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Abstract: A partial space elevator (PSE) is a multi-body tethered space system in which the main
satellite, typically an ultra-large spacecraft or a space station in a higher orbit, is connected to a
transport spacecraft in a lower orbit via a tether, maintaining orbital synchronization. One or more
climbers can move along the tether driven by electric power, enabling cross-orbital payload trans-
portation between the two spacecraft. The climbers’ motion significantly alters the main satellite’s
orbital states, compromising its safe and stable operation. The dynamic coupling and nonlinearity
of the PSE further exacerbate this challenge. This study aims to preliminarily address this issue by
proposing a new mission planning strategy. This strategy utilizes reinforcement learning (RL) to
select the waiting interval between two transfer missions, thereby maintaining the main satellite’s
orbital motion in a stable state. Simulation results confirm the feasibility and effectiveness of the
proposed mission-based method.

Keywords: partial space elevator; maintenance of orbital states; reinforcement learning; mission planning

1. Introduction

A PSE is a multi-body tethered space system (TSS), with its overall structure depicted
in Figure 1 [1]. The main satellite, which is typically a space station or ultra-large space
structure, is located in a higher orbit [2] and utilizes a tether to anchor the end body, which
is typically a transport spacecraft or space experimental platform in a lower orbit. The
length of the tether can range from tens to thousands of kilometers, depending on the
mission requirements and background. Climbers can move along the tether rapidly using
electric power, enabling efficient cross-orbit payload transportation between the two space-
craft. The energy cost can be reduced to less than 60% of traditional rocket transportation
means [3], and the unit cost of payload transportation is expected to be reduced to below
5% of traditional means [4]. Additionally, a PSE allows for flexible deployment and de-
construction by releasing or retrieving the tether, following environmental conditions and
requirements. Here, it should be noted that in practical applications, tethers several tens of
kilometers in length have been used for deep-sea exploration and mooring floats [5,6]. Cur-
rently, there are no applications or preparations of tethers that are thousands of kilometers
long for ground missions. The weightless environment in which PSEs and space elevators
will be located will be an ideal scenario for their future application [7].

In the past decade, studies in the field of tethered spacecraft have mainly focused on the
precise modeling, dynamic calculations, and libration suppression of PSEs [8–11]. Works
have made initial progress in addressing the challenges related to accurate modeling and
computation and have proposed relatively comprehensive libration suppression methods.
As research deepens, the way to deal with the orbital floating and oscillation of the main
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satellite caused by payload transportation is becoming a key challenge [12,13] that relates
to previous work.
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et al. built dynamic models of three-body TSSs, and some dynamic characteristics have 
also been analyzed. In 2010, Woo and Mirsa [18] introduced the concept of the PSE. Then, 
the dynamic responses of a PSE to a climber’s motion were analyzed by Shi and Zhu et al. 
[9,19] using a simplified model. These responses were verified by Yu et al. [20] through 
ground experiments. To provide a more accurate dynamic model of a PSE, Li and Zhu 
[21,22] developed a nodal position finite element method-based high-fidelity model. This 
model incorporates most physical factors, such as tether elasticity and flexible motions. 
They found that the simplified model of a PSE is sufficiently accurate for describing libra-
tion and orbital motions. Additionally, Shi and Zhu [12,13] found that the climber’s move-
ment along the tether significantly alters the main satellite’s orbit, which is noteworthy 
for maintaining the satellite’s orbital stability during payload transportation. 

Stability control of PSEs is crucial, primarily focusing on suppressing libration. Con-
sequently, many stabilization techniques for TSSs can be applied to PSEs. Super-twisting 
sliding mode control laws and MPC methods [23–25] have been investigated to mitigate 
the libration motion of TSSs, and these control methods are also applicable to PSEs. To 
achieve a stable configuration in the transfer period of PSEs, the prescribed performance 
law was considered in a dual-loop control scheme [26]. Optimal control strategies are also 
effective and desired to suppress the libration from the planning perspective, in general 
[27,28]. However, the calculation process is complex, and the calculation workload is 
great. These issues have adverse effects on online control. To deal with these issues, piece-
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The dynamics and modeling of PSEs can include studies on three-body TSSs, which
have moving masses. Lorenzini [14], Misra [15], Williams [16], Cohen [17], and Jung [17]
et al. built dynamic models of three-body TSSs, and some dynamic characteristics have also
been analyzed. In 2010, Woo and Mirsa [18] introduced the concept of the PSE. Then, the
dynamic responses of a PSE to a climber’s motion were analyzed by Shi and Zhu et al. [9,19]
using a simplified model. These responses were verified by Yu et al. [20] through ground
experiments. To provide a more accurate dynamic model of a PSE, Li and Zhu [21,22]
developed a nodal position finite element method-based high-fidelity model. This model
incorporates most physical factors, such as tether elasticity and flexible motions. They
found that the simplified model of a PSE is sufficiently accurate for describing libration and
orbital motions. Additionally, Shi and Zhu [12,13] found that the climber’s movement along
the tether significantly alters the main satellite’s orbit, which is noteworthy for maintaining
the satellite’s orbital stability during payload transportation.

