Experimental Investigation of the Effect of Bio-Inspired Wavy Leading-Edges on Aerodynamic Performance and Flow Topologies of the Airfoil
Abstract
:1. Introduction
2. Experimental Setup
2.1. Experimental Models and Wind Tunnel
2.2. Experimental Technique and Analytical Method
2.2.1. Aerodynamic Force Measurement
2.2.2. Particle Image Velocimetry
2.2.3. Global Luminescent Oil-Film Visualization
3. Results and Discussions
3.1. Aerodynamic Performance
3.2. Flow topologies of Airfoil
3.2.1. Flow Topologies of Pre-Stall
3.2.2. Flow Topologies of Stall Angle
3.2.3. Flow Topologies of Post-Stall
3.3. Discussion on Control Mechanism of WLEs
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Abbreviation | Original text |
AOA | Angle of Attack |
GLOF | Global Luminescent oil film |
LSB | Laminar separation bubble |
PIV | Particle image velocimetry |
Re | Reynolds number |
WLEs | Wavy Leading-Edges |
References
- Fish, F.E.; Lauder, G.V. Passive and active flow control by swimming fishes and mammals. Annu. Rev. Fluid Mech. 2006, 38, 193–224. [Google Scholar] [CrossRef]
- Bolzon, M.D.; Kelso, R.M.; Arjomandi, M. Performance effects of a single tubercle terminating at a swept wing’s tip. Exp. Therm. Fluid Sci. 2017, 85, 52–68. [Google Scholar] [CrossRef]
- Cai, C.; Zhou, T.; Liu, S.H.; Zuo, Z.G.; Zhang, Y.A.; Li, Q.A. Modeling of the compartmentalization effect induced by leading-edge tubercles. Phys. Fluids 2022, 34, 15. [Google Scholar] [CrossRef]
- Zhao, M.; Xu, L.C.; Li, X.J.; Zhao, Y.J.; Liu, Z.X. Dynamic stall of pitching tubercled wings in vortical wake flowfield. Phys. Fluids 2023, 35, 15. [Google Scholar] [CrossRef]
- Troll, M.; Shi, W.C.; Stark, C.; Atlar, M. Vortex dynamics impact on the wake flow of a marine rudder with leading-edge tubercles. J. Ocean Eng. Mar. Energy 2022, 8, 553–571. [Google Scholar] [CrossRef]
- Post, M.L.; Decker, R.; Sapell, A.R.; Hart, J.S. Effect of bio-inspired sinusoidal leading-edges on wings. Aerosp. Sci. Technol. 2018, 81, 128–140. [Google Scholar] [CrossRef]
- Ni, Z.; Dhanak, M.; Su, T.C. Performance Characteristics of Airfoils with Leading-Edge Tubercles and an Internal Slot. AIAA J. 2019, 57, 2394–2407. [Google Scholar] [CrossRef]
- Sudhakar, S.; Karthikeyan, N.; Venkatakrishnan, L. Influence of leading edge tubercles on aerodynamic characteristics of a high aspect-ratio UAV. Aerosp. Sci. Technol. 2017, 69, 281–289. [Google Scholar] [CrossRef]
- Seyhan, M.; Sarioglu, M.; Akansu, Y.E. Influence of Leading-Edge Tubercle with Amplitude Modulation on NACA 0015 Airfoil. AIAA J. 2021, 59, 3965–3978. [Google Scholar] [CrossRef]
- Chen, W.J.; Qiao, W.Y.; Wei, Z.J. Aerodynamic performance and wake development of airfoils with wavy leading edges. Aerosp. Sci. Technol. 2020, 106, 27. [Google Scholar] [CrossRef]
- Kemali, H.; Saydam, A.Z.; Helvacioglu, S. Investigation of the Effect of Leading-Edge Tubercles on Wingsail Performance. J. ETA Marit. Sci. 2020, 8, 54–65. [Google Scholar] [CrossRef]
- Degregori, E.; Kim, J.W. Mitigation of transonic shock buffet on a supercritical airfoil through wavy leading edges. Phys. Fluids 2021, 33, 15. [Google Scholar] [CrossRef]
- Miklosovic, D.S.; Murray, M.M.; Howle, L.E.; Fish, F.E. Leading-edge tubercles delay stall on humpback whale (Megaptera novaeangliae) flippers. Phys. Fluids 2004, 16, L39–L42. [Google Scholar] [CrossRef]
