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Abstract: In this paper, nonlinear system identification using Bayesian network has been implemented
to discover open-loop lateral-directional aerodynamic model parameters of an agile aircraft using
a grey box modelling structure. Our novel technique has been demonstrated on simulated flight
data from an F-16 nonlinear simulation of its Flight Dynamic Model (FDM). A mathematical model
has been obtained using time series analysis of a Box–Jenkins (BJ) model structure, and parameter
refinement has been performed using Bayesian mechanics. The aircraft nonlinear Flight Dynamic
Model is adequately excited with doublet inputs, as per the dictates of its natural frequency, in
accordance with non-parametric modelling (Finite Impulse Response) estimates. Time histories of
optimized doublet inputs in the form of aileron and rudder deflections, and outputs in the form of
roll and yaw rates are recorded. Dataset is pre-processed by implementing de-trending, smoothing,
and filtering techniques. Blend of System Identification time-domain grey box modelling structures to
include Output Error (OE) and Box–Jenkins (BJ) Models are stage-wise implemented in multiple flight
conditions under varied stochastic models. Furthermore, a reduced order parsimonious model is
obtained using Akaike information Criteria (AIC). Parameter error minimization activity is conducted
using the Levenberg–Marquardt (L-M) Algorithm, and parameter refinement is performed using the
Bayesian Algorithm due to its natural connection with grey box modelling. Comparative analysis
of different nonlinear estimators is performed to obtain best estimates for the lateral–directional
aerodynamic model of supersonic aircraft. Model Quality Assessment is conducted through statistical
techniques namely: Residual Analysis, Best Fit Percentage, Fit Percentage Error, Mean Squared Error,
and Model order. Results have shown promising one-step model predictions with an accuracy of
96.25%. Being a sequel to our previous research work for postulating longitudinal aerodynamic
model of supersonic aircraft, this work completes the overall aerodynamic model, further leading
towards insight to its flight control laws and subsequent simulator design.

Keywords: aircraft system identification; aerodynamic modelling; Bayesian network analysis; grey
box modelling structure

1. Introduction

Aerodynamic coefficients of aircrafts are formulated using Computational Fluid Dy-
namics (CFD) and Wind Tunnel testing, which require a large amount of empirical data and
costly experimental setup for its numerical analysis. Alternatively, system identification
(SI) depicts a mathematical model of a dynamical system using an observational dataset
of a system using a parametric modelling technique categorized as white, grey, and black
box modelling techniques. Grey box modelling uses observation data along with a priori
knowledge of the system to model its dynamics. Bayesian estimation being closely linked
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with grey box modelling, thus, becomes a natural selection for parameter identification [1].
OE and BJ model structures have been adopted in this paper for obtaining the lateral–
directional mathematical form of an aerodynamic model under varying flight and noise
conditions. An aerodynamic model of a supersonic aircraft must capture practical dynamics
related to its nonlinear behaviour as well as have sufficient complexity to accurately predict
its dynamic response over a given flight regime. Figure 1 presents an orientation of this
research, which mainly encompasses Model postulation, Reduced Order Modelling, and
Parameter optimization.
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Figure 1. Research Framework.

Aircraft parameter estimation is an optimization problem [1]; therefore, a technique
proposed in this research is the optimization of parameters using Bayesian framework
using a priori knowledge of aircraft constraints and parameters obtained from OE and BJ
polynomial models. A reduced order model is obtained using AIC, and error minimization
is acquired through L-M algorithm. The Bayesian framework is better than other classical
estimators as it gives interval estimates instead of point estimates calculated by Maximum
Likelihood and Least Square estimators, which is much simplistic as compared to Bayesian
estimates [1].

To start with the most important, sensitive, and tedious part of SI process; input
design was tackled. An optimized input as per dictates of non-parametric (FIR) modelling
optimally excites the aircraft dynamic modes [2]. Subsequently, MATLAB (https://matlab.
mathsworks.com, accessed on 20 March 2024) Simulink-based Flight Dynamic Model (FDM)
of F-16 was developed as shown in Figure 2. Aircraft trim points were obtained under
two flight conditions, i.e., Translational Steady flight and coordinated pull up flight [3].
After attaining a stable response from FDM, a time-domain Multiple Input Multiple Output
(MIMO) database was established based upon set of aileron (δa)-rudder inputs (δr) and roll
(P)-yaw rate (R) outputs. Dataset was smoothed using data pre-processing techniques and
further segregated for testing and validation. Initial parameters have been obtained using
the Output Error (OE) model and a further BJ model was postulated using initial values
of the OE model. Reduced order modelling was performed using AIC. Parameter error
minimization was performed using L-M algorithm and optimization of parameters using
the Bayesian technique was performed.

https://matlab.mathsworks.com
https://matlab.mathsworks.com
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Overall gains accrued from this research includes development and obtaining deep
insight into nonlinear flight control laws of an agile aircraft, understanding pilot–aircraft in-
teractions in complex lateral–directional maneuvers, knowing flying qualities, and carrying
out future modifications for a flight training simulator.

1.1. Related Works

The roots of SI goes back to the eighteenth and nineteenth century by Gauss and
Bayes [1], since then, different methodologies have been explored, which mainly revolved
around two main streams, i.e., model structure determination and parameters’ estimation.
Herbert et al. [4] explained Bayesian identification with grey box modelling to estimate
model parameters and its explicit advantages over known physical modelling and black
box modelling. Prolific research on Aircraft SI [5] has been performed by the NASA Langley
Research Centre (NaLC) for testing and application of state-of-the-art SI techniques on
different aerial vehicles; however, SI of supersonic aircrafts still needs further exploration
with respect to reduced order modelling and parameter estimation. SI on the F-16 aircraft
nonlinear model was performed by Morelli et al. [6], who presented a comparison of EE and
OE models. Dynamic Mode Decomposition (DMDC) was performed by Oznurlu et al. [7]
in which aerodynamic model of fighter aircraft was discovered. The estimated mean errors
of 0.25 and 0.17 were achieved using the DMDC technique. Standard grey box modelling
structures of OE, ARX, and ARMAX were implemented by E. Belge et al. [8], on UAV,
using Least Square estimation. The BJ method, being more stable than the OE method, was
implemented by Omar et al. [9], for SI of quadcopters; however, a more parsimonious model
would have been obtained through model order reduction algorithms. Pillonetto et al. [10]
in his research of SI, explained regularization techniques to optimize model order and
achieved an accuracy of more than 82% model fit. A M Kwad et al. [11] analyzed online and
offline techniques of SI using L-M algorithms and obtained good fit results coupled with fast
computations. Hierarchical least squares and a multi-innovation least squares algorithms
were proposed by Yan Ji et al. [12] for parameter estimation. Millidere [13] performed
reduced order modelling in SI using Binary Particle Swarm Optimization (BPSO) method.

Eugene A. Morelli [14] analyzed the Equation Error (EE) method for parameter es-
timation on simulated data of F-16 aircraft and compared it with OE method. Mathias
et al. [15] introduced a wavelet transform technique with OE Method using a compact
time–frequency representation for resolving SI problem. This enabled multi-axis inputs
for complex maneuvers with fewer parameters. A joint input–output SI technique was
implemented by Lopez et al. [16] for parameter estimation of highly redundant control
surfaces of the Bell V-280 aircraft. The OE Method with Vortex Lattice technique was pre-
sented by Simmons et al. [17] for aircraft SI and improved the model. The OE Method being
most popular technique to resolve an SI problem was also implemented by Dimas Abreu
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Archanjo Dutra [18], who discussed its limitations on aircraft SI from flight-test data using
collocation formulation technique, which resulted in better convergence and robustness
of the model. It is important to highlight the research contribution by Mukhopadhaya
et al. [19] utilizing Gaussian Process Regression, close to Bayesian estimation, for improve-
ment of the uncertainty of aerodynamic database. The technique combines data from
multiple sources with variable uncertainty levels, and then quantify uncertainty of one
dataset. However, this is a non-parametric regression technique, which comes under the
data-driven SI domain. Bayesian estimation using parametric modelling utilizing grey
structure needs exploration.

