
Citation: Liu, S.; Zhou, N.; Song, C.;

Chen, G.; Wu, Y. Exhaust Gas

Temperature Prediction of Aero-

Engine via Enhanced Scale-Aware

Efficient Transformer. Aerospace 2024,

11, 138. https://doi.org/10.3390/

aerospace11020138

Academic Editor: Olivia J. Pinon

Fischer

Received: 18 December 2023

Revised: 23 January 2024

Accepted: 29 January 2024

Published: 5 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

aerospace

Article

Exhaust Gas Temperature Prediction of Aero-Engine via
Enhanced Scale-Aware Efficient Transformer
Sijie Liu , Nan Zhou, Chenchen Song, Geng Chen and Yafeng Wu *

School of Power and Energy, Northwestern Polytechnical University, Xi’an 710072, China;
sijieliu_123@mail.nwpu.edu.cn (S.L.); xiguanan@mail.nwpu.edu.cn (N.Z.); 2022201912@mail.nwpu.edu.cn (C.S.);
geng.chen.cs@gmail.com (G.C.)
* Correspondence: yfwu@nwpu.edu.cn; Tel.: +86-029-88431112

Abstract: This research introduces the Enhanced Scale-Aware efficient Transformer (ESAE-Transformer),
a novel and advanced model dedicated to predicting Exhaust Gas Temperature (EGT). The ESAE-
Transformer merges the Multi-Head ProbSparse Attention mechanism with the established Trans-
former architecture, significantly optimizing computational efficiency and effectively discerning key
temporal patterns. The incorporation of the Multi-Scale Feature Aggregation Module (MSFAM) fur-
ther refines 2 s input and output timeframe. A detailed investigation into the feature dimensionality
was undertaken, leading to an optimized configuration of the model, thereby improving its overall
performance. The efficacy of the ESAE-Transformer was rigorously evaluated through an exhaustive
ablation study, focusing on the contribution of each constituent module. The findings showcase a
mean absolute prediction error of 3.47◦R, demonstrating strong alignment with real-world environ-
mental scenarios and confirming the model’s accuracy and relevance. The ESAE-Transformer not
only excels in predictive accuracy but also sheds light on the underlying physical processes, thus
enhancing its practical application in real-world settings. The model stands out as a robust tool for
critical parameter prediction in aero-engine systems, paving the way for future advancements in
engine prognostics and diagnostics.

Keywords: exhaust gas temperature prediction; ESAE-Transformer; Multi-Scale Feature Aggregation

1. Introduction

Aero-engines are of most importance in ensuring the proper functioning of aircrafts,
given their intricate design and the possibility of catastrophic malfunctions. These engines
endure extended periods of operation under severe environmental conditions, including
elevated temperatures, pressures, velocities, vibrations, and loads [1,2]. Therefore, it is
crucial to guarantee the dependability of aero-engines in accordance with rigorous safety
protocols by continuously monitoring and forecasting the fundamental parameters of the
aero-engine [3–5].

Exhaust gas temperature (EGT) refers to the temperature of the gas that exits the
turbine unit, which is regarded as one of the most crucial structural and operational metrics
that demonstrate the performance and efficiency of gas turbine engines [1,6]. Elevated
EGT can result in significant faults and diminish the engine’s longevity. It is imperative to
monitor the EGT during take-off and strive to keep it at a minimum. This is crucial since the
EGT reaches its highest point during take-off, and exceeding the usual limits of EGT can lead
to engine component failure. From a structural standpoint, accurately predicting the EGT
has several benefits, including improved reliability, availability, and engine life extension,
as well as reduced operation and maintenance costs [7]. In aeronautic applications, turbine
engines are used to provide the necessary thrust or power throughout different flight
phases by either increasing or decreasing the velocity of the air passing through the engines.
When dealing with various take-off situations, it is important to find a balance between
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generating sufficient thrust while keeping the EGT relatively low. Evaluating the EGT level
is critical for assessing both the structural and operational aspects, as mentioned before.

For the predicting the EGT of an aero-engine based on real flight data, the current
prediction methods are widely classified into two categories: the model-based method
and the data-driven method. The model-based approach relies on the precise physical
models of the system, which are combined with mathematical and physical models that
describe the dynamic performance of the aeroengine. The model-based method is con-
strained in its applicability due to the need for accurate modeling of the dynamics of
mechanical systems or components [8]. Nevertheless, it is impossible to achieve accurate
modeling of intricate systems, even for individuals with specialized knowledge in the
domain. Data-driven approaches, as opposed to model-based approaches, offer the benefit
of being easier to implement due to their lack of reliance on prior professional competence.
Hence, the utilization of data-driven approaches is more common in modern industrial
practices [9].

Based on data-driven approaches, data-driven approaches can be categorized into
three types: statistical, machine learning, and deep learning [10]. The statistical meth-
ods commonly used for industrial prediction problems include the autoregressive (AR)
model, the autoregressive integrated moving average (ARIMA) model, random forest (RF),
and Kalman filters (KF). Given the quickly changing nature of the EGT temporal data, it is
evident that traditional statistical methods, which are designed for linear stationary data
without differences, are not suitable for accurately predicting EGT [11]. With the boom in
the development of machine learning and deep learning techniques, as well as the progress
of sensor technology and real-time databases, the data-driven prediction of engine state
parameters has attracted wide attention from academia and industry [12]. In their study
on EGT prediction, Wang et al. [13] established basic frameworks and employed several
common machine learning methods. The analysis included the use of the Generalized
Regression Neural Network (GRNN) network [14], the Radial Basis Function (RBF) net-
work [15], Support Vector Regression (SVR) [16], and Random Forest (RF) [17]. An EGT
prediction approach utilizing a long short-term memory (LSTM) network was proposed by
Ullah et al. [18]. The features provided as input were identified as a real-time series. Other
efforts are built around the NARX model, which is a kind of recurrent neural network. This
model is able to capture the intricate dynamics of complex systems, such as gas turbines,
and can be integrated with different types of neural networks. Asgari et al. [19] have devel-
oped NARX models for a robust single-shaft gas turbine. The findings demonstrated the
utility of NARX models in predicting the dynamic response of gas turbines. Pham et al. [20]
proposed an enhancement to the hybrid NARX model and autoregressive moving aver-
age (ARMA) model for the long-term prediction of machine state using vibration data.
Ma et al. [21] use an FAE-LSTM, a feature attention mechanism-enhanced (FAE) LSTM,
to build a NARX model. This model uses EGT-correlated condition features and gas path
measurement factors to identify the aircraft engine. The Moving Average (MA) model uses
a basic LSTM model to increase the difference between the observed EGT and the NARX
model’s anticipated EGT. The endeavour of the aforementioned is to create a real-time
dynamic prediction model that can accurately capture the changing reaction of the EGT in
different operational states and challenging work settings.