- Smith, T.A.; Klettner, C.A. Airfoil trailing-edge noise and drag reduction at a moderate Reynolds number using wavy geometries. Phys. Fluids 2022, 34, 20. [Google Scholar] [CrossRef]
- Degregori, E.; Kim, J.W. An investigation on a supercritical aerofoil with a wavy leading edge in a transonic flow. Phys. Fluids 2020, 32, 17. [Google Scholar] [CrossRef]
- Bampanis, G.; Roger, M.; Ragni, D.; Avallone, F.; Teruna, C. Airfoil-Turbulence Interaction Noise Source Identification and Reduction by Leading-Edge Serrations. In Proceedings of the AIAA/CEAS Aeroacoustics Conference, Delft, The Netherlands, 20–23 May 2019; p. 18. [Google Scholar]
- Turner, J.M.; Kim, J.W. Aeroacoustic source mechanisms of a wavy leading edge undergoing vortical disturbances. J. Fluid Mech. 2017, 811, 582–611. [Google Scholar] [CrossRef]
- Xing, Y.D.; Chen, W.J.; Wang, X.Y.; Tong, F.; Qiao, W.Y. Effect of Wavy Leading Edges on Airfoil Trailing-Edge Bluntness Noise. Aerospace 2023, 10, 17. [Google Scholar] [CrossRef]
- Johari, H.; Henoch, C.; Custodio, D.; Levshin, A. Effects of leading-edge protuberances on airfoil performance. AIAA J. 2007, 45, 2634–2642. [Google Scholar] [CrossRef]
- Hansen, K.L.; Kelso, R.M.; Dally, B.B. Performance Variations of Leading-Edge Tubercles for Distinct Airfoil Profiles. AIAA J. 2011, 49, 185–194. [Google Scholar] [CrossRef]
- Cai, C.; Liu, S.H.; Zuo, Z.G.; Maeda, T.; Kamada, Y.; Li, Q.A.; Sato, R. Experimental and theoretical investigations on the effect of a single leading-edge protuberance on airfoil performance. Phys. Fluids 2019, 31, 16. [Google Scholar] [CrossRef]
- Cai, C.; Zuo, Z.G.; Morimoto, M.; Maeda, T.; Kamada, Y.; Liu, S.H. Two-Step Stall Characteristic of an Airfoil with a Single Leading-Edge Protuberance. AIAA J. 2018, 56, 64–77. [Google Scholar] [CrossRef]
- Custodio, D.; Henoch, C.W.; Johari, H. Aerodynamic Characteristics of Finite Span Wings with Leading-Edge Protuberances. AIAA J. 2015, 53, 1878–1893. [Google Scholar] [CrossRef]
- Colak, A.; Seyhan, M.; Sarioglu, M. Leading-edge tubercle modifications to the biomimetic wings. Phys. Fluids 2023, 35, 14. [Google Scholar] [CrossRef]
- Rostamzadeh, N.; Hansen, K.L.; Kelso, R.M.; Dally, B.B. The formation mechanism and impact of streamwise vortices on NACA 0021 airfoil’s performance with undulating leading edge modification. Phys. Fluids 2014, 26, 22. [Google Scholar] [CrossRef]
- Rostamzadeh, N.; Kelso, R.M.; Dally, B. A numerical investigation into the effects of Reynolds number on the flow mechanism induced by a tubercled leading edge. Theor. Comput. Fluid Dyn. 2017, 31, 1–32. [Google Scholar] [CrossRef]
- Hansen, K.L.; Rostamzadeh, N.; Kelso, R.M.; Dally, B.B. Evolution of the streamwise vortices generated between leading edge tubercles. J. Fluid Mech. 2016, 788, 730–766. [Google Scholar] [CrossRef]
- Ferreira, P.H.; Brondani, L.M.; Scarpari, J.R.S.; Correa, F.L.S.; de Paula, A.A.; da Silva, R.G.A. Evaluation of Wavy Leading Edge for Rotary-Wing Applications. In Proceedings of the 2018 Flow Control Conference, Atlanta, Georgia, 25–29 June 2018; p. 20. [Google Scholar]
- Liu, T.S.; Chen, T.; Salazar, D.M.; Miozzi, M. Skin friction and surface optical flow in viscous flows. Phys. Fluids 2022, 34, 14. [Google Scholar] [CrossRef]
- Liu, T.S.; Montefort, J.; Woodiga, S.; Merati, P.; Shen, L.X. Global luminescent oil-film skin-friction meter. AIAA J. 2008, 46, 476–485. [Google Scholar] [CrossRef]