Stability control of PSEs is crucial, primarily focusing on suppressing libration. Con-
sequently, many stabilization techniques for TSSs can be applied to PSEs. Super-twisting
sliding mode control laws and MPC methods [23–25] have been investigated to mitigate the
libration motion of TSSs, and these control methods are also applicable to PSEs. To achieve
a stable configuration in the transfer period of PSEs, the prescribed performance law was
considered in a dual-loop control scheme [26]. Optimal control strategies are also effective
and desired to suppress the libration from the planning perspective, in general [27,28].
However, the calculation process is complex, and the calculation workload is great. These
issues have adverse effects on online control. To deal with these issues, piece-wise optimal
schemes [29] and cooperative game methods [1] have been considered. In summary, both
the main satellite and the end body need to be controlled, but they are two issues for PSEs.
For the control of the main satellite, the target is to maintain its orbital state, especially the
orbital radius in a desired realm. For the end body, the target is to maintain its position in a
desired realm relating to the main satellite. Since the end body is commonly a transporting
spacecraft with high mobility, the control of end bodies is a common issue. However,
for the main satellite, which is typically regarded as an ultra-large space structure with a
very large mass, its orbital control is a complex issue that has to be considered based on
multiple aspects.
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In this work, we focus on the maintenance of the main satellite’s orbital states. The
aforementioned approaches can maintain the orbital states of the main satellite. However,
they require additional thrusters and have a limited adjustment range. Our previous
research [12] demonstrated that varying the transportation start time, which corresponds
to the initial state of the PSE, results in different orbital states after the transportation. This
provides a new mission-based planning method for maintaining the orbital states of the
main satellite using the exhaustion method. Its drawbacks include (i) its inability to quickly
achieve mission planning in orbit with small step sizes and (ii) its omission of optimal and
suboptimal solutions with larger step sizes. To solve these issues, in this study, we propose
and implement a mission-based RL method by selecting a waiting interval between two
transfer missions (one upward and one downward). This new mission-based planning
strategy leverages the RL method. The planning policy is trained using the deep Q-network
algorithm, where the waiting interval serves as the agent’s action. To effectively train the
agent, we designed a new reward function that evaluates the main satellite’s stability after
the climber’s transportation. The proposed method can maintain the orbit radius of the
main satellite to a large extent without using thrust, thereby saving fuel for the precise orbit
control of the main satellite that requires thrust in the future. The numerical simulation
results demonstrate the effectiveness of the new mission-based method using RL.

This paper is organized as follows. In Section 2, we model the dynamics of a PSE.
Subsequently, the problem is described, and an RL-based method based on the specificity
of the problem is proposed in Section 3. The proposed mission-based method is validated
by the case study in Section 4. Finally, in Section 5, the conclusions are given in summary,
and prospects for future work are provided.

2. Mathematical Formulation

As illustrated in Figure 1, M, m1, and m2 represent the masses of the main satellite,
climber, and end body, respectively. The PSE operates in an ideal central gravitational field
with disturbances like solar radiation pressure and atmospheric drag being ignored. The
main satellite, which is typically a large-mass space structure, is located in a higher orbit
and utilizes a tether to anchor the end body in a lower orbit. The length of the tether can
range from tens to thousands of kilometers, depending on the mission requirements and
background. The climber can move along the tether rapidly using electric power, enabling
efficient cross-orbit payload transportation between the main satellite and the end body.

Here, it should be noted that the out-of-plane motions of the PSE are neglected, as
it can be safely decoupled from the in-plane motions due to the weak coupling nature
between these two modes of libration. Thus, we focus on the motions in the orbital plane
using an in-plane model.