Recently, the self-attention-based Transformer model has been widely used in service
industrial areas, including NLP, computer vision, and time series prediction. Self-attention,
also known as intra-attention, may be seen as an attentional process [22]. Natural lan-
guage processing mostly utilizes the self-attention-based transformer, as proposed by [23].
The transformer-based model is primarily used for the important task of predicting the
remaining useful life (RUL) of aeroengines. Zhang et al. integrated the BiGRU encoder and
the Transformer decoder in order to develop a network structure for predicting the RUL of
turbofan engines [10]. In their study, Liu et al. [24] developed a double attention network
that incorporated a multi-head attention module and a 2-D CNN-based channel attention



Aerospace 2024, 11, 138 3 of 21

enhancement module. The primary objective of this network was to enhance the accuracy
of remaining useful life (RUL) predictions in four different working scenarios.

Given the significant progress made in relevant research, there are still some out-
standing obstacles that need more exploration. Unlike the forecast of RUL, which mainly
considers the evaluation of the whole lifespan, the prediction of EGT requires a more de-
tailed technique that specifically highlights the time-based features present in actual flight
data. Currently, prevalent methods for predicting EGT encompass both physical models
and machine learning predictions. Physical models typically involve cylinder combustion
models, heat transfer models, and exhaust models. However, the intricate phenomena
occurring in the later stages of combustion such as boundary layer effects, uneven fuel
distribution, heat conduction, and other factors can pose challenges for traditional physical
models in accurately forecasting EGT. Alternatively, by adopting data-driven prediction
models and employing machine learning algorithms to simulate combustion, heat transfer,
and exhaust cooling processes, the complexity associated with EGT prediction can be
mitigated. This approach has the potential to assist or even replace traditional physical
prediction models. In order to efficiently track the decline in system performance and
accurately capture the important time-related characteristics, we propose the adoption
of a transformer-based model. To address these issues, we provide a novel approach En-
hanced Scale-Aware efficient Transformer (ESAE-Transformer): a Transformer model with
Multi-Head ProbSparse Self-Attention (MHPSA) and a Multi-Scale Feature Aggregation
module (MSFAM). This model is a comprehensive framework that consists of an encoder
and a decoder. The encoder and decoder are upgraded with MHPSA to effectively capture
important operational variations and environmental changes and reduce the compute
complexity. Simultaneously, the Multi-Scale Feature Aggregation module (MSFAM) is used
to enhance the high-dimensional encoded feature space, hence expanding the range of
information that can be captured. This design is expected to greatly improve the precision
and effectiveness of EGT forecasts. The main contribution of this work can be summarized
as follows:

• We recommend the utilization of a specialized model designed for predicting EGT,
and this model is built upon the innovative transformer architecture. To our knowl-
edge, this groundbreaking initiative represents the first successful effort to tailor the
transformer design specifically for RUL in the context of aero-engines.

• The encoder and decoder models leverage an MHPSA mechanism, strategically de-
signed to efficiently decrease temporal complexity and optimize memory utilization.
This innovative approach introduces the concept of selective attention, empowering
the model to concentrate on the most informative segments. This not only dimin-
ishes noise but also prioritizes critical temporal dynamics, enhancing the overall
effectiveness of the system.

• The implementation of an MSFAM is purposefully crafted to delve into temporal
features within a profoundly nonlinear dimensional space. Its primary function is to
broaden the receptive field of the prediction model, thereby enhancing the model’s
proficiency in effectively processing and amalgamating implicit information across
extended sequences or time periods. This strategic design significantly improves
the model’s capacity to capture and leverage nuanced temporal dynamics for more
robust predictions.

• To assess the suggested approach, we conducted evaluations on two fronts. Firstly, we
compared the root mean square difference and absolute mean error of predicted results
against actual results, varying the dimension of the hidden layer while adjusting the
length of the time series input to the model. Optimal performance was observed when
the input length was 2 s, and the model dimension was set to 128. Secondly, across
different input lengths, we compared our proposed model with contemporary time
series prediction models like ANN, LSTM, GRU, and Transformer. The experimental
findings revealed that our proposed model outperforms current popular time series
prediction models based on the same evaluation criteria.
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The remainder of the paper is organised as follows: The core concept of the vanilla
Transformer is presented in Section 2. The proposed method is described in depth in
Section 3. The dataset description and experimental parameters are provided in Section 4.
Section 5 presents the outcomes of the experiment and provides a thorough analysis.
The entire essay is summarized in Section 6.

2. The Fundamental Principle of the Transformer

The Transformer model, initially introduced in the influential paper titled “Attention
Is All You Need”, produced by Vaswani et al. in 2017, has significantly influenced the
field of natural language processing (NLP) [23]. The overall structure of the Transformer is
shown in Figure 1. The model utilizes a methodology known as self-attention or scaled dot-
product attention, hence circumventing the inclusion of recurrent layers commonly found
in prior sequence-to-sequence models. This particular design decision offers advantages in
terms of parallelization and reduced training times.

Input

Embedding

Inputs

Positional 

Encoding

Multi-Head

Attention

Add & Norm

Feed

Forward

Add & Norm

*N

Output

Embedding

Positional 

Encoding

Masked

Multi-Head

Attention

Multi-Head

Attention

Feed

Forward

*N

Linear

Add & Norm

Add & Norm

Add & Norm

Prediction

outputs

Figure 1. The overall structure of the Transformer [23] and * represents the stacked encoder and
decoder modules.

The Transformer model is characterized by an encoder–decoder structure. The decoder
shares important components with the encoder, including Position data embedding, Multi-
Head Self-Attention, and Point-Wise Feed-Forward Network. Each sub-layer in the encoder
and decoder has a residual connection around it, followed by layer normalization. This
design facilitates the flow of gradients during training, making it easier to train deep
networks. In both the encoder and decoder, each sub-layer is equipped with a residual
connection, which is then followed by layer normalization. This particular architecture
enhances the smooth transition of gradients during the training process, hence simplifying
the training of deep neural networks.