A substantial research contribution [20–24] has been made for parameter estimation
and its optimization using varying nonlinear optimization algorithms. A comparative anal-
ysis of traditional SI model structures on Unmanned Aerial Vehicles has been conducted by
Fatima et al. [25]. Best fit results were obtained using the ARMAX model. The Single De-
composition Method with ARX structure was applied by Bagherzadeh [26] for SI of elastic
aircrafts, who further used the L-M algorithm for parameter optimization. A reduced order
modelling technique on the SI of a simulated F-16 fighter jet was performed by Michele
et al. [27] by employing Particle–Bernstein polynomials with Principle Component Analysis
(PCA). Ram et al. [28] dealt with SI in Bayesian framework to handle parameter and struc-
tural model uncertainties. Despite noteworthy research contribution on SI of aircrafts using
different techniques, a wide range of research exploration is still needed in discovering
aerodynamic model of supersonic aircrafts with a model configuration that amply covers
both deterministic and stochastic parts. Limited use of Bayesian estimation in aircraft SI
has been clearly explained in [1,2] due to the requirement of knowing prior probability dis-
tribution function (p.d.f); therefore, this research gap needs exploration to investigate pros
and cons of identifying parameters of supersonic aircraft using this unique probabilistic
framework. Refs [29–31] also presented different accounts of SI based structures.

A summary of the most recent research work using Bayesian approaches for aircraft
design and modelling has been presented in Table 1, comparing them with Bayesian
framework adopted in this paper. It was concluded that our research work uses the
Bayesian approach with a unique perspective and application as compared to earlier
work conducted.

Table 1. Summary of Bayesian Approaches used for Aircraft Design and Modelling.

Ref. Bayesian Methodology Application

Herbert et al. [4] Bayesian framework to estimate aerodynamic
model parameters Aircraft parameter estimation

Mukhopadhaya et al. [19]
Gaussian Process Regression, close to Bayesian
estimation, for improvement of uncertainty of

aerodynamic database
Aerodynamic Modelling using database

Rémy Priem et al. [32] Using Bayesian approach for optimization in
Aircraft design configurations Aircraft Design Configurations

Emilio M. Botero [33] Using Generative Bayesian Network for
conceptual design of aircraft Aircraft Design

Kim et al. [34]
Bayesian network optimization for data-driven

controller of the aircraft using black box
modelling

Data-driven controller design for aircraft
maneuver

Paul Saves et al. [35] Aircraft design optimization using Bayesian
approach and Gaussian Process. Aircraft Design

James et al. [36]
Mathematical framework for modelling

probabilistic aerodynamic datasets using
conditional coupled with Gaussian Processes

Aerodynamic Modelling
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1.2. Research Motivation

Discovering a mathematical model for the highly intricate, complex, and unstable dy-
namics of supersonic aircrafts is the most challenging and time-consuming task during the
design and simulation phase. SI methods made it easy, through wide-ranging techniques
used by white, grey, and black box modelling. SI opened the gateway towards efficient
investigation of the dynamic behaviour of complicated systems. All mathematical models
are built on observational data collected from the FDM of aircraft and subsequently its
mathematical form is postulated. However, the tough part is to design a model that is
simple, compact, yet precise. Therefore, the major motivation in this research is to postulate
a grey box lateral–directional mathematical model, which is parsimonious, reliable, and
robust and helps to design a controller with minimum computational cost. As per the
recent research work mentioned above, methods adopted in this paper have been rarely
applied on the SI of an agile aircraft, to contribute to the research work so far conducted in
this field.

1.3. Research Contribution

The research presents the novelty of the technique as well as the novelty of application.
The novelty of the technique by implementing SI embedded with Bayesian theory and
the novelty of application stem from its implementation on a high-speed, agile, and high-
performance aircraft. Further research has been focused on both contours of SI, i.e., Model
structure determination and parameter estimation using time-domain grey modelling
techniques. In comparison to previous research work [5–28,37], this paper emphasized
determination of the open-loop lateral–directional aerodynamics of supersonic aircraft
using the BJ model with optimization through the L-M technique. For this, simulated F-16
FDM was developed, and appropriate inputs were designed, and against them time-based
outputs were recorded. The BJ structure is selected, being the most appropriate model
structure in time-domain grey box modelling for complex plants. Model order reduction
was performed using AIC. Parameters of reduced order BJ structure were refined using
L-M optimization and Bayesian estimation. Parameter estimation accuracy of 96.25%
has been achieved. In this way, a parsimonious and accurate model has been designed,
opening the potential and gateway to propose a suitable adaptive controller for the aircraft
lateral–directional dynamics.

This paper is divided into five sections. Section 2 gives a detailed account on mathe-
matical foundations and aerodynamics parameters of the aircraft modelling. Section 3 gives
description of methodologies containing algorithms and techniques applied to discover the
lateral–directional dynamical model of supersonic aircraft. Section 4 presents results and
discussion. Lastly, conclusion has been presented to give wholesome review of the paper,
leading towards possible future research work.

2. Aircraft Modelling
2.1. Mathematical Formulations

6DOF nonlinear ODEs derived to demonstrate aircraft dynamics [3,37,38] were, flat
earth, rigid-body mechanics, with constant mass and thrust force along its longitudinal-
axis shown in Figure 3. Subscripts ‘B’, ‘s’, and ‘w’ written with force components x, y, z
represent body, stability, and wind axes, respectively. Equations (1)–(10) lay the foundation
of our research, which are used to develop the ‘Flight Dynamic Model’ of the aircraft
in MATLAB/Simulink as shown in Figure 2. Once the Flight Dynamic Model is ready,
then simulated inputs are given to record input–output time histories. This input–output
dataset is utilized for estimation of Aerodynamic behaviour of the aircraft using grey box
modelling and Bayesian estimation. Angle of attack, slide Slip Angle, velocity, Forces,
kinematics and Moment equations have been implemented in MATLAB/Simulink to
develop Flight Dynamic Model of F-16. Aerodynamic database and equations have been
acquired from [3,38].
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α and β are angle of attack and sideslip angles, respectively. Vt is the velocity vector.
u, v, and w are velocity components in the x, y, and z axis.

α = tan−1(w
u
)

β = sin−1( v
u
)

Vt =
√

u2 + v2 + w2
(1)

The full derivation has not been presented due to brevity purpose. Forces, Kinematics,
and Moments are elaborated one by one in Equations (2)–(10).

Translation forces can be presented as:

.
U = RV − QW − gDsinθ+ (XA + XT)/m (2a)

.
V = −RU + PW + gDsinϕcosθ+ (YA + YT)/m (2b)

.
W = QU − PV + gDcosϕcosθ+ (ZA + ZT)/m (2c)

where
.

U,
.
V, and

.
W are the components of linear velocities along the three body axes. P, Q,

and R are the angular velocities (roll, pitch, and yaw rates) along body axes, and m is mass.
(XA + XT), (YA + YT), and (Z A + ZT) are resultant forces in the x, y, and z axes. gD is the
gravitational constant.