The vectors r, r1, and r2 are the projections of the absolute position of the main satellite,
the climber, and the end body in the orbital coordinate frame, respectively, such that

r = rer
r1 = r − L1 cos θ1er − L1 sin θ1eϑ

r2 = r1 − L2 cos θ2er − L2 sin θ2eϑ

(1)

where r denotes the orbital radius of the main satellite, ϑ is the true anomaly, L1 and L2,
are the tether lengths, and θ1 and θ2 denote the libration angles of the climber and the end
body, which are measured from vector r0 to L1 and L2, respectively. The unit vectors eϑ and
er are in the directions of the main satellite’s orbital motion and radius, respectively.

Differentiating Equation (1) yields

v =
dr
dt

+ ω × r, v1 =
dr1

dt
+ ω × r1, v2 =

dr2

dt
+ ω × r2 (2)

where ω = [0 0
.
ϑ]

T
and

.
ϑ is the angular velocity of the true anomaly. We define the

Lagrange equation as L = K − U, where potential energy (U) and kinetic energy (K) are
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U = −µ
(

M
|r| +

m1
|r1| +

m2
|r2|

)
K = 1

2 MvT · v + 1
2 m1vT

1 · v1 +
1
2 m2vT

2 · v2
(3)

The generalized coordinates are (q1, q2, q3, q4, q5, q6) = (θ1, θ2, L1, L2, r, ϑ), such that
the Lagrange equation can be written as

d
dt

∂L
∂

.
qi

− ∂L
∂qi

= Qi (i = 1, 2, 3, 4, 5, 6) (4)

The generalized force Qi can be derived by

Qi =
2

∑
j=0

Λj
T ∂rk

∂qi
(j = 0, 1, 2) (5)

where
Λ0 = −T1 cos θ1er − T1 sin θ1eϑ

Λ1 = (T1 cos θ1 − T2 cos θ2)er + (T1 sin θ1 − T2 sin θ2)eϑ

Λ2 = T2 cos θ2er + T2 sin θ2eϑ

(6)

The dynamics of PSE can be derived using the Lagrange method [21] as

..
θ1 = −3

.
ϑ

2
sin 2θ1

2
+

T1 sin θ1

rM
− T2 sin(θ1 − θ2)

L1m1
− 2(

.
ϑ +

.
θ1)

.
L1

L1
+

2
.
ϑ

.
r

r
(7)

..
θ2 = −3

.
ϑ

2
sin 2θ2

2
+

T1 sin θ1

rM
+

T1 sin(θ1 − θ2)

(L0 − L1)m1
+

2(
.
ϑ +

.
θ2)

.
L1

L0 − L1
+

2
.
ϑ

.
r

r
(8)

..
L1 =

.
ϑ

2
L1 −

µ cos θ1

r
−

G1
1 cos θ1 + G2

1 sin θ1

m1
− T1

m0
− T1

m1
+

cos(θ1 − θ2)T2

m1
+ (2

.
ϑ +

.
θ1)L1

.
θ1 (9)

..
L2 =

.
ϑ

2
L2 +

G1
1 cos θ2+G2

1 sin θ2
m1

− G1
2 cos θ2+G2

2 sin θ2
m1

− T1
m1

− T2
m2

+(2
.
ϑ +

.
θ2)L2

.
θ2 +

T1 cos(θ1−θ2)
m1

(10)

..
r = r

.
ϑ

2
− µ

r2 − T1 cos θ1

M
,

..
ϑ = −2

.
ϑ

.
r

r
− T1 sin θ1

rM
(11)

G1
1 = − µm1(r−L1 cos θ1)

|r1|3
, G2

1 = µm1L1 sin θ1

|r1|3

G1
2 = − µm2(r−L1 cos θ1−L2 cos θ2)

|r2|3
, G2

2 = µm1(L1 sin θ1+L2 sin θ2)

|r2|3
(12)

where µ is the Earth’s gravitational parameter and T1 and T2 are the tether tensions in L1.
The tensions in tethers can be calculated by assuming that the total tether length L0 is

constant, such that
L2 = L0 − L1,

.
L2 = −

.
L1,

..
L1 = −

..
L2 (13)

Substituting Equation (13) into Equations (9) and (10) yields

T1 = m0
{

r2G1
1 [m2 sin θ2 sin(θ1 − θ2)− m1 cos θ1]

−r2G2
1 [m1 sin θ1 + m2 cos θ2 sin(θ1 − θ2)]

+m1{−µ(m1 + m2) cos θ1 + r2{(m1 + m2)

[
L1(

.
ϑ +

.
θ1)

2
−

..
L1

]
− cos(θ1 − θ2) sin θ2G2

2 − cos(θ1 − θ2) cos θ2G1
2

+m2 cos(θ1 − θ2)