2.1. Position Data Embedding

Positional encoding is a technique that imparts the model with knowledge regarding
the relative or absolute position of the tokens inside the sequence. The positional encod-
ings and embeddings possess equivalent dimensions, denoted as dmodel, enabling their
summation. This implies that the embedding of each token is modified by the addition of a
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vector that signifies the token’s positional information inside the sequence. The positional
encodings use sine and cosine functions of different frequencies.

For each position pos and each dimension i of the dmodel token embedding, the posi-
tional embedding PE(pos,i) is defined as (1):

PE(pos,2i) = sin
(

pos
100002i/dmodel

)
PE(pos,2i+1) = cos

(
pos

100002i/dmodel

) (1)

where PE(pos,2i) and PE(pos,2i+1) denote the positional embedding for a given position and
dimension i in the embedding of the model. The sine function is used for even indices
2i, while the odd indices 2i + 1 use the cosine function. The 100002i/dmodel term provides
scaling that allows the model to learn to attend by relative positions more easily.

By adding positional encoding to the input embeddings, the Transformer becomes
capable of considering the order of the sequence, which is critical for understanding
language and other sequence-based data.

2.2. Multi-Head Self-Attention

The incorporation of Multi-Head Self-Attention (MHSA) in Transformer models en-
ables the model to collectively attend to input originating from distinct representation
subspaces at varying places. This methodology improves the ability to concentrate on
various segments of the input sequence and obtain a more thorough comprehension of the
connections within the data.

Operating the attention mechanism in parallel multiple times, each time employing a
distinct learned linear projection of the queries, keys, and values, is the underlying concept
of multi-head attention. This functionality enables the model to discern various forms of
relationships within the data since every “head” can concentrate on distinct characteristics
and facets of the input sequence. The MHSA is calculated in the following steps.

1. Linear Projections. The queries (Q), keys (K), and values (V) are linearly projected
multiple times with different, learnable weight matrices, which can be presented by (2)

Q = QWQ
i ,

K = KWK
i ,

V = VWV
i

(2)

where WQ
i ,WK

i ,WV
i are the weight matrices for the ith head’s linear transformations of

Q, K, and V.
2. Scale Dot-Product Attention. Each head computes attention on its respective projec-

tions, using a scaled dot-product attention mechanism. This involves calculating dot
products of the queries with all keys, dividing each by

√
dk, and applying a softmax

function to obtain weights on the values. The Scale Dot-Product Attention can be
expressed as (3):

headi = Attention(QWQ
i , KWK

i , VWV
i )

Attention(Q, K, V) = softmax
(

QKT
√

dk

)
V

(3)

3. Concatenation and Final Linear Projection. The outputs from each head are concate-
nated and then linearly transformed into the expected dimensions to acquire the final
output of the MHSA.

MHSA(Q, K, V) = Concat(head1, . . . , headh)WO (4)
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where Concat is the concatenation operation and WO denotes the weight matrix for
the final linear transformation.

2.3. Point-Wise Feed-Forward Network

In the context of a Transformer, the feed-forward network (FFN) is uniformly and
independently applied to each location. This implies that every location in the output of the
encoder or decoder, which refers to the representation of each word or token, undergoes
the same FFN. However, the FFN functions independently at each position. A typical
configuration of an FNN is the inclusion of two linear transformations, separated by a
Rectified Linear Unit (ReLU) activation function. The first linear transformation maps the
input onto a space with a higher number of dimensions (denoted as d f f ), whereas the
subsequent linear transformation maps it back to the original lower-dimensional space of
the model (denoted as dmodel).

FFN = Relu(MHSA · W1 + b1) · W2 + b2 (5)

where MHSA is the output of the previous of MHSA block; Relu denotes the is the rectified
linear activation function; and W1, W2, b1, b2 are trainable parameters of the FFN.

3. The Methodology for EGT Prediction
3.1. Overall Architecture of the Proposed Method

The overall architecture of the proposed Enhanced Scale-Aware Efficient Transformer
(ESAE-Transformer) is depicted in Figure 2. The suggested method primarily comprises
Mix data Embedding, the Multi-Head ProbSparse Attention (MHPSA)-based Encoder,
the Multi-Scale Feature Aggregation Module (MSFAM), and the hybrid attention-based
decoder. The proposed model takes the unprocessed sensor data as input and generates a
prediction for the EGT as output. The Mix data Embedding is specifically utilized before the
encoder and decoder sections to transform the raw sensor data into a consistent dimension,
enabling the acquisition of positional information and learnable features. The encoder
component consists of a sequence of Multi-Head ProbSparse Attention and point-wise
feed-forward neural networks. Its primary function is to encode the embedded data into
a nonlinear space with high dimensions. The proposed Multiscale Feature Aggregation
Module (MSFAM) is utilized to extract significant temporal characteristics across several
scales in a high-dimensional domain. The decoder component consists of two attention
modules and two feed-forward neural network (FFN) blocks. The attention module consists
of two components: the fundamental Multi-Head Self Attention and the enhanced Multi-
Head ProbSparse Attention. Ultimately, we obtained the anticipated EGT from a fully-
connected output layer. The intricate configurations of the indicated modules are presented
in the subsequent sections.The specific parameters settings of proposed model are shown
in Table 1, where N represents the number of samples, L represents the sequence length of
time sliding window, and D denotes the dimension of the model that will be discussed in
Section 5.1.

Table 1. The detailed input and output of each module.

Module Block Input Size Output Size

Mix data Embedding Position embedding (N, L, 8) (N, L, D)
Learnable embedding (N, L, 8) (N, L, D)

Encoder MHPSA (N, L, D) (N, L, D)
FFN (N, L, D) (N, L, D)

MSFAM (N, L, D) (N, L, D)

Decoder

MHPSA (N, L, D) (N, L, D)
FFN (N, L, D) (N, L, D)

MHSA (N, L, D) (N, L, D)
FFN (N, L, D) (N, L, D)

FC Layer (N, L, D) (N, 2, 1)
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Figure 2. Theoverall structure of the proposed multi-scale enhanced efficient Prob-Transformer.

