is not as good as that of the trailing edge jet. As shown in Figure 6b,
within the angle of attack range of 0◦–22◦, the increase in lift coefficient CL is relatively
small when Cµ = 0.00 is used as the reference for the no jet state. At Cµ = 0.04, the average
of ∆CL is 0.116; When Cµ = 0.03, the average of ∆CL is 0.056; When Cµ = 0.02, the average
of ∆CL is 0.008; When Cµ = 0.01, the average of ∆CL is −0.029. Compared with the trailing
edge jet (L1 = 100%c), due to the higher airflow velocity at the leading edge of the tail
wing, the airflow disturbance injected by the leading edge jet under the same conditions
is smaller, resulting in a poorer lift coefficient enhancement effect. As shown in Figure 6c,
when the jet hole position L1 = 20%c, the drag coefficient CD of the ducted tail does not
change significantly with the increase of momentum coefficient. As shown in Figure 6d,
within the range of 0◦–20◦, the excitation effect of the leading edge jet on the boundary
layer airflow results in no significant increase in the drag coefficient.
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4.2. The Improvement Effect of Jet Hole Height on Aerodynamic Performance

The improvement effect of jet hole height on the aerodynamic performance of ducted
tail wing is studied. The calculation state is selected as Reynolds number Re = 8.43 × 105,
flow velocity Ma = 0.15, jet hole height H2 = 0.00%c/0.25%c/0.35%c/0.45%c, jet angle
θ2= 0

◦
, jet hole position L1 = 100%c, jet momentum coefficients Cµ = 0.02 and 0.04.

As shown in Figure 7a, when the jet hole position L1 = 100%c and the jet momentum
coefficient Cµ = 0.02, with the increase of H2, the fluid velocity injected into the flow field
per unit time decreases, and the airflow disturbance of the ducted tail decreases, resulting in
a weakened lift coefficient CL enhancement effect of the ducted tail. As shown in Figure 7b,
within the angle of attack range of 0◦–22◦, with Cµ = 0.00 and no jet state as the reference,
Cµ = 0.02, H2 = 0.25%c, the average of ∆CL is 0.196; When Cµ = 0.02 and H2 = 0.35%c, the
average of ∆CL is 0.192; When Cµ = 0.02 and H2 = 0.45%c, the average of ∆CL is 0.145; It
can be seen that as H2 increases, the increase in lift coefficient CL decreases. As shown in
Figure 7c, with the increase of H2, the airflow disturbance at the trailing edge of the ducted
tail decreases, resulting in a weakened effect of improving the drag coefficient CD of the
ducted tail. As shown in Figure 7d, overall, the change in jet hole height has little effect on
the drag coefficient CD of the jet ducted tail wing.
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Under the same conditions, when the jet momentum coefficient Cµ = 0.04, as shown
in Figure 8a, with the increase of H2, the effect of the change in jet hole height on the lift
coefficient of the ducted tail is more significant compared with the momentum coefficient
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Cµ = 0.02. As shown in Figure 8b, within the attack angle range of 0◦–22 ◦, with Cµ = 0.00
and no jet state as the reference, Cµ = 0.04, H2 = 0.25%c, the average of ∆CL is 0.262; When
Cµ = 0.04 and H2 = 0.35%c, the average of ∆CL is 0.239; When Cµ = 0.04 and H2 = 0.45%c,
the average of ∆CL is 0.171; It can be seen that as the height of the jet hole increases, the
growth rate of the lift coefficient CL significantly decreases. As shown in Figure 8c, with
the increase of H2, the airflow disturbance at the trailing edge of the ducted tail decreases,
resulting in a weakened effect of improving the drag coefficient CD of the ducted tail. As
shown in Figure 8d, compared with Figure 7d, overall, the change in jet hole height has a
more significant impact on the drag coefficient CD of the ducted tail wing. Overall, as the
momentum coefficient Cµ of the jet increases, the effect of H2 variation on the aerodynamic
performance of the ducted tail becomes more significant.
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4.3. The Improvement Effect of Jet Hole Position on Aerodynamic Performance

The calculation state selects Reynolds number Re = 8.43 × 105, flow velocity Ma = 0.15,
jet hole height H2 = 0.25%c, jet angle θ2= 0

◦
, jet momentum coefficient Cµ = 0.04, jet hole

position L1 = 20%c/40%c/60%c/80%c/100%c, and analyzes the improvement effect of
different jet hole positions on the aerodynamic performance of the ducted tail wing.