The basic relationship for rotational kinematics in an inertial frame of reference is
presented by

.
ϕ,

.
θ, and

.
ψ, which are euler angle rates:

.
ϕ = P + tanθ(Qsinϕ + Rcosϕ) (3a)

.
θ = Qcosϕ − Rsinϕ (3b)

.
ψ = (Qsinϕ + Rcosϕ)/cosθ (3c)

The implementation of rotational moment equations when applied in the body frame
of reference is transformed as:

.
P =

Jxz

[
Jx − Jy + Jz

]
Γ

PQ −

[
Jz

(
Jz − Jy

)
+ J2

xz

]
Γ

QR +
Jxzn

Γ
+

Jzl
Γ

(4a)
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.
Q =

(Jz − Jx)

Jy
PR − Jxz

Jy

(
P2 − R2

)
+

m
Jy

(4b)

.
R =

[(
Jx − Jy

)
Jx + J2

xz

]
Γ

PQ −
Jxz

[
Jx − Jy + Jz

]
Γ

QR +
Jxzl
Γ

+
Jxn
Γ

(4c)

Γ = JxJz − J2
xz (4d)

where Jx, Jy, and Jz are the moments of inertia of the aircraft and l, m, and n are roll, pitch,
and yaw moments in x, y, z directions, respectively. Jxz is the product of inertia in x and z
axis, and Γ is the inertia matrix component.

Non-dimensional Force and moment coefficients of the aircraft were calculated using
the following equations [2]:

For the force coefficients X-axis, Y axis, and Z axis:

Cx =
1

qS
(max − T) (5a)

CY =
may

qS
(5b)

CZ =
maz

qS
(5c)

where ax, ay, and az are the acceleration components in the x, y, and z axes, and T is the
engine thrust along x axis.

Combining Equations (5a) and (5c), the coefficient of Lift (CL) and coefficient of drag
(CD) are presented as:

CD = −CXcosα + CZsinα (6)

CL = −CZcosα + CXsinα (7a)

CL =
1

qSb

[
Jx

.
p − Jxz

(
pq +

.
r
)
+

(
Jz − Jy

)
qr
]

(7b)

where terms used in Equation (7a) have already been explained in Equation (4).
Non-dimensional moment coefficients (roll, pitch, and yaw) of the aircraft were calcu-

lated using following equations [2]:

Cl =
1

qSc

[
Iy

.
q + (I x − Iz

)
pr + Ixz

(
p2 − r2

)
− IpΩpr

]
(8)

Cm =
1

qSc

[
Iy

.
q + (I x − Iz

)
pr + Ixz

(
p2 − r2

)
− IpΩpr

]
(9)

Cn =
1

qSB
[
Iz

.
r − Ixz

( .
p − qr

)
+

(
Iy − Ix

)
pq + IpΩpq

]
(10)

where Cl, Cm, Cn are roll, pitch, and yaw coefficients of moments, respectively. Ip and Ωp
are the inertia of the rotating mass and angular velocity, respectively.

Equations (1)–(10) lay mathematical formulation for development of FDM and sub-
sequently plant model for observational data recording for SI of the lateral–directional
aerodynamic model.

2.2. Development of FDM

In accordance with [3,38], 6DOF simulation environment has been developed us-
ing scripted MATLAB (2021b) and Simulink (Figure 2) and implementing nonlinear
Equations (1)–(10). Aerodynamic data obtained from NASA-Langley wind tunnel tests [38]
on a subscale model of F-16 airplane, having the trimmed speed range (between 400 ft/s
to 800 ft/s), angle of attack (−10 to 45 degrees), and of sideslip angle (−30 to 30 degrees).
Within this speed range, variations in leading edge flap (lef) and speed brake (sb) factors
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have been eliminated. In this research, evaluation of the aerodynamic behaviour of F-16
has been conducted at 502 ft/s, which is the trimmed flight speed at nominal sea level
flight conditions [3].

2.3. Analysis of Aircraft Lateral-Directional Model

In order to proceed with SI of the aircraft, one of the mandatory steps is to find the
frequency response of the aircraft for designing optimized inputs [2]. Following steps (1
and 2) have been implemented to achieve the frequency spectrum of the aircraft.

2.3.1. Step 1: Numerical Linearization to Obtain Trim Points

A trim point is a point where all state derivatives of the system become zero. Aircraft
nonlinear state equations were linearized to two flight conditions, steady translational
flight, and coordinated turn flight. Equations (2)–(10) were linearized under constraints
of wings level, non-slide slipping, and steady state flight. Numerical techniques [3] were
implemented to determine trim points for each flight condition by changing the values of in-
dependent variables and to achieve a cost function value, which is based upon state deriva-
tives computed from aircraft FDM, subsequently minimizing the cost function through a
minimization algorithm. The numerical solution obtained, thus, provided the required
state and control information for linearization. Algorithm 1 formulated and achieved a
complete trim model of the aircraft. There are three categories of variables; input and
state vectors are used to find the state derivatives and then a scalar function is determined,
which is optimized to obtain a trim point information.

Algorithm 1: Aircraft Steady State Points

Input:
1. Specify inputs and states (xT , zT , γ); inputs xT = (α,β, δt, δe, δa, δr);

States zT =
[
Vt, h, γ,

.
ϕ,

.
θ,

.
ψ, CG

]
Iterations:
2. Set tolerance value = 1 × 10−8

2.1. Compute
.
z (state derivatives) from inputs xT and states zT .

2.2. Compute cost function: J = a1∗ .
z(2)1 , a2∗ .

z(2)2 . . . an∗ .
z(2)n .

2.3. Apply minimization algorithm (Nelder Mead Algorithm) on cost function.
2.4. Stopping criteria: Tolerance value achieved—terminate the iterations.

Output:
3. Display Trim data: Vt, α, β, δt, δe, δa, δr, δe, P, Q, R for flight conditions YT .

2.3.2. Step 2: Non-Parametric (FIR) Modelling

Non-parametric modelling is mandatory, as it is aimed to define the input, which
excites dynamical modes of the plant (aircraft). The FIR model determines the natural
frequency, bandwidth, and discrete time input–output delays (nk) of the aircraft. In addition
to above elements, insights to aircraft design characteristics, such as gains and time constant
are also obtained. The FIR model is obtained as per Equations (11a) and (11b):

y[k] = ∑M
l=0 g[l]u[k − l] (11a)

G(ejω) = ∑
∞
n = 0

g[n]e−jωn (11b)

where g is the coefficient of impulse, k is sampling instant for discrete-time, and n for
continuous time. l denotes the delay. Frequency parameters obtained, such as highest
frequency, sampling rate, bandwidth, time delays, and time constant, lay a foundation for
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specialized input design for aircraft lateral–directional SI. MATLAB ‘impulsest’ has been
implemented to achieve this step.

3. Methodology

In accordance with the research framework formulated in Figure 1, proposed method-
ologies in this paper along with their algorithms are elaborated in this section.

3.1. Input Design

Inputs comprise two main categories [40], i.e., heuristic and non-heuristic. Non-
heuristic inputs (doublet, 3-2-1-1, 2-1-1) have been used in this research, as they pertain
to time-domain modelling of aircraft dynamics, and a priori aircraft information in terms
of frequency responses has also been obtained [2]. An iterative process was followed to
design an optimal multiple input design such that changes in P and R remain in the linear
range as per Equations (12) and (13) and flow chart Figure 4.

C2
r =

maxtU2(t)

1/N∑
N
t = 1

U2(t)

(12)

Pulse Width =
0.7
2fn

(13)

where Cr is the crest factor and u(t) is the elevator input (δe) over time period t from 1 to
N. The peak values (numerator) and Root Mean Square values (denominator) are used
to calculate crest factor of the doublet inputs, which gives us a refinement of the peak of
doublet. A smaller crest factor defines a good wave. The pulse width of doublet input is
determined using Equation (13), where fn represents the natural frequency of the aircraft.
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Figure 4. Optimal Input Design Flowchart.