3.2. Mix Data Embedding

In the context of time series prediction tasks, it is important to address the limitations
of positional token embedding. To overcome these limitations, the convolutional token
embedding technique is employed to integrate these augmented features [25]. We designed
a learnable convolutional token embedding PC, which can be expressed as (6):

PC = LRelu(C(xi)), k = 3, p = 1 (6)

where LRelu denotes the Leaky Relu activation function; C denotes the convolution layer;
and k and p represents the kernel size and padding, respectively. We designed a mix token
embedding by adding the position embedding PE in the (1) with the PC together, which is
represented by (7):

PH = PE + PC (7)

3.3. Multi-Head ProbSparse Self-Attention Enhanced Encoder

In the context of enhancing the efficiency of neural network architectures for han-
dling, particularly in time-series forecasting, the ProbSparse Self-Attention mechanism,
as incorporated in the Informer model, emerges as a noteworthy innovation [26]. This
mechanism is distinctively designed to address the computational constraints of traditional
self-attention mechanisms. It achieves this by concentrating each key’s attention on a subset
of queries, specifically the most dominant ones within the sequence, thereby significantly
reducing the computational load.

Crucially, the ProbSparse Self-Attention mechanism employs a sparse query matrix,
denoted as Q, which is a streamlined version of the original query matrix Q. This sparse
matrix is composed exclusively of the Top-u queries, selected based on a sparsity measure-
ment denoted as M(q, K) [26]. The number of dominant queries, u, is determined by a
constant sampling factor, c, and is calculated as c · ln LQ, where LQ signifies the length of the
query sequence. This strategic selection process ensures that the computational complexity
for each query–key interaction is substantially reduced to O(ln LQ), marking a significant
departure from the quadratic complexity observed in standard self-attention mechanisms.
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The mathematical framework of the ProbSparse Self-Attention mechanism is articu-
lated through the Equation (8)

ProbSparse Self-Attention(Q, K, V) = So f tmax

(
QKT
√

dk

)
V (8)

where the sparse query matrix Q encapsulates the selected Top-u queries. This formulation
effectively balances computational efficiency and the richness of the attention mechanism.

From a practical standpoint, the ProbSparse Self-Attention mechanism optimizes
memory usage, maintaining it at O(LK ln LQ), where LK is the length of the key sequence.
This optimization is particularly advantageous compared to conventional self-attention
frameworks. Moreover, in multi-head attention configurations, this mechanism ensures the
generation of diverse sparse query–key pairs for each head, thereby mitigating potential
information loss. Furthermore, to address the computational demands of determining the
sparsity measurement for all queries, an empirical approximation approach is proposed.
This approach precludes the necessity for exhaustive O(LQLK) dot-product computations,
thereby enhancing efficiency. Additionally, the mechanism is designed to counter potential
numerical stability issues, specifically in operations such as LogSumExp (LSE).

Overall, the ProbSparse Self-Attention mechanism represents a significant advance-
ment in the design of neural network models for processing long sequential data, striking
a notable balance between computational efficiency and the effective utilization of the
attention mechanism. This makes it particularly suitable for applications that involve
extensive time-series prediction analysis.

3.4. Multi-Scale Feature Aggregation Module

Inspired by the work in [27,28], we meticulously developed the Multi-Scale Feature
Aggregation Module to explore the encoded high-dimensional feature in more detail. This
module enhances the model’s receptive field and uncovers implicit information from many
scales inside the nonlinear feature space. The details of the MSFAM are shown in Figure 2.
The MSFAM has four branches bk with k = 1, 2, . . . , 4. The calculation of each branch can
be expressed as (9):

b1 = Conv(Avgpool(x))k1 = 3, p1 = 0, k2 = 3, p2 = 1

b2 = Conv1(x), k1 = 1, p1 = 0

b3 = Conv2(Conv1(x)), k1 = 1, p1 = 0, k2 = 3, k3 = 3

b4 = Conv3(Conv2(Conv1(x))), k1 = 1, p1 = 0, k2 = 3, p2 − 1, k3 = 3, p3 = 1

(9)

where Conv represents 1-D convolution, Abgpool represents the average pooling layer,
k denotes the kernel size of the convolution layer, and p denotes the padding size of
the convolution layer. The output of last four branches is concatenated to acquire the
multi-scale fused feature x̂. The specific input and output of each branch is shown in the
Table 2.

Table 2. The detailed input and output in each branch of MSFAM.

Branch Layer Input Size Output Size

b_1
Avg pooling (N, D, L) (N, D, L)

Conv_1 (N, D, L) (N, D
4 , L)

b_2 Conv_1 (N, D, L) (N, D
4 , L)

b_3
Conv_1 (N, D, L) (N, D

6 , L)
Conv_2 (N, D

6 , L) (N, D
4 , L)

b_4
Conv_1 (N, D, L) (N, D

6 , L)
Conv_2 (N, D

6 , L) (N, D
4 , L)

Conv_3 (N, D
4 , L) (N, D

4 , L)
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3.5. Series-Attention-Based Decoder

The decoder component of our proposed architecture encompasses two attention
blocks and two feed-forward networks (FFNs). This module’s input includes the embedded
label and the output-enhanced features produced by the Multi-Scale Attention Feature
Module (MSFAM). As depicted in Figure 2, the label data are first processed through the
masked Multi-Head ProbSparse Self-Attention (MHPSA) module. This module’s primary
objective is to discern the dependencies within the label data. Subsequently, the Multi-
Head Self-Attention (MHSA) mechanism focuses on learning the correlations between the
enhanced high-level features across diverse time steps, effectively integrating the outputs
of the sequentially arranged MHPSA and FFN.

During the training phase, the Exhaust Gas Temperature (EGT) label data are meticu-
lously prepared, allowing the decoder to concurrently decode each time step, leveraging the
model’s inherent parallel computing capabilities. This process ensures that the information
pertaining to future label data is comprehensively learned at each time step during the
MHPSA computation. This learned information is then incorporated into the MHSA for
further processing. Consequently, to prevent the unintended leakage of future label data,
a masking operation is crucial within the MHPSA module of the decoder. This necessi-
tates the introduction of a specific matrix in the scaled dot-product attention mechanism.
The matrix, characterized by a lower triangle and diagonal populated with 1 s and an upper
triangle filled with 0 s, is instrumental in obfuscating future information, thus maintaining
the integrity of the predictive process.