[
L2(

.
ϑ +

.
θ2)

2
+

..
L1

]
}}}/A

(14)
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T2 =
{
−2r2G1

2m1(m1 + m0) cos θ2 − 2r2G2
2m1(m1 + m0) sin θ2

+m2
{

2r2G1
1 [m0 sin θ1 sin(θ1 − θ2) + m1 cos θ2]

+ sin θ2{2r2G2
1(m1 + m0 cos2 θ1) + 2m1m0{r2

[
L1(

.
ϑ +

.
θ1)

2
−

..
L1

]
− µ cos θ1}}

−2m0 cos θ1 cos θ2{r2G2
1 sin θ1 + m1{µ cos θ1 − r2

[
L1(

.
ϑ +

.
θ1)

2
−

..
L1

]
}}

+2r2m1(m1 + m0)

[
L2(

.
ϑ +

.
θ2)

2
+

..
L1

]
}}/(2r2 A)

(15)
where A = m1(m1 + m2) + m0

[
m2 sin2(θ1 − θ2) + m1

]
.

3. Maintenance of the Main Satellite’s Orbital States Using the RL Method
3.1. Problem Formation

As shown in Figure 2, the movement of the climber along the tether causes the orbital
radius (r) to fluctuate rather than remain constant, and the

∣∣ .
r
∣∣ ̸= 0 after the transfer mission.

Furthermore, large values of
∣∣ .
r
∣∣ will lead to significant fluctuations in r, which is detrimental

to the safety of the main satellite. ∆r = r − r0 denotes the changing magnitude of r, where
r0 is the initial orbital radius of the main satellite. One reasonable condition after one
transfer mission is that the ∆r is small (see the blue lines in Figure 2), and the orbital states
after the transfer mission in (b) are better than those in (a). The system parameters in this
case are shown in Table 1. In summary, after one transfer mission, the main satellite’s orbital
radius fluctuates around its initial value over time with an obvious changing magnitude of
r. This changing magnitude may either decrease or increase after the next transfer mission
depending on the starting time of the next transfer mission.
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Then, the problem is how to select such a mission starting time so as to minimize the
changing magnitude of r after one transfer mission as much as possible. Such selection
is difficult. This is because the required input in the mission plan is the mission starting
time, a time point. Its dynamic impact is caused by the movement of the climber within a
transfer period after that mission starting time. It is difficult to describe the relationship
between the mission starting time and the changing magnitude of r after the transfer period
in dynamics. As a result, existing optimization theories are not suitable for optimizing the
selection of the mission starting time.



Aerospace 2024, 11, 855 6 of 12

Table 1. System parameters and initial states of the PSE.

Parameters Values

Orbital radius of the main satellite, r (m) 7.1 × 106

Initial True anomaly angular, ϑ(0)(rad) 0
Mass of the main satellite (net weight), M (kg) 50,000
Mass of climber (net weight), m1 (kg) 100
Mass of the payload (kg) 400
Mass of end body, m2 (kg) 1000
Fixed total tether length, L0 (m) 2 × 104

Initial libration angle and angular velocity, (θ1(0),
.
θ1(0)) (0, 0)

Initial libration angle and angular velocity, (θ2(0),
.
θ2(0)) (0, 0)

Initial distance between the climber and the main satellite, L1 (m) 19,500
Reward function parameter, λ 100
Adaptable average orbital radius changing magnitude ∆r(m) 100

Considering the situations above, one desired strategy is the deep RL method. The RL
method for the maintenance of the orbital states of a PSE involves (i) utilizing the powerful
fitting capabilities of deep neural networks to establish the mapping relationship between
the departure time and the main satellite’s orbital state after the transfer mission and
(ii) utilizing a trained agent to make decisions. In summary, deep neural networks can be
used to address the problem (i), but they must also make decisions on mission execution
to provide an action, which is why RL methods are needed. The powerful representation
ability of deep neural networks makes them a powerful tool for state representation and
function approximation in RL.