For lateral–directional dynamics of a high-performance aircraft, doublet input 2-1-1
was considered more suitable than the 3-2-1-1 input [2], as the 3 pulse is quite long that
it tends to drive the aircraft away from trim flight conditions. Supersonic aircrafts are
open-loop unstable; therefore, the 3-2-1-1 phenomenon becomes more pronounced, as it
tends to cross the limitations in terms of aircraft natural frequency as well as aerodynamic
and structural constraints. Subsequently Algorithm 2 presents model postulation using
BJ Structure.
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Algorithm 2: Determine BJ Structure

Input:

1. Prepare Dataset: Aileron (δa) and rudder (δr) inputs as u(t) over time and record output (P)
roll and yaw (R) rates.

2. Estimate input–output delay through the FIR Model.
3. Pre-processing data: Detrend, fill missing data, removing drifts and outliers
4. Segregate training and validation dataset

Iterations:

5. Initial estimate of polynomial orders nb, nc, nd, and nf. Start with a guess of [1, 1, 1, 1]

6. BJ Structure:
B(q−1)

F
(
q−1)u[k] +

C(q−1)
D
(
q−1) e[k]

7. Stopping criteria: Manually increase model orders until max best fit % is achieved.

Output:

8. Model order, polynomials, coefficients, best fit %, FPE, and MSE

3.2. Model Postulation—OE and BJ Structures

In grey box modelling, the OE model forms the basis for obtaining initial parameters of
the model. However, the model lacks accuracy due to the non-availability of the stochastic
component, which is provided by the BJ model structure. Built in function of MATLAB have
been used for this purpose. Inputs as per Figure 4 were given to the FDM (Figure 2), and
outputs were recorded. The initial parameters obtained from the deterministic part of the
OE model were subsequently used in constructing a BJ polynomial model. The BJ model,
being a superset structure to model the plant and noise characteristic, gives an edge over
other structures (OE, ARX, ARMAX), which exhibit limitations in the modelling plant and
noise dynamics, distinctly, as well as lack accuracy if the system exhibits nonlinearity [4,9].
For input u(k), output y(k), process noise e(k), and measurement noise v[k], basic OE and
BJ models are given by Equations (14) and (15), respectively.

y[k] =
B
(
q−1)

F
(
q−1) u[k] + e[k] (14)

y[k] =
B
(
q−1)

F
(
q−1) u[k] +

C
(
q−1)

D
(
q−1)e[k] (15)

where B and F are deterministic polynomials and C and D are stochastic polynomials.

3.3. Reduced Order Model—(AIC)

Reduced order modelling is performed by following a rule of parsimony, which states
that given two or more models with same accuracy, the model with lesser terms is selected
as a suitable model [2,4]. An algorithm with trade-offs between model complexities, model
fitness, loss function value, and information theoretic metrics is selected for attaining a
reduced order model. For aircraft SI, AIC has been selected, which does not depend upon
sample size of a dataset or distribution of errors and only caters for likelihood function and
number of parameters of the model. AIC metrics use Kullback–Leibler’s Information (KLI)
theoretic measure [41,42], which examines distance between probability densities of two
functions using Equations (16) and (17):

I (f, g) =
∫

f(x) log [f (x)/g(x)] dx (16)
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AIC(j) = 2ℓj

(
θ
(j)
MLE

)
− 2kj (17)

Equation (16) is known as the KLI equation, where f and g are the p.d.f of two different
approximations. Equation (17) proposes the use of expected KLI distance and establishes
its connections with log-likelihood. Where θ

(j)
MLE is the log-likelihood function, ℓj = dim

(θ), and the second term k is the penalty for number of terms to achieve a parsimonious
model. In this paper, after obtaining the basic BJ model, AIC metrics have been applied to
BJ polynomials and reduced model has been achieved after losing a nominal accuracy of
the model. The AIC scheme was implemented after obtaining a set of BJ models. Iterations
were carried out using a MATLAB snippet that compares AIC values of each BJ model and
selects the model with lowest AIC value.

3.4. Error Minimization—L-M Algorithm

An L-M algorithm has been implemented in this research work for achieving parameter
error minimization of the BJ model structure. As the BJ model uses a nonlinear Least
Squares technique, its parameter error is curtailed using the L-M algorithm. L-M Algorithm
3 implements a hybrid approach and utilizes Gauss–Newton and Steepest Descent to
converge to an optimal solution. A mathematical presentation [40] is given Equation (18).

Hi
c= Hi+λIp∗p (18)

Hi
c represents a modified hessian matrix with Hi as the initial hessian matrix obtained from

Newton–Raphson technique. λ denotes a regularization parameter (initially set to 0.001), I
is identity matrix, and p is the number of parameters to be optimized. The convergence
criteria set for error minimization is equated in Equation (19). J is the cost function for θ̂k
estimated parameters.

J
(
θ̂k

)
− J

(
θ̂k − 1

)
J
(
θ̂k − 1

) < 0.001 (19)

3.5. Model Optimization—Bayesian Approach

The only framework that fully articulates and explores prior uncertainties in parame-
ters of a grey box model is the Bayesian approach. While dealing with grey box modelling
parameters of aircraft SI, Bayesian probabilistic theory appears to be one of the natural
approaches as the user has portion of knowledge of θ as well as understanding of aircraft
constraints, boundaries, and flight conditions. In this section, model parameters obtained
from the grey box BJ structure are refined using Bayesian estimation. A major difference
between Bayesian and other traditional approaches is that it assumes parameters to be
random. Precisely, it is not the randomness of the parameter, rather it is the knowledge of
the uncertainty that makes it random [1]. The aim is to calculate posterior p.d.f P(θ |Z)
using Bayes’ rule [2]:

P(θ |Z ) ∑ P(Z|θ)P(θ)= P(Z|θ)P(θ)

P(θ |Z ) =
P(Z|θ) P(θ)

∑ P(Z|θ) P(θ)
(20)

where

P(θ) =
[(

2π)np
∣∣Σp

∣∣ ]− 1
2 exp

[
−1

2
(
θ− θp

)T
Σ−1

p
(
θ− θp

)]
(21)

and

P(Z | θ) =
[(

2π)N
∣∣∣R∣∣∣]− 1

2 exp
[
−1

2

(
Z− Hθ)TR−1(z − Hθ)

]
(22)

^
θ = max

θ
p(θ | z) (23)
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Objective function has been calculated as:

J(θ) =
1
2
(z − Hθ)TR−1(z − Hθ) +

1
2
(
θ− θp

)T
Σ−1

p
(
θ− θp

)
(24)

where P(θ|Z) represents posterior probability distribution of parameter θ, given observed
data Z (input–output dataset). p(Z | θ) is the likelihood function representing the proba-
bility of observing data given that the specific value of θ.θp represents the prior mean of
parameter vector obtained from BJ model. N and np are dimensions of data Z (input–output
dataset) and parameter vector θp, respectively. R is the covariance matrix of noise term
(e(k)), assumed to follow normal distribution with zero mean. Σp represents the covariance
matrix of posterior distribution of θ. H represents observation matrix between θ and data

Z.
^
θ is th maximum a-posterior estimate, and J is the objective function.

Algorithm 3: L-M Algorithm

Input:
1. Initial parameters obtained from Nonlinear Least square estimation of BJ structure.
2. Set regularization value to 0.001.
Iterations:
3. Set tolerance value.
4. Initial hessian matrix (∇2) using Newton-Raphson Technique: xn + 1 = xn − (xn)/f’(xn)
5. Compute Jacobean matrix
6. Compute Modified Hessian Matrix

7. Compute cost function:
J(θ̂k)−J(θ̂k−1)

J(θ̂k−1)
< 0.001

8. Update θ̂ vector.
9. Stopping criteria: Tolerance value achieved
Output:
10. Optimized parameters θ̂

Figure 5 describes a simplistic flow chart for implementation of the Bayesian algorithm
for parameter refinement of the BJ polynomial model. Equations (20)–(24) have been stage-
wise implemented and further expanded in Algorithm 4 to explain the structured way to
for Bayesian implementation. An initial guess of parameters has been obtained from the BJ
polynomial model. Subsequently, convergence criteria and maximum iterations have been
set. Likelihood and prior distribution have been calculated. Posterior distribution has been
obtained followed by objective function. Update of parameter θ and the loop continues till
convergence criteria or maximum iterations are achieved.