4. Experiment Setting
4.1. Data Description

This study utilizes a dataset derived from the Quick Access Recorder (QAR) data,
obtained from a commercial aircraft, to evaluate the proposed methodology. QAR data,
pivotal in modern aviation, encompasses digital recordings of various flight characteristics
and system information. These recordings are gathered from an aircraft’s sensors and
systems during flight operations. The data collection is facilitated by the Quick Access
Recorder (QAR), a device installed on the aircraft. QAR data fulfill several key roles,
extending beyond maintenance and safety analysis. They are instrumental in monitoring
flight performance and investigating incidents. Their significance in the aviation industry
is multifaceted as they provide essential insights for airlines, maintenance teams, and regu-
latory bodies. These data aid in overseeing and assessing the operational efficiency and
safety of aircraft. One of the primary advantages of using QAR data is their potential in
the early detection and intervention of emerging issues, significantly reducing the risk of
these concerns evolving into more severe problems. Furthermore, the application of QAR
data can lead to improvements in operational efficiency, underscoring their value in both
preventive measures and enhancing overall aviation operations.

This research employs a dataset comprising aircraft engine data, recorded across
various phases of each flight mission, including climb, cruise, and landing. The dataset
encompasses a comprehensive account of the engine’s operational processes, capturing
both transient and steady-state phases. Transient state prediction presents a more chal-
lenging task than steady-state process prediction due to the dynamic nature of the former.
The dataset, sourced from the Quick Access Recorder (QAR), documents over 200 distinct
parameters, with a sampling frequency of 4 Hz for condition parameters. For the purposes
of this study, the data underwent downsampling to a 1 Hz sample rate, aligning with the
universal QAR data standards.

A careful selection of parameters was made from the extensive pool of over 200,
focusing on those most indicative of gas path performance in the engine, as referenced in
prior studies [13,21,29]. Scenario descriptors, including ALT, MN, PLA, and T0, are crucial
in determining the flying state and are imperative for accurate Exhaust Gas Temperature
(EGT) prediction. Taking a dual shaft engine as an example, the sensor positions used to
measure the above parameters are shown in the Figure 3. Additionally, incorporating gas
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path data such as rotational speeds, temperatures, or pressures could further refine the
precision of predictive models.

The parameters selected for this study are detailed in Table 3. The initial seven parame-
ters listed are believed to have a direct correlation with EGT. In contrast, the final parameter,
EGT itself, is the focal point of prediction. Figure 4 presents a visual representation of the
raw sensor data across a complete flight cycle, providing an empirical basis for the analysis
conducted in this study. The dataset utilized in this study captures data from the aircraft
engine during each flying mission’s climb, cruise, and landing phases. The continuous
process of the engine in operation, including the transient and steady-state processes, is
contained in this dataset. Predicting transient states is more difficult than steady-state
process prediction. More than 200 distinct parameters are recorded in this QAR dataset,
with a 4 Hz sample frequency for the condition parameters. To establish the model, we
carry out downsampling at a sample rate of 1Hz for universal QAR data.

EGT

T0

N1

N2

Wf 

Figure 3. Schematic diagram of engine sensor location.

Figure 4. The raw sensor data description of a flight cycle.
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Table 3. The description of the dataset.

No. of Parameters Symbols Description Units

1 ALT Flight altitude Ft
2 MN Mach Number -
3 PLA Power lever angle %
4 T0 Ambient temperature ◦R
5 Wf Fuel flow rate pps
6 N1 Physical fan speed ppm
7 N2 Physical core speed ppm

8 EGT Exhaust gas
temperature

◦R

To provide a more thorough investigation of the raw sensor data with the aim of
constructing a predictive model, the implementation of correlation analysis is employed to
evaluate the temporal link among the sensor data. In this analysis, we utilize the Spearman
correlation coefficient (SCC) to examine the data, which quantifies the correlation using a
monotonic function. It is evident that the Spearman correlation coefficient possesses the
capability to handle data that contain outliers, non-normal distributions, or heteroscedas-
ticity [30]. The result of the SCC of the selected parameters is indicated in Figure 5.

Figure 5. The Spearman correlation cofficient matrix of the selected parameters.

4.2. Data Preparation
4.2.1. Time Sliding Processing

The exploration of associations among adjacent data points from different time in-
tervals is paramount in time series data analysis [31]. This research utilizes the sliding
window technique, which entails segmenting data points across various time intervals
using designated time windows. This method is crucial for capturing the temporal rela-
tionships inherent in the data. To augment the sample size, the sliding stride is set to a
value of 1. Figure 6 illustrates this sliding window process. At each time point, the input
features correspond to the Exhaust Gas Temperature (EGT) values. In practical scenarios,
the selection of the appropriate window size is determined based on the characteristics of
the raw data, ensuring that the analysis is grounded in real-world application contexts.
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Figure 6. Example of time sliding window data segmentation for the EGT prediction.

4.2.2. Data Normalization

The mean-standard deviation is a statistical measure that quantifies the dispersion
or variability of a dataset around its mean. It is calculated by normalization, sometimes
referred to as Z-Score normalization or standardization, is a widely employed data prepa-
ration method utilized in the fields of statistics and machine learning. The process entails
transforming the characteristics of the dataset in order to conform to a typical normal
distribution, characterized by a mean of 0 and a standard deviation of 1. This approach
proves to be particularly advantageous in situations when it is necessary to normalize
the data without compromising the integrity of the variations in the range of values [32].
The formula for Z-Score normalization is expressed in (10):

xnorm =
x − µ

σ
(10)

where xnorm is the normalized values; x denotes the original data; µ and σ represent the
mean and standard deviation of the data, respectively.

4.3. Evaluation Metrics

Regarding the EGT outcomes, two commonly employed metrics are utilized to eval-
uate the effectiveness of the presented models. The first metric is the Root Mean Square
Error (RMSE), while the second metric is referred to as the Mean Absolute Error (MAE).