3.2. RL-Based Mission Planning Method

This work employs the RL method to address the complex dynamics of the PSE by
training an agent (controller) using the Deep Q-Network (DQN) learning algorithm. Based
on the problem formulation, mission planning for the PSE in this study involves selecting
the optimal mission starting time. This can be facilitated by determining the length of the
waiting interval h from the end time point of the previous transfer mission. Then, the action
can be defined in a discrete dataset. Once the action is completed, the episode ends. As
a result, the length of each episode is equal to h. The initial states of the agent for each
episode are the same. Then, the DQN learning algorithm framework can be summarized as
follows (see Figure 3). First, the model, training algorithm, agent (action), and experience
replay memory are initialized and set. Interaction data and storage data are collected, then
the training begins for the preset episode numbers. The detailed process is as follows:
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(1) Learning environment: The DQN learning algorithm is designed to solve decision
problems based on Markov decision processes (MDPs). The learning agent interacts with
an environment, such that:

The state space is defined as the generalized coordinates of the PSE, including θ1,
.
θ1,

θ2,
.
θ2, L1,

.
L1, r,

.
r, ϑ, and

.
ϑ.

The action is defined as the waiting interval h.
The reward function determines the immediate feedback that guides the agent’s

learning. The agent aims to maximize the cumulative reward over time, and the specific
design of the reward function in this work is defined as

Reward = ∆r − (max|r|n − min|r|n)− λmax
∣∣ .
r
∣∣
n (16)

where ∆r is an average orbital radius changing magnitude which can be set by the user,
while λ is a constant parameter. λ > 0 is a constant parameter that is used to penalize exces-
sive orbital radius change rates. |r|n and

∣∣ .
r
∣∣
n denote the orbital radius of the main satellite

in n test orbital periods. Here, the test orbital period is defined as the orbital period after
the transfer mission (see Figure 2b). In such orbital periods, the climber’s transportation is
completed, and the main satellite’s radius keeps fluctuating. max|r|n − min|r|n denotes the
amplitude of change in the main satellite’s orbital radius over n test orbital periods after
the transfer mission. Here, it should be noted that in this work, each episode comprises
only one action.

(2) Construct the Q-network: The network uses generalized coordinates as the input
and generates Q-value estimates for each possible action.

(3) Initialize network parameters: The biases and weights of the deep Q-network
are initialized.

(4) Select an action: Based on the estimations and current state provided by the
deep Q-network, an action is chosen using an ε-greedy strategy to balance exploration
and exploitation.

(5) Execute the action: The chosen action is performed, and the environment will
return a reward and the next state.

(6) Record experiences: Current states (θ1,
.
θ1, θ2,

.
θ2, L1,

.
L1, r,

.
r, ϑ,

.
ϑ), actions (∆t),

rewards, and next states are stored as experience tuples.
(7) Experience replay: A batch of experience tuples are randomly sampled from the

experience storage to train the deep Q-network.
(8) Update Q-values: The sampled experiences are utilized to adjust the parameters of

the deep Q network, aiming to reduce the disparity between the predicted Q-values and
the target Q-values.

(9) Compute target Q-values: Target Q-values for updating the deep Q-network are
determined. These target Q-values include the highest Q-value for the subsequent state
combined with the current reward.

(10) Train the network: Backpropagation and gradient descent are applied to reduce
the discrepancy between the predicted Q-values and the target Q-values, thereby updating
the parameters of the deep Q network.

(11) Steps (4) to (10) are repeated until a stopping condition or convergence is reached.
By iteratively updating the parameters of the deep Q-network, the DQN learning

algorithm gradually improves the estimation of Q-values and discovers the optimal policy
for RL missions.

4. Numerical Simulation and Discussion

The proposed mission-based method is validated by the case study with the following
system parameters and the initial states of the PSE in Table 1.

The payload is assumed to be 400 kg and the climber’s net weight is 100 kg, such
that, in the upward transportation, M = 50,000 kg and m1 = 500 kg. In the waiting interval,
M = 50,500 kg, and in the downward transfer period, m1 = 100 kg and M = 50,400 kg. The
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speed function of the climber is designed as a sine form,
.
L1 = 4.9π sin(πt/2000). The

mission plan aims to find an optimal waiting interval h to minimize ∆r after the downward
transfer mission. The policy is trained for 500 episodes. The hyperparameters of the DQN
are shown in Table 2.

Table 2. DQN hyperparameters.

Parameters Values

Learning rate 0.01
Gradient threshold inf
Discount factor 0.99
Batch size 100
Experience buffer length 1000

In this work, the ε-greedy exploration strategy is used with an ε decay of 0.005, and
a minimum ε set at 0.01, where ε is the exploration factor. Long short-term memory is
adopted to train the recurrent neural network with two fully connected layers employed
with 40 hidden nodes, respectively. In the enhancement of the learning process, rectified
linear units are incorporated between each layer. Adam is used as the optimizer. In the
training process, the episode step is 1/36 of the orbit, which equals the step of h in the
discrete dataset, and the dynamic time step in the RK-4 is 0.001 s. Numerical simulations
are performed using MATLAB, specifically the RL App. Here, it should be noted that
by using the Reinforcement Learning Designer App in MATLAB, the simulation can be
replicated using the given parameters in Tables 1 and 2.