Algorithm 4: Bayesian Estimation

Input:
1. Initial guess of parameters obtained from BJ model θ0, . . . , θk
Iterations:
2. Set Convergence criteria: ϵ = 1 × 10−5

3. Iterate for k = 1, . . . kmax
4. Compute P(Z|θ) and P(θ)
5. Compute P(θ | Z)
6. Compute θ̂ = max

θ
p(θ | z) as the solution of J(θ) = 1

2 (z − Hθ)T R−1(z − Hθ)+

1
2
(
θ − θp

)TΣ−1
p

(
θ − θp

)
7. Stopping criteria: until k = kmax or θ(k) = θ(k−1)

Output:
8. Estimated parameters θ̂
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Bayesian Sensitivity Analysis

An essential step to perform sensitivity analysis of Bayesian posterior distribution
with respect to its prior estimates of parameters obtained from the Box–Jenkins polynomial
model has been implemented in this section. In accordance with [42–44], Relative Entropy
or Kullback–Leibler (K-L) Divergence between two posterior probabilities density functions
P(θ | Z) and θp have been determined. Using Equations (20)–(23), K-L Divergence has
been further derived in Equations (25) and (26). Minor steps have been excluded to
maintain brevity.

D (P(θ | Z)||θp) = ∑
(θ0,...,θk)

P(θ | Z)log
P(θ | Z)

θp
(25)

D (P(θ | Z)||θp) = E(p) log
p(x)
q(x)

(26)

where P(θ | Z ) is the posterior probability, and θp is the prior belief log of P(θ | Z), and
θp determines the dependence of posterior over prior over each value of θ. E(p) is the
expectation value of the probability distribution. The value of divergence (D) specifies how
much posterior is dependent on prior or how much divergence has occurred after posterior
(P(θ | Z) has observed data Z. The larger value of D is desirable as it quantifies that data
have more influence over posterior, than the prior.

An additional term has been implemented known as ‘Bayes Factor (BF)’ in accordance
with [43] to ascertain that posterior is data-driven and not prior-dependent. BF is the ratio
of two hypothesis H1 and H2. In accordance with [43], a higher value of BF depicts that
posterior estimates are data-driven, and lower values depict that posterior is dependent on
priors. Mathematical formulation of a discrete form is given in Equation (27)

BF [H1 : H2]=
P(Z | H1)

P(Z | H2)
(27)

where H1 is the hypothesis that prior has least influence on posterior, and H2 represents
the hypothesis that prior has more influence on posterior. Table 2 quantifies the BF values
as under.
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Table 2. Interpreting Bayes Factor [43].

BF [H1:H2] Evidence Against H2

1 to 3 Not worth a bare mention
3 to 20 Positive

20 to 150 Strong
>150 Very strong

4. Results and Discussion
4.1. Aircraft FDM

F-16 FDM has been used for implementation of set of algorithms containing L-M and
Bayesian techniques. Aircraft geometry and nominal flight conditions [3] are shown in
Table 3 and Figure 6. In accordance with [3], the FDM of F-16, as shown in Figure 2, was
developed in MATLAB Simulink using Equations (1)–(10) to obtain a simulated MIMO
input–output dataset of aircraft at different noise levels and trim flight conditions. The
main objective of this research is to obtain a discrete time dynamical polynomial model
of coupled lateral–directional dynamics; therefore, Aileron Deflection (δa) and Rudder
deflection (δr) have been given to the aircraft FDM and output in terms of roll (P) and yaw
(R) rates have been recorded for development of the mathematical BJ model.

Table 3. Aircraft Geometry and Nominal Flight Conditions.

Symbol Value Unit

b 30 ft
c̄ 11.32 ft
S 300 ft2

W 20,500 Lbs
gd 32.17 ft/s2

Vt 502 ft/s
h 30 ft
q̄ 300 psf

Xcg 0.3c̄ ft
Ixx 9496 slug-ft2

Iyy 55,814 slug-f t2

Izz 63,100 slug-ft2

Ixz 982 slug-ft2
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4.2. Aircraft Trim Conditions

Aircraft trim conditions were obtained by implementing Algorithm 1 for two flight
conditions: Steady Straight and Level flight at sea level and Coordinated Turn flight
in accordance with [3,38], in which nominal flight conditions have been defined for F-
16 simulation examples and subsequent controller design. Table 4 represents F-16 trim
flight conditions.

Table 4. Linearized Flight Conditions.

Symbol Steady Straight and Level Flight Coordinated Turn Flight Unit

Vt 502 502 ft/s
h 30 30 ft
q̄ 300 300 psf

Xcg 0.35c̄ 0.35c̄ ft
α 0.03 0.24 rad
β 0 0 rad
φ 0 1.3 rad
θ 0.15 0.05 rad
P 0 −0.01 rad/s
Q 0 0.29 rad/s
R 0 0.06 rad/s
.
ψ 0 0.15 rad/s

4.3. Optimum Input Design

As discussed in Section 3, an optimum input design strategy has been chosen for this
research as it offers number of benefits in terms of flight test efficiency, enhanced excitation
in lateral–directional maneuvers and identification of roll and yaw control effects [6]. An
iterative procedure as per flow chart (Figure 4) and Equations (11a) and (11b) have been
implemented in this research. Non-parametric modelling (FIR) and Bode plots have been
implemented to obtain frequency modes of the aircraft in terms of natural frequency,
input–output delays, and resonant frequency. Figures 7 and 8 and Table 3 shows the
FIR model, Bode plot of the aircraft, and impulse response parameters. Apparently, the
input–output delay (nk) seems to be zero; however, to implement a practical aircraft flight
scenario, a delay of 1 sample, i.e., nk = 1 has been assumed and a resonant input frequency
of 5 Hz has been implemented.
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Table 5 shows that maximum resonant frequency is 4.76 Hz, which implies frequency
of input signal to be greater than maximum frequency and pulse width to be around 0.1 s
to excite lateral–directional dynamic modes of the aircraft.

Table 5. Frequency Parameters Obtained from Impulse Response.

Poles Damping Frequency
(rad/s)

Time Constant
(s)

−4.78 × 10−3 1.00 4.78 × 10−3 2.09 × 102

−2.22 1.00 2.22 4.50 × 10−1

−9.24 × 10−1 + 4.67i 1.94 × 10−1 4.76 1.08
−9.24 × 10−1 − 4.67i 1.94 × 10−1 4.76 1.08

2-1-1 multiple time-skewed doublet inputs (δa and δr) with amplitude of ±2 degrees,
pulse width of 0.1 s, and frequency of 5 Hz has been excited at 1 s and 6 s, respectively.
2-1-1 doublet is considered more suitable than 3-2-1-1 doublet input for supersonic fighter
aircraft as the aircraft may leave its steady state/trim condition [2]. Simulated multiple
input measurements time histories are shown in Figure 9. This research focuses on MIMO
coupled lateral–directional dynamics; therefore, both inputs have been given and output
has been analyzed for model postulation. Distinct input–output datasets for testing and
validation have been formulated based upon time-skewed-uncorrelated 2-1-1 doublet
inputs. Output in the form of Roll and Yaw angles and rates are depicted in Figures 10
and 11. Responses in roll rate (P) and yaw rate (R) till 3 decimals have been rounded off for
simplicity purpose.