1. RMSE. Root Mean Square Error (RMSE) is a commonly used metric for quantifying
the disparities between the projected values generated by a model and the actual
observed values. The use of this approach becomes advantageous in situations when
the potential impact of significant errors surpasses that of minor errors since it assigns
a substantially greater significance to the occurrence of big errors [33]. The RMSE can
be expressed by (11):

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)2 (11)

where n represents the number of ground truth values, while yi and ŷi represent the
predicted and actual values, respectively.

2. MAE. The Mean Absolute Error (MAE) quantifies the average size of mistakes within
a given collection of predictions, disregarding their directional aspect. The academic
formulation involves calculating the mean absolute difference between the predicted
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values and the actual observations in a test sample, with each individual difference
being assigned equal weight [33]. The MAE is implemented by (12):

MAE =
1
n

n

∑
i=1

|yi − ŷi| (12)

In the given context, the variable n denotes the count of ground truth values, while yi
and ŷi represent the predicted and actual values correspondingly.

4.4. Implement Details

The research was conducted via an electronic platform that consisted of a workstation
outfitted with various hardware and software configurations. The workstation is equipped
with an Intel Core i7-10870H central processing unit (CPU) that operates at a clock speed
of 2.20 gigahertz (GHz). In addition, the machine is equipped with a high-performance
NVIDIA Geforce RTX3060 graphics processing unit (GPU), hence enhancing the computa-
tional capabilities necessary for carrying out the study. The workstation is furnished with a
significant amount of RAM, namely, 64GB, which ensures enough memory capacity for
data processing and model training tasks. The suggested model was subjected to training
and optimization via the AdaX optimization approach. The AdaX method, as introduced
by [34], is an innovative strategy for optimizing adaptive learning rates. The algorithm in
question integrates the favorable characteristics of the AdaGrad and Adam algorithms, re-
sulting in enhanced convergence and generalization abilities.The training operation started
with an initial learning rate of 0.001, which is scheduled to undergo ten decays following
the completion of 10 epochs.

5. Results and Discussion

In our rigorous evaluation of the proposed method for practical application, we con-
ducted several experiments under diverse conditions. These experiments were specifically
designed to analyze the impact of varying prediction lengths and input sequence settings on
the method’s performance. The prediction length was fixed at 2 s, while the input sequence
length was varied, including settings of 16 s, 8 s, 4 s, and 2 s. This comprehensive approach
allowed for a detailed assessment of how different input sequence lengths influence the
model’s predictive accuracy and efficiency. Such an analysis is critical in understanding
the model’s adaptability and effectiveness across a range of temporal scales, providing
valuable insights for its application in real-world scenarios.

5.1. The Impact of the Feature Dimension of the Model

In the aforementioned tables, denoted as Tables 1 and 2, a comprehensive illustration
of the encoder, decoder, and (MSFAGM) is presented, highlighting their shared feature
dimension, represented as D. The significant role played by the feature dimension D in in-
fluencing the predictive outcomes is evident from these representations as shown in Table 1.
It modifies the dimension of feature space in the model, which is the model dimension
parameter. The schematic of the model dimension is illustrated in the Figure 7. This crucial
aspect prompted an in-depth exploration, where the proposed method was subjected to
rigorous training across a spectrum of varying feature dimensions. Such an investigation
is pivotal in discerning the optimal feature dimension that maximizes the efficacy of the
predictive model, thereby ensuring enhanced performance in practical applications. This
study underscores the intricate relationship between the feature dimension and the model’s
predictive accuracy, providing valuable insights for further optimizations.

Firstly, we will introduce the experimental process in Table 4. The output of the model
is a fixed time series of 2 s in length, while the input of the model is an indefinite time
series, and the length of the input is artificially determined. As shown in Figure 8, the area
marked by two red dashed lines is the result that the model needs to predict, and it displays
the predicted value of EGT in 16–18 s. To maximize the performance of the model, we
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conducted experiments on the model from two aspects. On the one hand, it is to change
the input length of the model. We use the time series of the first 2 s, 4 s, 8 s, and 16 s of the
predicted sequence as model inputs.

Table 4. The result under the different dimensions of the proposed method.

No. Model Dimension
16 s 8 s 4 s 2 s

RMSE MAE RMSE MAE RMSE MAE RMSE MAE

No. 1 32 9.51 6.83 8.09 5.39 8.20 5.67 15.29 8.54
No. 2 64 8.91 6.11 7.17 4.76 7.12 4.79 6.94 4.55
No. 3 128 6.69 4.51 6.45 4.20 6.32 3.84 5.94 3.47
No. 4 256 7.03 4.52 6.74 4.06 6.48 3.86 9.71 4.45
No. 5 512 13.65 9.98 12.67 9.34 9.36 6.67 9.18 5.52

Output

Mix data
Embedding
（N, L, D）

Multi-head
ProbSparse

Self-attention
（N, L, D)

Encoder
Multi-scale 

Aggregation
Module

(N, L, D)

Feed-forward 
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（N, L, D)

Label
Decoder

Multi-head
Attention
(N, L, D)

Fully Connected
Layer

(N, L, D)
0
0

0

Input
(N, L, 8)

(N, 2, 1)
Multi-head

ProbSparse
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（N, L, D)

Mix data
Embedding
（N, L, D）

Feed-forward 
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（N, L, D)

Feed-forward 
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（N, L, D)

(N, L, D))

(N, L, 32)

(N, L, 64)

(N, L, 128)

(N, L, 256)

(N, L, 512)

Figure 7. The input and output description of each module.

The observations drawn from Table 4 reveal a nuanced trend in the relationship
between the model dimension and its overall prediction accuracy. It is intuitively apparent
that as the model dimension increases, there is an initial uptrend in prediction accuracy,
which is subsequently followed by a downtrend. Notably, the model achieves its lowest
error metrics when the dimension value is set to 128. This phenomenon is consistently
observed across various time points.

Additionally, a horizontal comparison of the prediction effects at different prediction
times elucidates that the highest overall prediction accuracy is attained when the prediction
time is set to 2 s. Based on these empirical findings, the paper strategically adjusts the
feature dimension to 128 for subsequent method comparisons. This adjustment is premised
on optimizing the model’s performance, ensuring that it is attuned to deliver the highest
prediction accuracy under these specific parameters. Figure 9 presents a random selection
of prediction results, randomly chosen to illustrate performance across varying input time
lengths and feature dimensions. It is discernible that the input time length of 2 s consistently
yields the most accurate predictions. Consequently, for a more granular analysis, we have
delineated the 2 s input length prediction results in Figure 10, categorizing them into
distinct periods of rise, decline, and fluctuation. This segmentation facilitates a deeper
understanding of the model’s predictive behavior under dynamic conditions, highlighting
its performance nuances in response to temporal variations.
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Prediction length：2s 

Input length：16s

Input length：8s

Input length：4s 

Input length：2s

Figure 8. The description of input length and output length for the proposed model.