The results of the numerical simulations are presented in Figures 4–7. The variation
in the episode reward with the training process throughout the entire learning process
is shown in Figure 4. The first 150 episodes mainly represent the stages of algorithm
random exploration and the accumulation of learning samples, corresponding to low
reward values, and most of the tasks in the generated plan cannot be completed. As
the learning process progresses, the RL method (using the DQN algorithm) gradually
summarizes the characteristics of the planning model and obtains a higher return on the
reward value. After 200 episodes of learning, the algorithm converges, and the reward
value remains stable, at approximately 128.79.
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The trained agent offers the policy to decide how long the PSE should wait for the
next transfer mission. Figures 5 and 6 show the effects of the obtained policy. The waiting
interval after an upward transfer mission begins at 2000 s. Here, it should be noted that the
randomness of the obtained policy’s decisions always exists due to the complexity of the
corresponding problem in terms of dynamics and the limited number of training episodes.
Thus, a relatively small number of simulations are still needed to demonstrate the results.
Thus, the agent gives 10 waiting intervals to achieve the highest reward (see Figure 5). All
reward values are near 130 with the waiting interval h = 3.67 orbits = 19,674.7 s.

Figure 6 shows the state of the PSE following the planned mission. The libration angles
fluctuate in the mission period by a magnitude of 0.6 rad in the beginning, and then both
θ1 and θ2 change by magnitudes less than 0.3 rad due to the lack of libration suppression
(see Figure 6a). The tensions of T1 and T2 are greater than zero in the simulation period,
which means that the tethers are straight (see Figure 6c). This matches the assumptions
in Section 2. The angular velocity in Figure 6d shows that the main satellite runs around
the Earth with a nearly constant angular velocity, even though the orbital radius changes
in the scale of 100 m. Figure 6e,f show the tether length change for L1 and the climber
speed

.
L1 = 4.9π sin(πt/2000). This function ensures that the climber moves along the

tether following the prescribed distance and period with the initial and final speeds being
zero, which matches the engineering condition well. The upward transfer mission leads
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to max|r| − min|r| > 260m, as seen in the curve of ∆r in the period of 0.4–3.6 orbits in
Figure 6b. Then, the downward transfer of the climber following the planned waiting
interval reduces the amplitude change of the orbital radius to 60m. This means that the
proposed orbital state maintenance method is effective.
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Figure 7. Comparison of (a) without mission planning, (b) exhaustion, and (c) the RL method.

Figure 7 shows that the waiting interval generated by the proposed RL method reduces
the magnitude of orbital radius change after the mission by over 88% compared to the case
in which the waiting interval is one orbital period, comparing the blue lines in (a) and (c).
Figure 7b shows the result with the waiting interval obtained by exhaustion with the step
of 5 min, which is small enough for the exhaustion of a PSE. Although the main satellite’s
orbital state is kept near zero, the amplitude of the orbital radius is 70 m, which is greater
than that in the case in which the waiting interval is generated by the RL method. This is
because the searching step of the exhaustion is not small enough to achieve the optimal
waiting interval.
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5. Conclusions

This work presents an RL method to address the maintenance of the orbital states of
the main satellite of a PSE based on the requirements and constraints of transportation
missions. This new method focuses on planning the waiting interval between two transfer
missions from a mission planning perspective in order to minimize the amplitude changes
of the orbital radius of the main satellite after completing a transfer mission. The deep
Q-network algorithm is employed to train the mission planning policy using a novel reward
function. The simulation results demonstrate the following findings:

(i) The proposed mission-based RL method effectively maintains the orbital states of
the main satellite.

(ii) With the transportation mission and the proposed actions, even a small number of
training episodes can produce effective agents.

(iii) Compared to the exhaustion method, the RL method enables quick decision-
making with agents trained offline.

Furthermore, based on the simulation results and conclusions in this work, it can
be found that it is necessary to conduct targeted and in-depth research on the dynamic
evolution mechanisms of PSEs. Since the overlapping time scales of transfer missions and
orbits make the system dynamics mechanisms of the climber transportation mission process
unclear, it is difficult to establish effective mapping between “mission orbits” through deep
neural networks. This leads to the task sequence planning method based on RL being
poorly generalized.
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