Figures 10 and 11 demonstrate time histories of responses acquired by giving simulated
doublet inputs to the FDM of supersonic aircrafts. It is clearly seen that 2-1-1 doublet inputs
at 1 s and 6 s are producing roll and yaw rate responses as well as roll angle changes.
However, pitch angle remains the same as inputs are aileron and rudder-based, which
merely affects the pitch angle of the aircraft during trimmed maneuver. It can also be
seen that the aileron doublet input is producing significant changes to roll rate and rudder
doublet input is producing changes to yaw rates. The MIMO lateral–directional dynamics
of supersonic aircraft are not decoupled [3]; therefore, aileron doublet input also brings
slight changes to yaw rates, and rudder doublet input brings changes to roll rates of
the aircraft.
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4.4. Model Identification and Parameter Refinement

Optimum input design further leads towards attaining an accurate and parsimonious
mathematical grey box model for lateral–directional aerodynamic model of an agile fighter
aircraft. In accordance with theoretical concepts of aircraft SI [1,2], the OE model was
obtained to construct initial parameter foundation for development of a discrete time
BJ Model. A parsimonious BJ model was attained using AIC, and its parameters were
optimized using the Bayesian approach. The complete mechanism in the form of flow chart
is graphically explained in Figure 12.
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Each model has been validated for two flight conditions i.e., Case 1: Steady Straight
and Level flight and Case 2: Steady Coordinated Turn Flight Condition. Both Case 1
and Case 2 have been implemented and further validated using “Gaussian noise”. For
Case 1, Figure 13 shows the time-domain OE and BJ model structures implemented using
Equations (14) and (15), and their gradual improvement with respect to achieving a parsi-
monious model. Similar simulations were conducted for Case 2, and results are shown in
Figure 14.

In accordance with [45], noise patterns to be incorporated in the inputs and outputs
are considered to be from stationary random processes with variances σ2

u and σ2
y for input

and output, respectively. Noise inputs depend upon the type of the aircraft and may be
determined using previous experiments as well. Finally, inputs and outputs were corrupted
with Gaussian white noise with standard deviation of 0.1 for inputs: aileron deflection (δa)
and rudder deflection (δr) and 0.3 for outputs: (P) and (R). Model order reduction has been
performed using Equation (17) of AIC. Each result has been presented with its evaluation
statistics in terms of its number of coefficients, model order, fit %, FPE and MSE values.
A mathematical model has been presented in Equations (27) and (28). A Comparative
Analysis matrix has also been drawn in Tables 4–7, which shows a comparison of postulated
model parameters using NLS, MLE, and Bayesian estimators.

Table 6. Lateral Dynamics (Straight and Level).

Parameter Estimates and Errors

Parameters
NLS

MSE: 9.3 × 10−2

% fit—87.99%

MLE
MSE: 5.2 × 10−3

% fit—95.75%

Bayesian
MSE: 3.9 × 10−3

% fit—96.25%

b1 1.2319 ± 0.5224 1.1129 ± 0.0113 1.1036 ± 0.0690

b2 −1.5237 ± 1.4569 −0.6976 ± 0.2309 −0.9870 ± 0.6327
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Table 6. Cont.

Parameter Estimates and Errors

Parameters
NLS

MSE: 9.3 × 10−2

% fit—87.99%

MLE
MSE: 5.2 × 10−3

% fit—95.75%

Bayesian
MSE: 3.9 × 10−3

% fit—96.25%

b3 0.6885 ± 0.2685 0.5832 ± 0.4312 0.6799 ± 0.5177

b4 −1.2097 ± 0.2557 −1.1414 ± 0.6314 −1.1567 ± 0.4477

c1 −0.5983 ± 0.3882 −0.2188 ± 0.2424 −0.3291 ± 0.3066

d1 1.1822 ± 0.2840 0.5998 ± 0.32984 0.7939 ± 0.2365

d2 −0.3579 ± 0.2333 −0.4501 ± 0.2069 −0.3026 ± 0.1699

d3 0.0206 ± 0.0841 0.0566 ± 0.0988 0.0716 ± 0.1455

d4 −0.7206 ± 0.1603 −0.0619 ± 0.1422 −0.0752 ± 0.1399

f1 −2.3801 ± 0.2184 −1.444 ± 0.1977 −1.3332 ± 0.2503

f2 1.6348 ± 0.1954 1.5924 ± 0.3166 1.7412 ± 0.3417

f3 0.2456 ± 0.1134 1.1868 ± 0.2959 1.1912 ± 0.2789

f4 −0.7353 ± 0.1399 −0.8423 ± 0.0978 −0.7926 ± 0.1255

f5 0.2426 ± 0.2953 −0.3576 ± 0.0463 −0.3525 ± 0.0132

Aerospace 2024, 11, x FOR PEER REVIEW 19 of 27 
 

 

Definition 1. Model accuracy criteria is based upon definition presented in [2]: “An esti-
mator is the best linear unbiased estimator if it has minimum MSE among the class of 
unbiased estimators”. 

Case 1: Steady Straight and Level Flight 
(P = Q = R = 0, remaining flight parameters as per Table 1). 

 

 

 

 
(a) (b) 

(c) (d) 

Figure 13. Cont.



Aerospace 2024, 11, 960 20 of 28Aerospace 2024, 11, x FOR PEER REVIEW 20 of 27 
 

 

(e) (f) 

 
(g) 

Figure 13. (a) Initial OE Model; (b) Reduced Order OE Model; (c) Initial BJ Model; (d) Optimized BJ 
Model; (e) Residual Correlation; (f) pdf of Model Parameters; (g) Posterior Sensitivity Analysis (K-
L Divergence)—Straight and Level Flight. 

Figure 13a presents the initial OE model with MSE of 8.1 × 10−3 and accuracy of 
95.18%, Figure 13b shows the Reduced Order OE Model with compromise on accuracy 
(94.09%) using Algorithm 3, Figure 13c shows the initial BJ model, which has used initial 
parametric values of the OE model, Figure 13d shows the optimized BJ model after incor-
porating Bayesian estimates with a maximum accuracy of 96.25% and an MSE of 3.9 × 10−3. 
It was observed that Bayesian estimation improved the model accuracy as well as the MSE 
value of the model while staying within same model order and number of coefficients. 
Figure 13e shows residual correlation of optimized BJ Model within 95% confidence in-
terval (blue region), and Figure 13f shows the pdf of each parameter attained during 
Bayesian estimation process. Figure 13g shows posterior sensitivity analysis (posterior de-
pendence on prior) of Bayesian estimates, where a larger value of 31.3017 shows that 
Bayesian posterior has diverged from prior after observing the dataset and is not much 
dependent on prior estimates. The BF values calculated from two hypothesis comes as 
348.54, which confirms that posterior is data-driven and not prior-dependent. Equation 
(28) shows the mathematical model form of discrete time BJ Model of order 5, obtained 
for lateral dynamics of a supersonic aircraft. B and F represent plant dynamics, and C and 
D represent noise dynamics. z is the shift operator. 

Figure 13. (a) Initial OE Model; (b) Reduced Order OE Model; (c) Initial BJ Model; (d) Optimized BJ
Model; (e) Residual Correlation; (f) pdf of Model Parameters; (g) Posterior Sensitivity Analysis (K-L
Divergence)—Straight and Level Flight.

Definition 1. Model accuracy criteria is based upon definition presented in [2]: “An
estimator is the best linear unbiased estimator if it has minimum MSE among the class of
unbiased estimators”.