(a) (b)

(c) (d)

Figure 9. Randomly selected EGT prediction results: a comparative analysis across diverse input
time lengths and feature dimensions. (a) 2 s; (b) 4 s; (c) 8 s; and (d) 16 s.
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(a) (b) (c)

Figure 10. Randomly selected EGT prediction results: a comparative analysis across diverse feature
dimensions under different phases. (a) rising; (b) fluctuating; and (c) decreasing.

5.2. Compared with Other State-of-Art Methods

Our model exhibits a significant advantage in forecasting accuracy when compared to
other contemporary models. To provide a comprehensive and rigorous comparison, we
evaluated our proposed model against four state-of-the-art EGT prediction models, each
representing a unique approach within the domain. These include the Artificial Neural
Network (ANN), long short-term memory (LSTM), Gated Recurrent Unit (GRU), and
Transformer models. This comparative analysis was conducted under varying dimensions
to ensure a thorough assessment of each model’s capabilities. The decision to include these
specific models stems from their widespread recognition and established efficacy in EGT
forecasting. The ANN serves as a foundational model in neural network research, offering a
baseline for comparison. The LSTM and GRU, both of which are variants of recurrent neural
networks, are renowned for their ability to capture long-term dependencies in sequential
data, a crucial aspect in accurate time series forecasting. The Transformer, known for its
self-attention mechanism, represents the cutting edge in handling sequential data and offers
a contrast to the recurrent architectures of LSTM and GRU. By comparing our proposed
model with these diverse and well-regarded models, we aim to demonstrate its superior
forecasting accuracy across various dimensions. This comparison not only underscores the
strengths of our model but also contributes to a deeper understanding of its performance
in the broader context of EGT prediction methodologies.

Table 5 effectively highlights the superior predictive performance of our proposed
methods, as evaluated by two key metrics. This enhancement is particularly striking when
contrasted with various baseline models. In such comparisons, our method demonstrates
exceptional testing performance, especially in scenarios characterized by shorter prediction
times. Figure 11 presents a selection of predictions with varying input lengths, illustrating
a consistent trend where shorter input sequences result in improved performance. No-
tably, with an input length of 2 s, the prediction’s Mean Absolute Error (MAE) shows
a significant improvement of 6.9%, and the Root Mean Square Error (RMSE) registers a
3.4% enhancement when compared to the standard Transformer model. This superior
performance extends beyond the Transformer model, also surpassing the results of ANN,
LSTM, and GRU models. This clearly indicates the proficiency of the self-attention-based
structure in effectively capturing temporal features.

Practically, a shorter input sequence length implies reduced computational load.
For instance, with a 2 s input, the Mean Absolute Error prediction of 3.47◦R aligns suitably
with real-world environmental conditions. Additionally, Figure 12 delineates the rising,
fluctuating, and decreasing phases of the EGT prediction. This dichotomy in performance
can be attributed to the Transformer’s inherent capability to adeptly capture short-term
local semantic interactions, making it an ideal choice for time series prediction tasks.
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Table 5. The prediction performance of all the models under different prediction times.

Method
16 s 8 s 4 s 2 s

RMSE MAE RMSE MAE RMSE MAE RMSE MAE

ANN 8.89 5.14 8.07 4.97 8.36 4.73 8.03 4.34
LSTM 8.91 6.18 7.17 4.76 7.12 4.79 6.94 4.55
GRU 10.88 7.45 7.07 4.51 7.36 4.38 7.39 4.28

Transformer 9.94 7.06 6.77 4.24 6.80 4.26 6.15 3.73
The proposed method 6.69 4.51 6.45 4.20 6.32 3.84 5.94 3.47

(a) (b)

(c) (d)

Figure 11. Randomly selected EGT prediction results: a comparative comparison with other State-of-
Art methods across diverse input time lengths. (a) 2 s; (b) 4 s; (c) 8 s; and (d) 16 s.

(a) (b) (c)

Figure 12. Randomly selected EGT prediction results: a comparative comparison with other State-of-
Art methods across under different phases. (a) rising; (b) fluctuating; and (c) decreasing.

5.3. Ablation Study of the Proposed Method

To thoroughly evaluate the individual contributions of the various components within
our proposed model, we embarked on an ablation study. This study was meticulously
designed to dissect the impact of each component on the overall predictive efficacy of the
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model. To ensure a comprehensive analysis, the ablation study was conducted under a
range of input sequence lengths, providing insights into how different components perform
under varying temporal scales.

In this study, the Transformer model was adopted as the baseline. This choice is
strategic as the Transformer’s architecture, renowned for its self-attention mechanism,
offers a robust foundation for comparison. By systematically removing or altering specific
components of our proposed model and comparing the resultant performance against the
baseline Transformer, we can isolate and understand the contribution of each individual
component. The result is shown in Table 6.

Table 6. The results of different component ablation experiments with multiple input lengths.

No. Model Structure
16 s 8 s 4 s 2 s

RMSE MAE RMSE MAE RMSE MAE RMSE MAE

No. 1 Transformer 9.94 7.06 6.77 4.24 6.80 4.26 6.15 3.73

No. 2 Transformer encoder + MSFAM + Transformer
decoder 8.06 5.41 7.04 4.29 6.88 3.84 7.26 4.27

No. 3 MHPSA encoder+MHPSA decoder 7.01 4.44 6.75 4.31 6.36 4.00 6.39 3.97
No. 4 Transformer encoder+MSFAM+MHPSA decoder 7.96 5.61 7.26 4.83 8.15 4.52 6.83 3.99

No. 5 MHPSA encoder + MSFAM + Transformer
decoder 7.18 4.61 7.55 4.07 7.42 4.01 6.60 3.84

No. 6 MHPSA encoder + MSFAM + MHPSA decoder 6.69 4.51 6.45 4.20 6.32 3.96 5.94 3.47

1. Experiment No. 1: The Baseline Transformer Model. This initial experiment establishes
a baseline by employing a standard Transformer model. It serves as a reference point for
evaluating the enhancements achieved in subsequent experimental configurations.