- Horn, B.K.P.; Schunck, B.G. Determining optical flow. Proc. SPIE Int. Soc. Opt. Eng. (USA) 1981, 281, 319–331. [Google Scholar] [CrossRef]
- Liu, T.; Woodiga, S.; Ma, T. Skin friction topology in a region enclosed by penetrable boundary. Exp. Fluids 2011, 51, 1549–1562. [Google Scholar] [CrossRef]
- Woodiga, S.; Liu, T.S.; Ramasamy, R.S.V.; Kode, S.K. Effects of pitch, yaw, and roll on delta wing skin friction topology. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2016, 230, 639–652. [Google Scholar] [CrossRef]
- Zhong, H.J.; Woodiga, S.; Wang, P.; Shang, J.K.; Cui, X.C.; Wang, J.M.; Liu, T.S. Skin-friction topology of wing body junction flows. Eur. J. Mech. B Fluids 2015, 53, 55–67. [Google Scholar] [CrossRef]
- Liu, T.S. Global skin friction measurements and interpretation. Prog. Aeosp. Sci. 2019, 111, 19. [Google Scholar] [CrossRef]
- Du, H.; Jiang, H.; Chen, S.; Yang, Z.Y.; Zhang, W.X. Fluorescent oil-film applied to measure skin friction of flat plate with leading edge separation bubble in low Reynolds number. Int. J. Mod. Phys. B 2023, 19, 2350272. [Google Scholar] [CrossRef]
- Rostamzadeh, N.; Kelso, R.M.; Dally, B.B.; Hansen, K.L. The effect of undulating leading-edge modifications on NACA 0021 airfoil characteristics. Phys. Fluids 2013, 25, 19. [Google Scholar] [CrossRef]
- Pena, B.; Muk-Pavic, E.; Thomas, G.; Fitzsimmons, P. Numerical analysis of a leading edge tubercle hydrofoil in turbulent regime. J. Fluid Mech. 2019, 878, 292–305. [Google Scholar] [CrossRef]
- Cai, C.; Zuo, Z.G.; Maeda, T.; Kamada, Y.; Li, Q.A.; Shimamoto, K.; Liu, S.H. Periodic and aperiodic flow patterns around an airfoil with leading-edge protuberances. Phys. Fluids 2017, 29, 14. [Google Scholar] [CrossRef]
- Rodríguez, D.; Theofilis, V. On the birth of stall cells on airfoils. Theor. Comput. Fluid Dyn. 2011, 25, 105–117. [Google Scholar] [CrossRef]
- Schewe, G. Reynolds-Number Effects in Flow Around More-or-Less Bluff Bodies; Elsevier: Amsterdam, The Netherlands, 2001. [Google Scholar]
- Zhao, M.; Xu, L.C.; Tang, Z.Q.; Zhang, X.L.; Zhao, B.; Liu, Z.X.; Wei, Z.Y. Onset of dynamic stall of tubercled wings. Phys. Fluids 2021, 33, 13. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, H.; Jiang, H.; Yang, Z.; Xia, H.; Chen, S.; Wu, J. Experimental Investigation of the Effect of Bio-Inspired Wavy Leading-Edges on Aerodynamic Performance and Flow Topologies of the Airfoil. Aerospace 2024, 11, 194. https://doi.org/10.3390/aerospace11030194
Du H, Jiang H, Yang Z, Xia H, Chen S, Wu J. Experimental Investigation of the Effect of Bio-Inspired Wavy Leading-Edges on Aerodynamic Performance and Flow Topologies of the Airfoil. Aerospace. 2024; 11(3):194. https://doi.org/10.3390/aerospace11030194
Chicago/Turabian StyleDu, Hai, Hao Jiang, Zhangyi Yang, Haoyang Xia, Shuo Chen, and Jifei Wu. 2024. "Experimental Investigation of the Effect of Bio-Inspired Wavy Leading-Edges on Aerodynamic Performance and Flow Topologies of the Airfoil" Aerospace 11, no. 3: 194. https://doi.org/10.3390/aerospace11030194
APA StyleDu, H., Jiang, H., Yang, Z., Xia, H., Chen, S., & Wu, J. (2024). Experimental Investigation of the Effect of Bio-Inspired Wavy Leading-Edges on Aerodynamic Performance and Flow Topologies of the Airfoil. Aerospace, 11(3), 194. https://doi.org/10.3390/aerospace11030194