As shown in Figure 9a, when the jet angle is 0◦ and the jet momentum coefficient
Cµ is 0.04, as the distance L1 between the jet hole and the leading edge increases, the lift
coefficient CL of the ducted tail wing is enhanced. Among them, L1 = 100%c (the jet hole
is located at the trailing edge of the tail wing) is most conducive to lift enhancement. As
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shown in Figure 9b, within the attack angle range of 0◦~22 ◦, with Cµ = 0.00 and no jet state
as the reference, Cµ = 0.04, L1 = 20%c, the average of ∆CL is 0.154; When Cµ = 0.04 and
L1 = 40%c, the average of ∆CL is 0.185; When Cµ = 0.04 and L1 = 60%c, the average growth
value of ∆CL is 0.192; When Cµ = 0.04 and L1 = 80%c, the average of ∆CL is 0.225; When
Cµ = 0.04 and L1 = 100%c, the average of ∆CL is 0.403. We can find that as L1 increases,
the increase in lift coefficient CL also increases, especially when L1 = 100%c, which is most
conducive to lift enhancement. As shown in Figure 9c, as L1 increases, the drag coefficient
CD of the ducted tail also increases. As shown in Figure 9d, overall, the change in L1 has
little effect on the drag coefficient CD of the ducted tail wing. However, when the jet hole
position L1 = 100%c, the drag coefficient of the tail wing also significantly increases.
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Under the same conditions, when the jet angle is 10◦ and the jet momentum coefficient
Cµ is 0.04, as shown in Figure 10a, the improvement effect of the jet hole position on the lift
coefficient CL decreases with the increase of the jet hole position L1. As shown in Figure 10b,
within the attack angle range of 0–22◦, with Cµ = 0.00 and no jet state as the reference, when
Cµ = 0.04 and L1 = 20%c, the average of ∆CL is 0.110; When Cµ = 0.04 and L1 = 40%c, the
average of ∆CL is 0.175; When Cµ = 0.04 and L1 = 60%c, the average of ∆CL is 0.181; When
Cµ = 0.04 and L1 = 80%c, the average of ∆CL is 0.205; When Cµ = 0.04 and L1 = 100%c,
the average of ∆CL is 0.329. We find that as L1 increases, the increase in lift coefficient CL
also increases, especially when L1 = 100%c, which is most conducive to lift enhancement.
As shown in Figure 10c, with the increase of L1, the drag coefficient CD of the ducted tail
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increases. As shown in Figure 10d, compared with Figure 9d, overall, the effect of changes
in the position of the jet holes on the drag coefficient CD of the tail is weakened. Overall,
when L1 = 100%c, it is most beneficial for the ducted tail to increase lift and reduce drag.
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4.4. The Improvement Effect of Jet Angle on Aerodynamic Performance

The calculation state is selected as Reynolds number Re = 8.43 × 105, flow velocity
Ma = 0.15, jet hole height H2 = 0.25%c, jet hole position L1 = 20%c/40%c, jet momentum
coefficient Cµ = 0.04. The influence of jet angles θ1 = 0◦, 10◦, 20◦, and 30◦ on the aerodynamic
performance of ducted tail is analyzed.

As shown in Figure 11a, when L1 = 20%c and the jet momentum coefficient Cµ = 0.04,
as the jet angle θ1 increases, the lift coefficient CL of the ducted tail decreases. As shown
in Figure 11b, within the attack angle range of 0◦–22◦, with Cµ = 0.00 and no jet state as
the reference, when Cµ = 0.04 and θ1 = 0◦, the average of ∆CL is 0.155; When Cµ = 0.04 and
θ1 = 10◦, the average of ∆CL is 0.110; When Cµ = 0.04 and θ1 = 20◦, the average of ∆CL is
0.073; When Cµ = 0.04 and θ1 = 30◦, the average of ∆CL is 0.063. It can be seen that as the jet
angle increases, the increase in lift coefficient CL decreases. As shown in Figure 11c, as the
jet angle increases, the drag coefficient CD of the ducted tail does not increase significantly.
As shown in Figure 11d, overall, the increasing trend of drag coefficient CD also decreases
with the increase of the jet angle.
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As shown in Figure 12a, when L1 = 40%c and the jet momentum coefficient Cµ = 0.04,
the lift coefficient CL of the ducted tail does not change significantly with the increase of
the jet angle θ1. As shown in Figure 12b, within the angle of attack range of 0◦–22◦, with
Cµ = 0.00 and no jet state as the reference, when Cµ = 0.04 and θ1 = 0◦, the average of ∆CL
is 0.185; When Cµ = 0.04 and θ1 = 10◦, the average of ∆CL is 0.175; When Cµ = 0.04 and
θ1 = 20◦, the average of ∆CL is 0.169; When Cµ = 0.04 and θ1 = 30◦, the average of ∆CL
is 0.168. It can be seen that when L1 = 40%c and the jet momentum coefficient Cµ = 0.04,
the increase in lift coefficient CL does not show significant changes with the increase of jet
angle. As shown in Figure 12c, with the increase of jet angle, there is no significant change
in the drag coefficient CD of the ducted tail. As shown in Figure 12d, overall, as the jet
angle increases, the increase in drag coefficient CD is very small.
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4.5. Advantages and Principle Analysis of the Ducted Tail Wing