2. Experiment No. 2: The Integration of MSFAM. This trial involves the incorpora-
tion of the Multi-Scale Feature Aggregation Module (MSFAM) into the Transformer
framework. The primary aim is to investigate how MSFAM’s inclusion affects the
model’s predictive capabilities. Notably, this integration leads to improved predic-
tion accuracy, particularly with longer input sequences, when compared to the pure
Transformer model.

3. Experiment No. 3: The implementation of MHPSA.In this configuration, the Multi-
Head ProbSparse Attention (MHPSA) mechanism is integrated into both the encoder
and decoder components of the model. The objective is to examine the overall impact
of MHPSA on the model’s performance. The introduction of MHPSA is observed to
enhance prediction accuracy consistently across all input sequence lengths, with a
marked improvement in the 16 s input, yielding the best Mean Absolute Error (MAE)
of 4.44.

4. Experiment No. 4: MHPSA with the Transformer Encoder. This experiment evaluates
the effectiveness of a model configuration that combines a standard Transformer
encoder with the MSFAM and an MHPSA decoder. The results indicate that a pure
MHPSA decoder is particularly beneficial for longer input sequences.

5. Experiment No. 5: MSPHA with the Transformer Decoder. This setup is a reversal of
the previous experiment, featuring an MHPSA encoder, the MSFAM, and a standard
Transformer decoder. The focus is to assess the impact of incorporating MHPSA in the
encoder while maintaining the traditional Transformer decoder. The findings suggest
that this configuration is advantageous for relatively long input sequences.

6. Experiment No. 6: The MHPSA Encoder and Decoder with MSFAM. The final
experiment combines MHPSA in both the encoder and decoder segments, along with
the MSFAM. This setup aims to explore the synergistic effects of these components
within a unified model. The results demonstrate exceptional performance in capturing
temporal features, particularly achieving the best results with 4 s and 2 s input
sequence lengths.
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Each experiment in this series incrementally builds upon the previous one, allowing
for a detailed analysis of how each modification contributes to the overall performance of
the model. This systematic approach enables a nuanced understanding of the strengths and
limitations of each component within the model’s architecture, guiding further refinements
and optimizations for enhanced predictive accuracy in EGT prediction.

5.4. Discussion

In the context of this study, the ESAE-Transformer model was meticulously developed
and evaluated for its efficacy in predicting EGT in commercial aircraft, utilizing data from
QAR. The assessment of the model’s performance, quantified through MAE and Root
Mean Square Error RMSE, was central to our analysis. Our experimental approach was
methodically designed to explore the optimal configuration of the model, with a particular
focus on the dimensionality of the feature space and the variation in input sequence lengths,
all while maintaining a fixed prediction length of 2 s. When juxtaposed with traditional
predictive models such as ANN, GRU, LSTM, and the contemporary Transformer models,
ESAE-Transformer demonstrated a markedly superior performance, achieving an MAE
of 3.47◦R. This outcome not only validates the robustness of our model in the realm
of EGT prediction but also underscores the potential of advanced analytical methods
in enhancing aeronautical applications. However, it is imperative to acknowledge the
limitations encountered in this study. While the model shows promising results, there is
a discernible scope for augmenting its prediction accuracy. Moreover, the computational
efficiency of the model, particularly in the context of real-time onboard application, requires
further optimization. These aspects present avenues for future research, where the focus
would be on refining the model to achieve higher accuracy and computational efficiency,
thereby making it more viable for real-time deployment in aircraft systems.

6. Conclusions

In this paper, we proposed the Enhanced Scale-Aware efficient Transformer (ESAE-
Transformer), an innovative Transformer-based model tailored for Exhaust Gas Tempera-
ture (EGT) prediction. The main contribution of this paper can be summarized as follows:

(1) We developed an innovative transformer-based model for predicting aero-engine
exhaust gas temperature (EGT), marking a first in its application for estimating EGT
in aero-engines;

(2) We developed the Multi-Head ProbSparse Self-Attention (MHPSA) mechanism in the
encoder and decoder models to efficiently reduce temporal complexity and optimize
memory usage, focusing on the most informative data segments;

(3) This paper implemented a Multi-Scale Feature Aggregation Module (MSFAM) to
enhance the processing of complex temporal features, thereby improving the model’s
predictive accuracy for nuanced temporal dynamics;

(4) We conducted comprehensive evaluations, demonstrating optimal performance with
a 2 s input length and a 128-dimensional model. The results of this comprehen-
sive analysis indicate that the mean absolute prediction error is 3.47◦R, which is
well-aligned with real-world environmental conditions, underscoring the model’s
practical applicability.

Our future research endeavors will focus on enhancing the accuracy of Exhaust Gas Tem-
perature (EGT) prediction while employing knowledge distillation techniques to streamline
the methodology for real-time applications. This advancement aims to develop a lightweight,
efficient model suitable for on-board implementation, thereby bridging the gap between
high-precision predictive analytics and practical real-time operational requirements.
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Abbreviations
The following abbreviations are used in this manuscript:

ESAE-Transformer Enhance Scale-Aware Efficient Transformer
MSFAM Multi-Scale Feature Aggregation Module
EGT Exhaust Gas Temperature
AR autoregressive
APIMA autoregressive integrated moving average
RF random forest
KF Kalman filters
GRNN Generalized Regression Neural Network
RBF Radial Basis Function
SVR Support Vector Regression
LSTM long short-term memory
NARX Nonlinear Auto-Regressive model with Exogenous Inputs
ARMA autoregressive moving average
FAE feature attention mechanism-enhanced
MA Moving Average
RUL remaining useful life
MHPSA Multi-Head ProbSparse Self-Attention
NLP natural language processing
MHSA Multi-Head Self-Attention
FFN feed-forward network
ReLU Rectified Linear Unit
LSE LogSumExp
QAR Quick Access Recorder
ALT Flight altitude
MN Mach Number
PLA Power lever angle
Wf Fuel flow rate
SCC Spearman correlation coefficient
RMSE Root Mean Square Error
MAE Mean Absolute Error
ANN Artificial Neural Network
GRU Gate Recurrent Unit
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