Case 1: Steady Straight and Level Flight
(P = Q = R = 0, remaining flight parameters as per Table 1).
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Figure 14. (a) Initial OE Model; (b) Reduced Order OE Model; (c) Initial BJ Model; (d) Optimized BJ
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Divergence)—Coordinated Turn Flight.



Aerospace 2024, 11, 960 22 of 28

Table 7. Lateral Dynamics (Coordinated Turn).

Parameter Estimates and Errors

Parameters
NLS

MSE: 0.2838
% fit—77.51%

MLE
MSE: 0.1549

% fit—72.27%

Bayesian
MSE: 0.1076

% fit—80.07%

b1 −2.7703 ± 0.5224 −2.6948 ± 0.6282 −2.8416 ± 0.3352

b2 2.0599 ± 1.4569 1.8639 ± 1.0505 1.2786 ± 0.8046

c1 −0.2802 ± 0.2685 0.0832 ± 0.4141 0.0058 ± 0.9224

c2 0.1900 ± 0.2557 0.6910 ± 0.2599 0.7222 ± 0.2309

c3 −0.0267 ± 0.3882 0.7470 ± 0.3367 0.8252 ± 0.2990

c4 −0.8072 ± 0.2840 −0.6734 ± 0.3529 −0.6921 ± 0.2244

c5 0.7626 ± 0.2333 0.7639 ± 0.1813 0.4692 ± 0.9028

d1 −1.3011 ± 0.0841 −0.5260 ± 0.1892 −0.7591 ± 0.8219

d2 1.3436 ± 0.1603 1.3588 ± 0.2941 1.0851 ± 0.9780

d3 −1.0987 ± 0.2184 −1.0939 ± 0.2717 −0.9738 ± 0.4596

d4 0.7316 ± 0.1954 0.8825 ± 0.2487 0.6657 ± 0.4727

d5 −0.1844 ± 0.1134 −0.4063 ± 0.1648 −0.0999 ± 0.2929

f1 0.4115 ± 0.1399 −1.1599 ± 0.3476 −1.5465 ± 0.2038

f2 −1.8137 ± 0.2953 0.5206 ± 0.1862 0.4772 ± 0.1453

f3 0.0845 ± 0.1730 0.0990 ± 0.0824 0.6454 ± 0.0428

f4 −0.2993 ± 0.0574 −0.3032 ± 0.0737 −0.2414 ± 0.0276

f5 0.2120 ± 0.0577 0.2268 ± 0.0962 0.4398 ± 0.0652

Figure 13a presents the initial OE model with MSE of 8.1 × 10−3 and accuracy of
95.18%, Figure 13b shows the Reduced Order OE Model with compromise on accuracy
(94.09%) using Algorithm 3, Figure 13c shows the initial BJ model, which has used ini-
tial parametric values of the OE model, Figure 13d shows the optimized BJ model after
incorporating Bayesian estimates with a maximum accuracy of 96.25% and an MSE of
3.9 × 10−3. It was observed that Bayesian estimation improved the model accuracy as
well as the MSE value of the model while staying within same model order and number
of coefficients. Figure 13e shows residual correlation of optimized BJ Model within 95%
confidence interval (blue region), and Figure 13f shows the pdf of each parameter attained
during Bayesian estimation process. Figure 13g shows posterior sensitivity analysis (pos-
terior dependence on prior) of Bayesian estimates, where a larger value of 31.3017 shows
that Bayesian posterior has diverged from prior after observing the dataset and is not much
dependent on prior estimates. The BF values calculated from two hypothesis comes as
348.54, which confirms that posterior is data-driven and not prior-dependent. Equation (28)
shows the mathematical model form of discrete time BJ Model of order 5, obtained for
lateral dynamics of a supersonic aircraft. B and F represent plant dynamics, and C and D
represent noise dynamics. z is the shift operator.
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B(z) = −2.479 − 2.942 z−1 + 0.7024 z−2 + 1.285 z−3

C(z) = 1 − 0.9291 z−1

D(z) = 1 − 1.138 z−1 + 0.2772 z−2 + 0.2227 z−3 − 0.4422 z−4

F(z) = 1 + 0.4055 z−1 − 1.211 z−2 − 0.3027 z−3 + 0.3932 z−4 − 0.009715 z−5

(28)

Case 2: Steady Coordinated Turn Flight
(P = −0.01, Q = 0.29, R = 0.06, remaining flight parameters as per Table 1).
Figure 14a presents the initial OE model with 83.99% accuracy, Figure 14b shows

Reduced Order OE Model with compromise on accuracy (72.96%) using the L-M algorithm,
Figure 14c shows initial BJ model, and Figure 14d shows the optimized BJ model after
incorporating Bayesian estimates with a maximum accuracy of 80.07% and a minimum
MSE of 0.1955. It was concluded that Bayesian estimation improved the model accuracy
while staying within same model order and number of coefficients. Figure 14e shows
residual correlation of the optimized BJ Model within a 95% confidence interval (blue
region). Figure 14f shows the pdf obtained during Bayesian process. Figure 14g shows the
posterior sensitivity analysis (posterior dependence on prior) of Bayesian estimates, where
larger value of 37.4666 show that the Bayesian posterior has diverged from prior after
observing the dataset and is not much dependent on prior estimates. BF values calculated
from two hypothesis comes as 299.31, which confirms that posterior is data-driven and
not prior-dependent. Equation (29) shows the mathematical model form of grey box BJ
Model obtained for lateral dynamics of the aircraft. B and F represent plant dynamics, and
C and D represent noise dynamics. ‘z’ is the shift operator. For brevity purpose, similar
plots obtained for yaw rates (R) have not been included; however, parameter estimates
have been included in Tables 6 and 7.

B(z) = −2.487 − 0.4589 z−1

C(z) = 1 − 0.9973 z−1 + 0.134 z−2 + 0.1181 z−3 − 1.096 z−4 + 0.8415 z−5

D(z) = 1 − 1.626 z−1 + 0.6488 z−2 + 0.1839 z−3 − 0.3126 z−4 + 0.1056 z−5

F(z) = 1 − 0.6974 z−1 + 0.1451 z−2 + 0.07067 z−3 − 0.2726 z−4 + 0.2265 z−5

(29)

Estimated parameter obtained from Bayesian technique for both flight cases
i.e., Straight and level flight and Coordinated Turn Flight have been enlisted in Tables 6–9.
Straight and level flight having simplistic flight conditions have lesser number of coeffi-
cients as compared to coordinated turn flight. Furthermore, a comparison matrix has been
developed in which parameters obtained from Bayesian estimation were compared with
Nonlinear Least Square (NLS) estimation and Maximum Likelihood Estimation (MLE).
Obviously, Bayesian being linked with grey box modelling due to its a priori probability
knowledge of parameters produces better results in terms of MSE than other two tech-
niques. Otherwise, calculation of pdf restricts its use in aircraft SI [2]. The first column
represents the number of parameters for both flight conditions and the second and third
columns represent estimators for respective flight conditions. Parameters estimated under
different flight conditions have different values due to obvious change in roll and yaw
rates. MSE and fit % for each estimation technique is written under respective heading in
blue colour and uncertainties of each parameter is mentioned with symbol (±) in a purple
colour. Results indicate that estimators were able to capture straight and level flight better
than Coordinated Turn flight because of the obvious simplicity of flight conditions.
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Table 8. Directional Dynamics (Straight and Level).