From the analysis in Sections 4.1–4.4, compared with jet hole height and jet angle, mo-
mentum coefficient and jet hole position are more effective in improving the aerodynamic
performance of the ducted tail wing. When the jet hole height H2 is 0.25%c, the jet angle is
0◦, and L1 is 100% c (trailing edge jet), the effect of increasing lift and reducing drag of the
tail is relatively good with the increase of momentum coefficient.

Comparing the aerodynamic performance of ducted tail fins and traditional horizontal
tail fins, the NACA0012 airfoil is selected for the traditional horizontal tail fin. In order to
highlight the aerodynamic advantages of the ducted tail wing, the three-dimensional flow
effect of the traditional tail wing is ignored, and its aerodynamic performance is simplified
to that of the NACA0012 airfoil. As shown in Figure 13a, the lift coefficients of the ducted
tail and NACA0012 airfoil are compared and analyzed under different jet conditions. It is
found that the ducted tail can generate lift at 0◦ angle of attack so it can generate control
force at low angles of attack. At the same time, it was found that the traditional NACA0012
airfoil began to stall after a 12◦ angle of attack, with a decrease in lift coefficient, which is
not conducive to the control of the aircraft at high attack angles. However, the ducted tail
does not enter the stall state after a 12◦ angle of attack and could provide momentum for
aircraft control at high attack angles. As shown in Figure 13b, compared with the traditional
NACA0012 airfoil, the ducted tail wing has a higher drag coefficient than the NACA0012
due to the blunting of the fillet at the trailing edge of the jet when the angle of attack is
0◦~14◦. However, as the angle of attack continues to increase, the traditional NACA0012
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airfoil stalls, and the drag coefficient suddenly increases. However, the ducted tail does not
stall. At jet momentum coefficients of 0.00 and 0.01, the drag coefficient is slightly lower
than that of NACA0012.
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In order to analyze the reason why the ducted tail generates lift at a 0◦ attack angle
and does not stall at high attack angles, we selected two states of 0◦ and 20◦ angles of attack
and compared and analyzed the velocity and pressure cloud maps under the conditions of
momentum coefficients of 0.01 and 0.04.

As shown in the velocity cloud maps of Figure 14a,b, at a 0◦ angle of attack, the
airflow on the upper surface of the leading edge of the tail begins to accelerate after passing
through the duct area formed by the tail and the fuselage, resulting in unequal pressure on
the upper and lower surfaces of the tail. This is the main reason for the ducted tail wing
generating lift at a 0◦ attack angle. As the Cµ increases, the airflow disturbance injected into
the trailing edge of the ducted tail increases, and under the excitation of the Coanda effect,
the lift coefficient of the tail further increases. As shown in Figure 14c,d, at a 20◦attack
angle, the induction at the tail of the fuselage causes the high attack angle airflow to deflect
downward, resulting in the attack angle of the airflow flowing through the upper surface of
the tail wing being less than 20◦. Therefore, the ducted tail wing will not stall at an angle of
attack of 20◦. Due to the acceleration effect of the ducted wing, the airflow passing through
the upper surface of the tail wing at a 20◦ angle of attack forms a high-speed zone, further
enhancing the lift coefficient of the ducted tail wing. And as the momentum coefficient Cµ

increases, the airflow disturbance injected into the trailing edge of the ducted tail increases,
and under the excitation of the Coanda effect, the lift coefficient of the tail further increases.

Similarly, as shown in Figure 15a,b, due to the acceleration effect of the ducted effect
on the surface airflow of the tail, there is a pressure difference between the upper and lower
surfaces of the ducted tail at 0◦ angle of attack, further explaining the reason for the lift of
the ducted tail at a 0◦ angle of attack. Moreover, as the momentum coefficient increases, the
airflow disturbance injected into the trailing edge of the ducted tail increases. Under the
excitation of the Coanda effect, there is a significant pressure difference between the upper
and lower parts of the trailing edge of the tail, which is also the reason for the increase in
the lift coefficient of the tail. As shown in Figure 15c,d, at a high angle of attack of 20◦, due
to the deflection effect of the tail of the fuselage on the high angle of attack airflow, the
pressure difference between the upper and lower surfaces of the tail increases, and there is
no sudden increase in pressure on the upper surface caused by the stall. Therefore, the lift
coefficient of the ducted tail further increases.



Aerospace 2024, 11, 851 16 of 19
Aerospace 2024, 11, x FOR PEER REVIEW 17 of 20 
 

 

  
(a) (b) 

  
(c) (d) 

Figure 14. Cloud maps of ducted tail wing. (a) 0.01, 0Cμ α= = ° ; (b) 0.04, 0Cμ α= = ° ; (c) 

0.01, 20Cμ α= = ° ; (d) 0.04, 20Cμ α= = ° . 

Similarly, as shown in Figure 15a,b, due to the acceleration effect of the ducted ef-
fect on the surface airflow of the tail, there is a pressure difference between the upper 
and lower surfaces of the ducted tail at 0° angle of attack, further explaining the reason 
for the lift of the ducted tail at a 0° angle of attack. Moreover, as the momentum coeffi-
cient increases, the airflow disturbance injected into the trailing edge of the ducted tail 
increases. Under the excitation of the Coanda effect, there is a significant pressure dif-
ference between the upper and lower parts of the trailing edge of the tail, which is also 
the reason for the increase in the lift coefficient of the tail. As shown in Figure 15c,d, at a 
high angle of attack of 20°, due to the deflection effect of the tail of the fuselage on the 
high angle of attack airflow, the pressure difference between the upper and lower sur-
faces of the tail increases, and there is no sudden increase in pressure on the upper sur-
face caused by the stall. Therefore, the lift coefficient of the ducted tail further increases. 

  

Figure 14. Cloud maps of ducted tail wing. (a) Cµ = 0.01, α = 0◦ (b) Cµ = 0.04, α = 0◦;
(c) Cµ = 0.01, α = 20◦; (d) Cµ = 0.04, α = 20◦.

As shown in Figure 16, further comparison and analysis are conducted on the changes
in pressure coefficients on the upper and lower surfaces of the ducted tail when the
momentum coefficient changes. Two states of 0◦ and 20◦ angle of attack are selected to
analyze the pressure coefficient difference of the ducted tail under different momentum
coefficients. Through comparative analysis, taking the no-jet state Cµ = 0.00 as a reference,
it is found that as the momentum coefficient increases, the pressure coefficient difference at
the trailing edge of the ducted tail increases rapidly. In addition, due to the induced effect
of airflow, the pressure coefficient on the entire lower surface of the tail decreases, and the
pressure difference with the upper surface increases, further improving the lift coefficient
of the ducted tail.
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5. Conclusions

This article takes the ducted tail of a certain box-type launch vehicle as the research
object. The integrated nonfolding ducted tail proposed in this article can solve the problem
of storing the tail in the launch box. Moreover, traditional mechanical control surfaces have
been eliminated, and active jet control has been adopted to control the pitch direction of
the flight attitude, which can improve the structural reliability of the tail wing. By studying
the effects of parameters such as momentum coefficient, jet hole position, jet hole height,
and jet angle on improving the aerodynamic performance of ducted tail wing, we obtain
the following conclusion.

(1) The improvement effect of jet hole height and jet angle on the aerodynamic perfor-
mance of ducted tail wing is relatively small. Through comparative analysis, it is
found that under the conditions of jet hole height H2 = 0.25%c and jet angle θ1 = 0◦, it
is more conducive to improving the aerodynamic performance of the ducted tail wing.

(2) The momentum coefficient and jet hole position are the main factors affecting the aero-
dynamic performance of the ducted tail wing. Under the conditions of H2 = 0.25%c,
jet angle θ1 = 0◦, and L1 = 100%c (jet hole located at the trailing edge of the tail wing),
the improvement effect of the aerodynamic performance of the tail wing is relatively
good as the momentum coefficient Cµ increases. At Cµ = 0.04, the average of ∆CL is
0.403; When Cµ = 0.03, the average of ∆CL is 0.329; When Cµ = 0.02, the average of
∆CL is 0.262; When Cµ = 0.01, the average of ∆CL is 0.191. When Cµ increases from
0.01 to 0.04, the average growth of ∆CL can reach 110%.

(3) A comparative analysis is conducted on the aerodynamic performance of ducted tail
wings and NACA0012 airfoils. It is found that the ducted tail can generate lift at a
0◦ angle of attack. In this way, under low angle of attack conditions, the ducted tail
can generate control force without jet flow, which can save control energy. Compared
with the NACA0012 airfoil, the ducted tail does not stall at angles of attack ≥12◦ and
can provide stable control momentum for the aircraft at high attack angles.
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