Parameter Estimates and Errors

Parameters
NLS

MSE: 6.8 × 10−1

% fit—78.66%

MLE
MSE: 1.3 × 10−1

% fit—80.75%

Bayesian
MSE: 1.4 × 10−2

% fit—95.49%

b1 −0.0399 ± 0.2376 −0.2424 ± 0.2980 −0.3906 ± 0.0531

b2 0.3101 ± 0.1375 0.3612 ± 0.1519 0.1206 ± 0.2529

c1 −1.9760 ± 1.0797 −1.9883 ± 0.7384 −0.6182 ± 0.854

c2 0.9760 ± 0.9234 0.9895 ± 1.2943 0.8582 ± 0.7253

d1 −0.8397 ± 0.2274 −0.9174 ± 0.2912 −2.5870 ± 1.212

d2 −0.4616 ± 0.5261 −0.6852 ± 0.4727 2.3138 ± 2.3003

d3 0.5737 ± 0.5613 0.8832 ± 0.3967 −0.6969 ± 1.215

f1 −0.6638 ± 0.5958 −1.5629 ± 0.3434 −1.4591 ± 0.728

f2 −0.7063 ± 0.6085 0.3123 ± 0.9005 0.4699 ± 0.7319

f3 0.4186 ± 0.4558 1.2015 ± 0.9578 1.1084 ± 0.1574

f4 0.0585 ± 0.3124 0.1958 ± 0.8334 0.0446 ± 0.1438

f5 0.2305 ± 0.3142 0.4038 ± 0.3982 0.0814 ± 0.1458

Table 9. Directional Dynamics (Coordinated Turn).

Parameter Estimates and Errors

Parameters
NLS

MSE: 4.4 × 10−2

% fit—82.93%

MLE
MSE: 4.3 × 10−2

% fit—83.75%

Bayesian
MSE: 3.9 × 10−2

% fit—85.49%

b1 0.6851 ± 0.0904 −0.3410 ± 0.0980 −0.3465 ± 0.0987

b2 −2.6887 ± 0.4530 0.3602 ± 0.1286 0.3642 ± 0.1184

c1 2.4674 ± 0.6864 −0.4502 ± 0.7700 −0.6261 ± 0.863

c2 −0.7786 ± 0.2789 0.2385 ± 0.7396 0.3914 ± 0.8208

d1 −2.2853 ± 0.1387 −1.6688 ± 0.6378 −1.6878 ± 0.614

d2 2.3718 ± 0.2871 1.4156 ± 1.0789 1.4251 ± 1.0266

d3 −1.3191 ± 0.2246 −0.7082 ± 0.6029 −0.7017 ± 0.5427

f1 0.3695 ± 0.0686 −1.9609 ± 0.3877 −1.9085 ± 0.360

f2 −2.1439 ± 0.1189 1.2114 ± 0.5484 1.1118 ± 0.5213

f3 2.1391 ± 0.2527 −0.1710 ± 0.4755 −0.1088 ± 0.484

f4 −1.0981 ± 0.2341 0.0248 ± 0.4961 0.0107 ± 0.502

f5 0.1920 ± 0.1106 −0.0220 ± 0.3423 −0.0126 ± 0.344
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5. Conclusions

The open-loop, MIMO, coupled, lateral–directional dynamics of an agile aircraft in a
straight and level flight condition and a coordinated turn flight condition were identified us-
ing discrete time grey box modelling SI and Bayesian techniques. Aircraft dynamical model
structure has been identified using a BJ polynomial model, and parameter refinement has
been achieved using a Bayesian probabilistic method. An Aircraft Flight Dynamics Model
was designed and excited using multiple customized time-skewed inputs of aileron and
rudder deflection as per the dictates of non-parametric model (FIR model). Input–output
time histories were recorded and segregated as test and validation datasets. Initially, the
OE model structure was developed to obtain initial parameters for the BJ model structure.
Reduced order modelling was achieved using AIC and parameter error minimization was
attained using an L-M algorithm. After obtaining the optimum model structure, parameter
fine-tuning was conducted using the Bayesian approach on both flight conditions. The
accuracy of the initial the OE model is less than the BJ model as it lacks capturing of
the system if it exhibits nonlinearity. Different noise levels were also injected to super-
sonic aircraft MIMO system to postulate a model near to practical conditions. Controller
design requirements are better fulfilled using mathematical models obtained from grey
box modelling as they give precise and robust behaviour characteristics in comparison to
constant values of aerodynamic stability and control derivatives obtained through first
principle modelling.

A unique combination of Bayesian estimation with grey box modelling provides an
opportunity to achieve a parsimonious and robust framework for parameter estimation
of a dynamical system. The same has been seen in this research in which aircraft prior
knowledge of parameters has been linked with MIMO observational data and improved
MSE and percentage fit has been attained as shown in Tables 6–9, wherein Bayesian
estimation (with percentage fit of 96.25% and MSE of 3.9 × 10−3) has proved to be more
accurate than other techniques such as NLS and MLE. However, this approach is mainly
avoided in aircraft parameter estimation due to difficulties in finding pdf of random
variables. In this research, Bayesian has been applied with lesser difficulty due to a lesser
amount of dataset and simple flight conditions. The comparison matrix of NLS, MLE, and
Bayesian also showed better refinement of parameters using Bayesian estimators. The
same approach can be further extended to investigate the uncertainties in estimation of
parameters leading towards online SI and robust controller design.
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Nomenclature

Roman

# CD, CY, CL: Aerodynamic force coefficients
# Cl, Cm, Cn: Aerodynamic moment coefficients
# Throttle position: δt [0 1]
# Inertia in x, y and z axis: Jx, Jy, Jz
# Roll, Pitch and Yaw Rates: p, q, and r
# Roll, Pitch and Yaw acceleration:

.
p,

.
q, and

.
r

#
-

Free stream dynamic pressure : q [N/m2(1b/ f t2)]
# IX , IY , IZ moments of inertia about X, Y, and Z body axes,

kg − m2 (slug- ft2)
# Ixz = product of inertia with respect to x and z body axes,

kg−m2 (slug- ft2)
# CX : X-axis force coefficient along positive x body axis,

Aerodynamic x−axis force
qS

# CX,t total X-axis force coefficient
# CY : X-axis force coefficient along positive x body axis,

Aerodynamic x−axis force
qS

# CY,t total X-axis force coefficient
# Cz Z-axis force coefficient along positive Z body axis,

Aerodynamic z−axis f orce
qS

# CZ,t total z-axis force coefficient
# Cm pitching-moment coefficient about Y body axis,

Aerodynamic pitching moment
q̄Sc̄

# Cm,t: total pitching-moment coefficient
# c̄: wing mean aerodynamic chord, m( f t)
# Probability Density Function: p.d.f

Greek

# Angle of attack: α (AOA)
# Sideslip angle: β
# Roll, pitch and yaw angles: Phi(φ), theta (θ), pssi(ψ)
# Deflections in elevator, rudder and aileron: δe, δr, δa
# Flight path angle: γ

# Air Density: ρ

# System Identification: SI
# Finite Impulse Response: FIR
# Flight Dynamics Model: FDM
# Centre of Gravity: CG
# Quadratic Cost Function: J
# Throttle: THTL
# Elevator: ELEV
# Aileron: AIL
# Rudder: RDR
# Mean Square Error: MSE
# Fir Percentage Error: FPE
# Degree of Freedom: DOF
# Mach Number: M
# Aircraft mass: m [kg (slugs)]
# Wing Span: b [m, (ft)]
# Wing Area: S [m2(ft2)]

# Airplane body axes: x, y, z
# Centerof gravity location : Xcg
# Single input Single Output: SISO
# Multiple Input Multiple Output: MIMO
# Output Error: OE
# Box–Jenkins: BJ
# Auto-Regressive Exogenous: ARX
# Auto-Regressive Exogenous Moving Average: ARMAX
# Weight: w
# Feet: ft
# Pound square feet: psf
# Velocity: Vt
# Height: h
# Radians: rad

Superscripts

# .: Time derivative
# T: Transpose
# :̂ Estimate
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